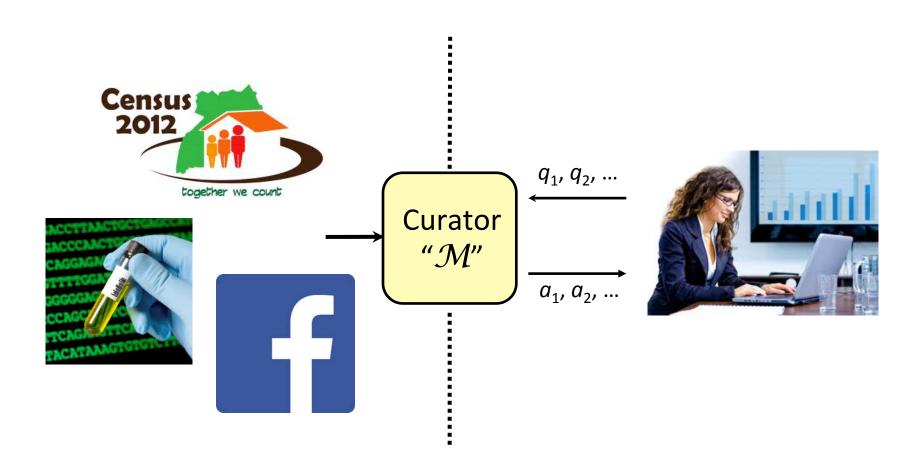
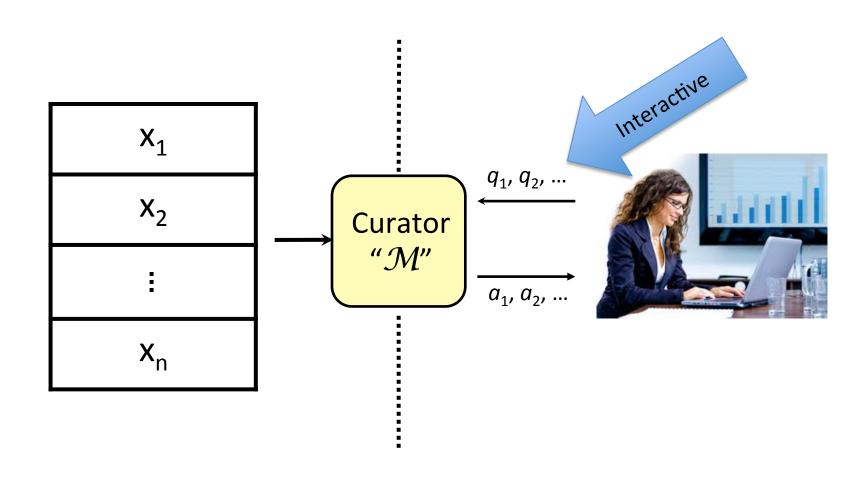
Make Up Your Mind: The Price of Online Queries in Differential Privacy

Mark Bun

Princeton

Thomas Steinke


IBM Research - Almaden


Jonathan Ullman

Northeastern

Privacy-Preserving Data Analysis

Privacy-Preserving Data Analysis

How Should We Model Interaction?

- "Offline": Analyst chooses all of her queries in advance and receives answers together
- "Adaptive": Analyst chooses/asks queries one at a time

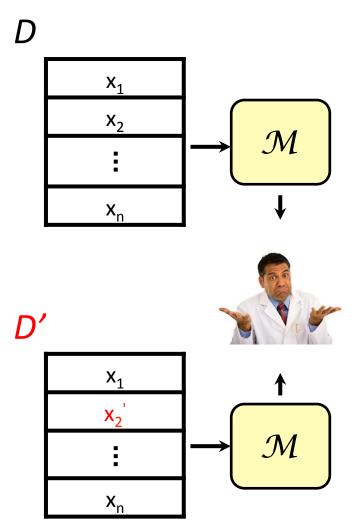
...or another possibility?

 This work: How does changing the model of interaction affect what is feasible with differential privacy?

Why Might This Matter?

 Fine-grained study of the complexity of differential privacy – can we get improved algorithms in easier models?

 Differential privacy prevents false discovery, even in adaptive data analysis


[Dwork-Feldman-Hardt-Pitassi-Reingold-Roth14, Hardt-Ullman14]

Does handling adaptivity in DP really come for free?

Differential Privacy

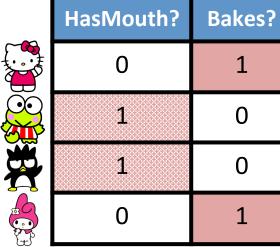
Dinur-Nissim03+Dwork, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05, **Dwork-McSherry-Nissim-Smith06**, **Dwork-Kenthapadi-McSherry-Mironov-Naor06**

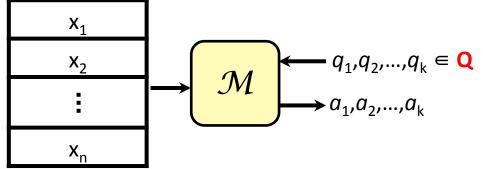
D and D' are **neighbors** if they differ on one row

 \mathcal{M} is **differentially private** if for all neighbors D, D':

 $\mathcal{M}(D) \approx \mathcal{M}(D')$

Differential Privacy


Dinur-Nissim03+Dwork, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05, **Dwork-McSherry-Nissim-Smith06**, **Dwork-Kenthapadi-McSherry-Mironov-Naor06**



Counting Queries

"What fraction of the rows of D satisfy some property q?"

E.g. attribute means q = HasMouth? q(D) = 2/4

 \mathcal{M} is accurate for kqueries from \mathbb{Q} if $|a_i - q_i(D)| < 0.05$ for every i (with high probability)

Clothed?

OnJet?

1

1

(Privately) Answering Attribute Means

[DN03, DN04, BDMN05, DMNS06]

d binary attributes

<i>n</i> people	

	HasMouth?	Bakes?	Clothed?	OnJet?
1	0	1	1	1
3	1	0	1	1
,	1	0	0	1
	0	1	1	1

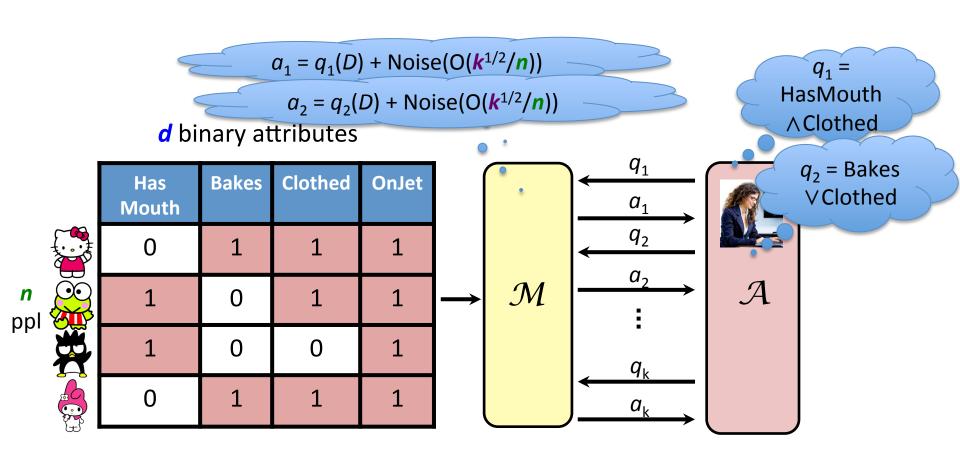
1/2 + Noise(O(1/*n*))

(Privately) Answering Attribute Means

[DN03, DN04, BDMN05, DMNS06]

d binary attributes

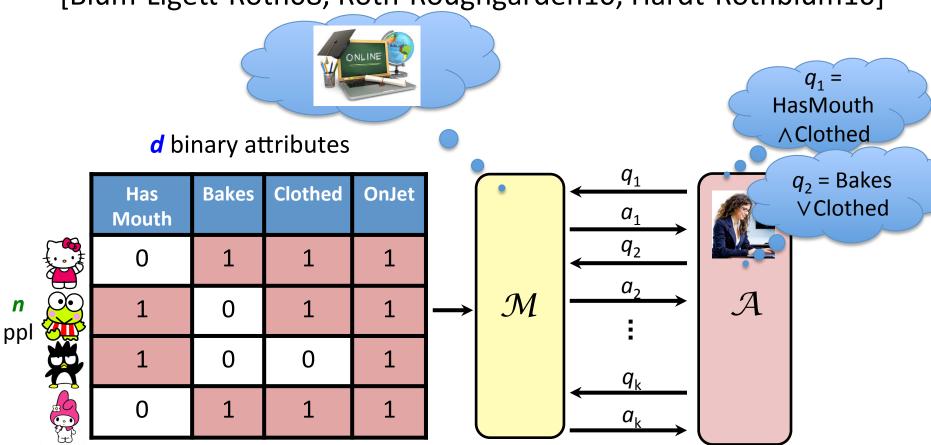
		HasMouth?	Bakes?	Clothed?	OnJet?
		0	1	1	1
<i>n</i> people		1	0	1	1
people		1	0	0	1
		0	1	1	1
	•	1/2	1/2	3/4	1
		+ Noise(O(d ^{1/2} / n))			


Non-trivial accuracy requires $d < n^2$

 \Rightarrow can answer $k = d = \Omega(n^2)$ queries

Disclaimer: This talk hides all polylogs

Not Just Attribute Means


[DN03, DN04, BDMN05, DMNS06]

Can answer $k = \Omega(n^2)$ adaptively chosen counting queries

...And Not Just n² Queries

[Blum-Ligett-Roth08, Roth-Roughgarden10, Hardt-Rothblum10]

"Private Multiplicative Weights" [Hardt-Rothblum10] Can answer $\mathbf{k} = \exp(\Omega(\mathbf{n}/\mathbf{d}^{1/2}))$ adaptively chosen counting queries (= exponentially many queries when $\mathbf{n} >> \mathbf{d}^{1/2}$)

(Worst-Case Counting)

How Many Queries Can We Answer?

```
(\varepsilon = 0.1, \delta = 1/poly(n)) - differential privacy
```

Upper bound: $n \ll d^{1/2}$ (Independent Noise)

Upper bound: $n >> d^{1/2}$ ("Advanced Algorithms")

Adaptive

 $\forall \mathbf{Q}: \quad \mathbf{k} = \Omega(\mathbf{n}^2)$ [...DMNS06]

 $\forall \mathbf{Q}: \exp(\Omega(n/d^{1/2}))$

Matching Lower Bounds

• Can't answer more than $k = \exp(O(n))$ queries [Dinur-Nissim03] "Reconstruction attacks"

• • •

- Independent noise is tight for attribute means:
 Can only answer O(n²) queries [B.-Ullman-Vadhan14]
- Private mult. weights is tight for conjunctions: Can only answer $\exp(O(n/d^{1/2}))$ queries [B.-Ullman-Vadhan14]

All lower bounds apply to a fixed set of queries

How Many Queries Can We Answer?

 $(\varepsilon = 0.1, \delta = 1/\text{poly}(n))$ differential privacy

Offline

Adaptive

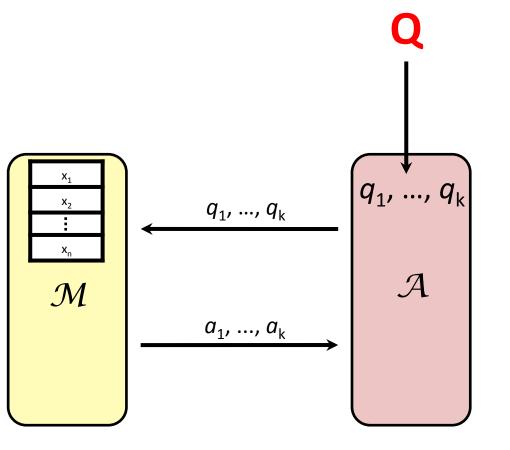
 $n << d^{1/2}$ Upper bound: (Independent Noise)

Upper bound: ("Advanced Algorithms")

 $n >> d^{1/2}$

$\forall \mathbf{Q}: \mathbf{k} = \Omega(\mathbf{n}^2)$
[DMNS06]
$\forall \mathbf{Q}$: $\exp(\Omega(n/d^{1/2}))$
[HR10]

 $n << d^{1/2}$ Lower bound: (Attribute Means)

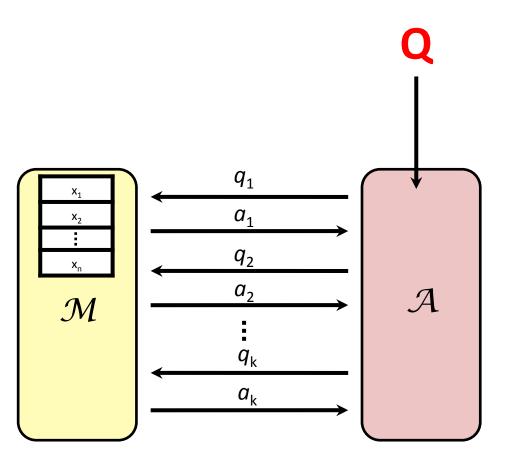

 $n >> d^{1/2}$ Lower bound: (Conjunctions)

 $\exists \mathbf{Q}: O(\mathbf{n}^2)$ [BUV14]

 $\exists Q: \exp(O(n/d^{1/2}))$ [BUV14]

Question: Are these models equivalent for every Q?

The **OFFline** Model

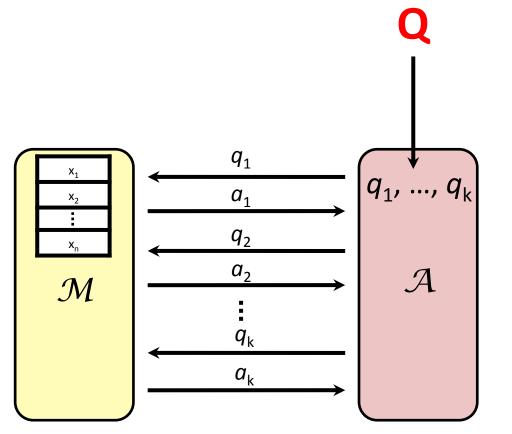


1. \mathcal{A} chooses k queries $q_1, ..., q_k$ from \mathbb{Q}

2. \mathcal{A} gives queries to \mathcal{M} in a single batch

3. \mathcal{M} releases answers $a_1,...,a_k$

The **Adaptive** Model


In each round j = 1,...,k:

1. \mathcal{A} chooses a query q_j (depending on $q_1, a_1, ..., q_{j-1}, a_{j-1}$)

2. \mathcal{M} must release a_j before seeing q_{i+1}

The **ONline** Model

(Non-adaptive)

1. \mathcal{A} chooses k queries $q_1, ..., q_k$ from \mathbb{Q}

2. In each round j = 1,...,k:

 \mathcal{M} must release a_{j} before seeing q_{j+1}

Our Results

All three models are distinct

Offline ≠ Online

Family Q_{prefix} of counting queries

Offline: Can answer $k = \exp(\Omega(n^{2/3}))$ queries

Online: Can only answer $k = O(n^2)$ queries

Online ≠ Adaptive

Family Q_{corr} of "search" queries

Online: $k = \exp(\Omega(n))$ queries Adaptive: k = O(1) queries

Offline vs. Online

"Prefix queries"

```
Q_{prefix} = \{ q_S : \{0,1\}^d \rightarrow \{0,1\} \}
For S = \{y_1,...,y_m \in \{0,1\}^{\leq d} : m \leq d \} and x∈\{0,1\}^d :
Define q_S(x) = 1 iff \exists y \in S that is a prefix of x
```

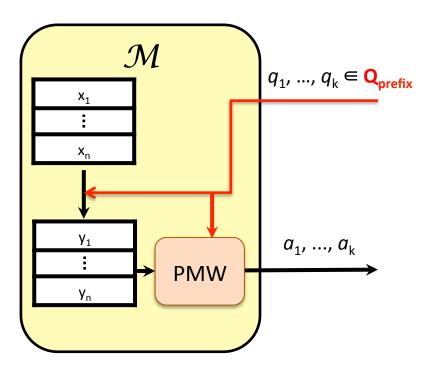
<u>Example</u>

$$S = \{0, 10, 001, 110\} \subseteq \{0,1\}^{\leq 4}$$

 $x = 1010 \in \{0,1\}^{4}$ \Rightarrow $q_S(x) = 1$

Offline vs. Online

"Prefix queries"

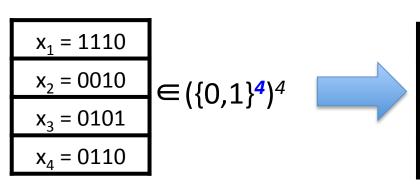

```
Q_{prefix} = \{ q_S : \{0,1\}^d \rightarrow \{0,1\} \}
For S = \{y_1,...,y_m \in \{0,1\}^{\leq d} : m \leq d \} and x∈\{0,1\}^d :
Define q_S(x) = 1 iff \exists y \in S that is a prefix of x
```

Intuition for separation

Offline: Structure of queries enables dimensionality reduction

Online: As hard as attribute means

An Offline Algorithm

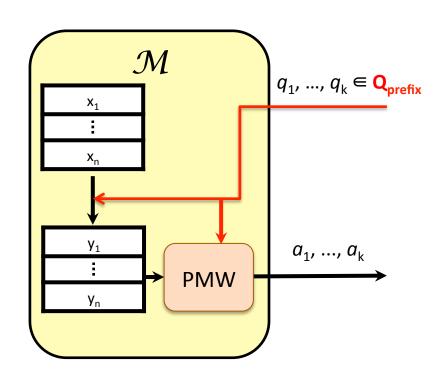


Algorithm \mathcal{M}

Input: queries $q_1,...,q_k$ corresponding to sets $S_1,...,S_k$ $|S_i| \le d$

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

Example:



$$y_1 = 1$$
 $y_2 = 001$
 $y_3 = 01$
 $y_4 = 011$

$$S_1 = \{1\}$$

 $S_2 = \{01, 10\}$
 $S_3 = \{001, 011\}$

$$\Rightarrow$$
 S = {1, 01, 10, 001, 011}

An Offline Algorithm

Algorithm ${\mathcal M}$

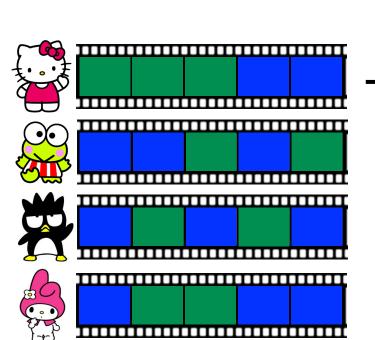
Input: queries $q_1,...,q_k$ corresponding to sets $S_1,...,S_k$ $|S_i| \le d$

- 1. Let $S = S_1 \cup S_2 \cup ... \cup S_k$
- 2. Replace each x_i with longest $y_i \subseteq S$ which is a prefix of x_i
- 3. Run your favorite "advanced algorithm" on $(y_1,...,y_n)$

Fact 1: All $q_j(y_i) = q_j(x_i)$ (since $z \in S$ is a prefix of x_i iff z is a prefix of y_i)

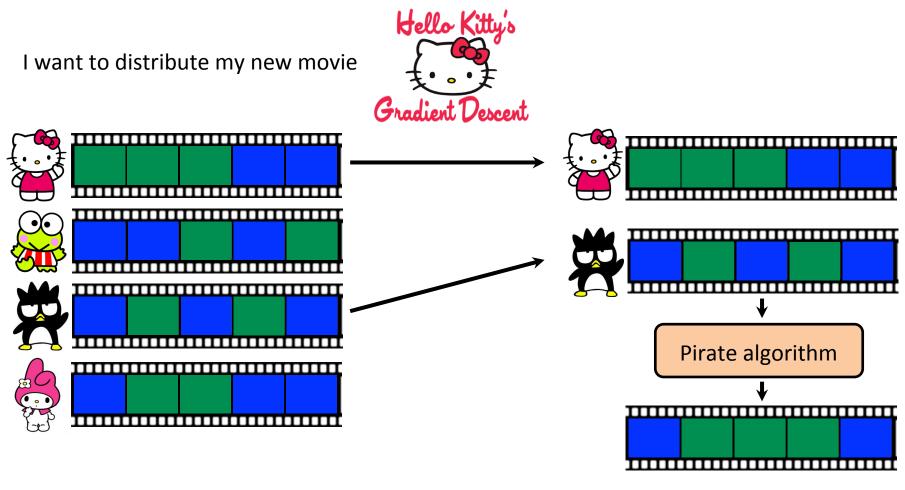
Fact 2: y_i 's come from a universe of size only kd (i.e. dimension log(kd)) \Rightarrow Private Mult. Weights can answer $k = exp(\Omega(n/log^{1/2}(kd)))$ queries For d = poly(n), solve to get $k = exp(\Omega(n^{2/3}))$

An Online Lower Bound

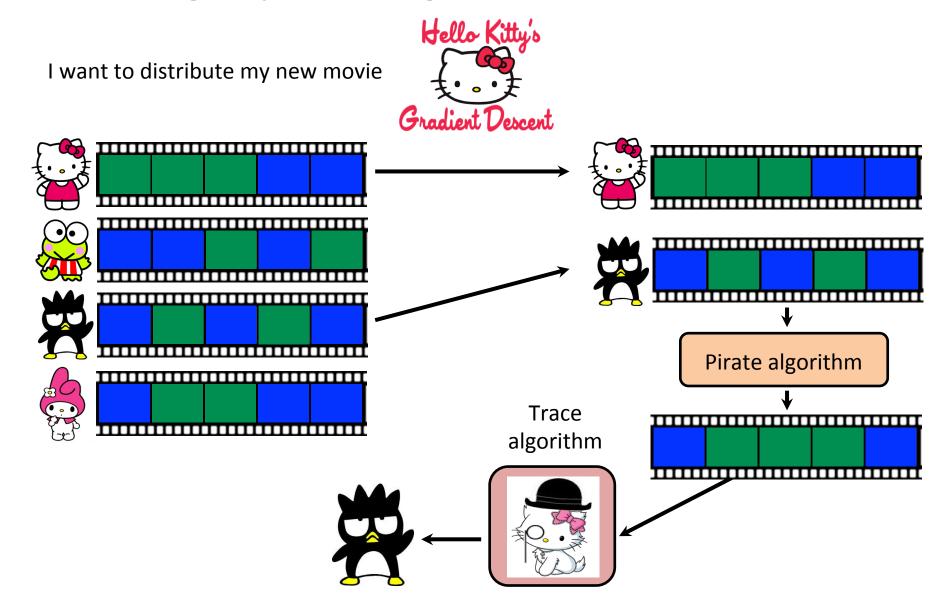


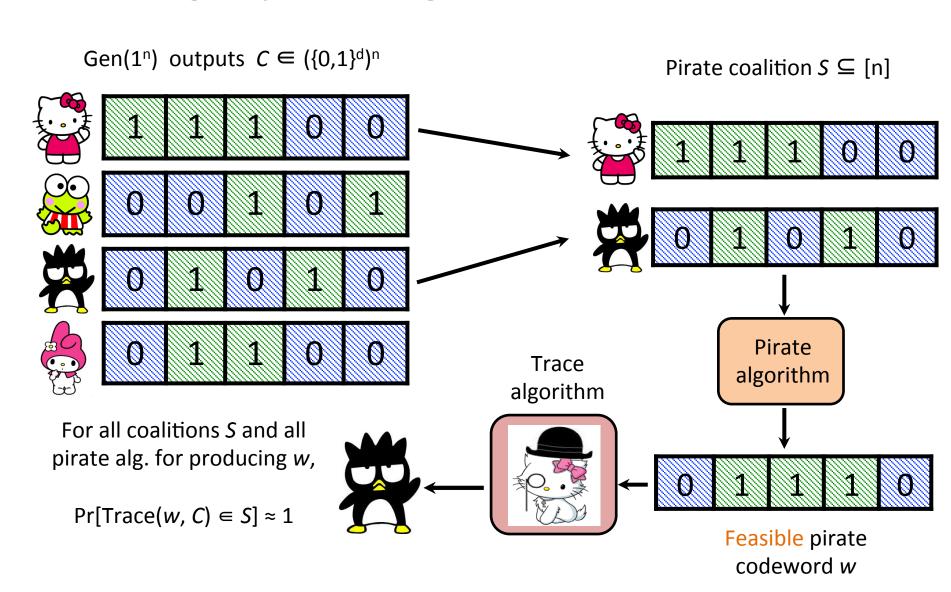
- Lower bound for attribute means via fingerprinting codes [B.-Ullman-Vadhan14]
- "Embed" attribute means into online prefix queries

Other places idea is used: [Bassily-Smith-Thakurta15, Dwork-Talwar-Thakurta-Zhang15, Steinke-Ullman15, B.-Nissim-Stemmer16]

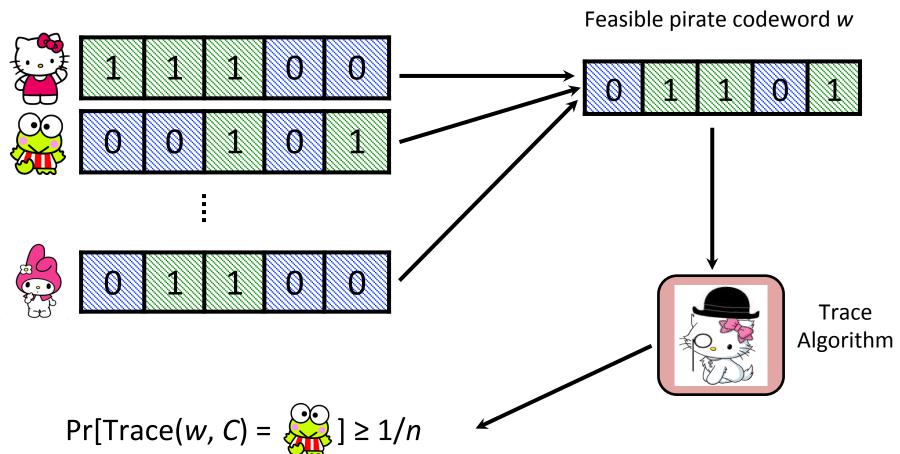

Hello Kitty's

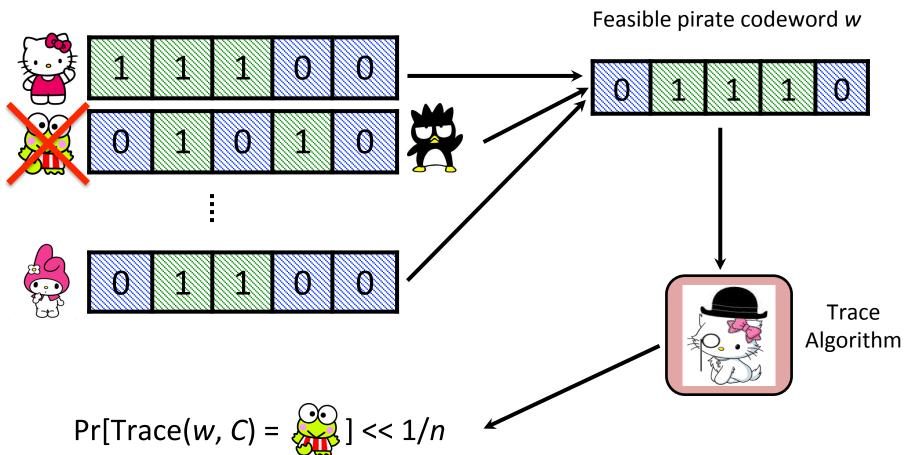
I want to distribute my new movie


......... **Pirate** Trace Algorithm

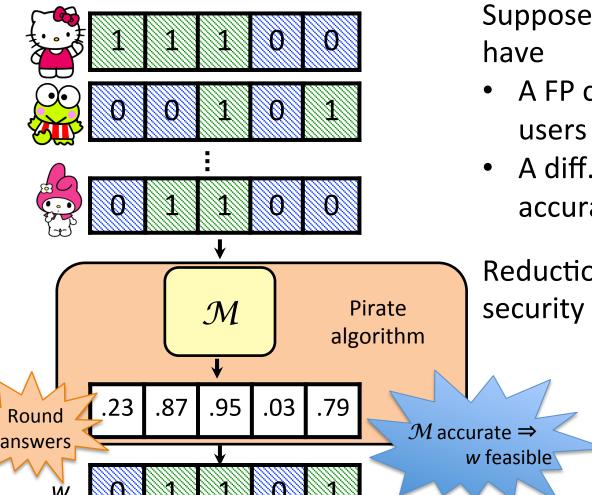

...but Sanriotown is full of pirates!

...but Sanriotown is full of pirates!


Who collude against me!


FP Codes vs. Diff. Privacy

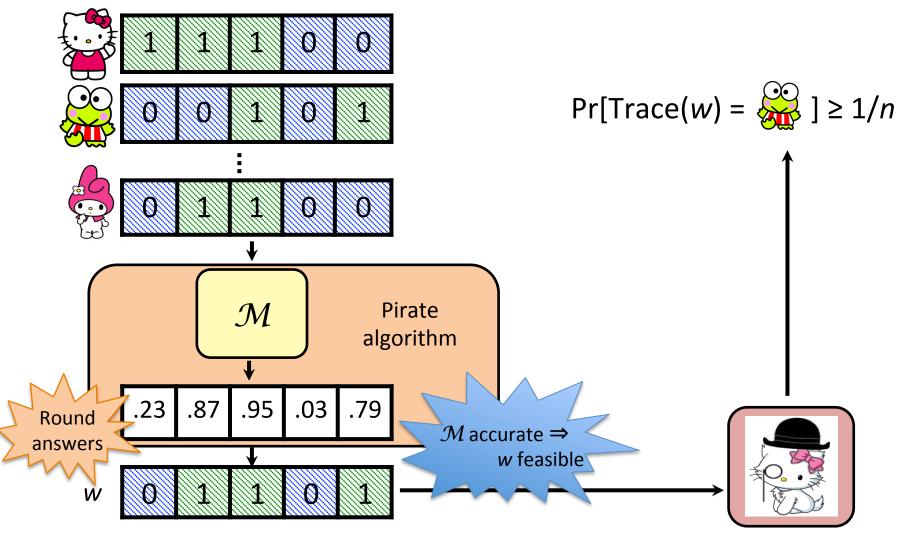
Coalition of *n* pirates

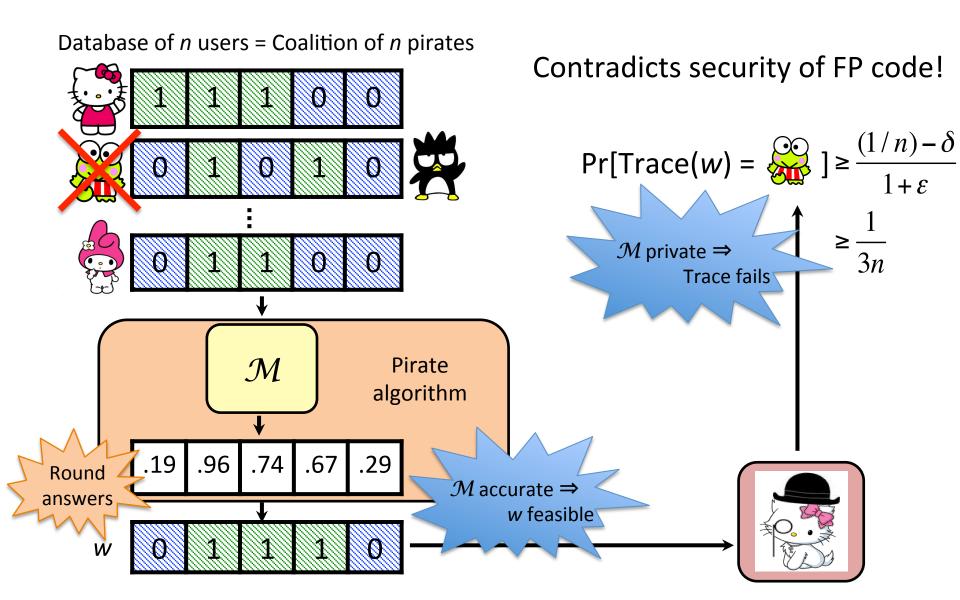


FP Codes vs. Diff. Privacy

Coalition of *n* pirates

Database of n users = Coalition of n pirates

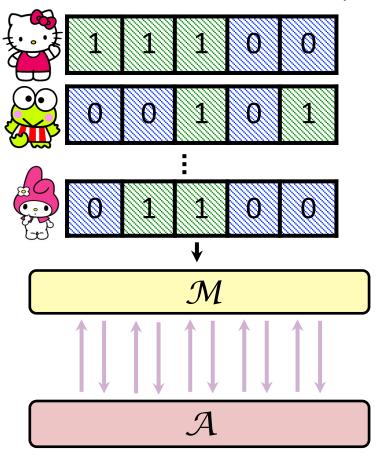



Suppose (for contradiction) we have

- A FP code of length k for (n+1) users
- A diff. private \mathcal{M} that is accurate for k attribute means

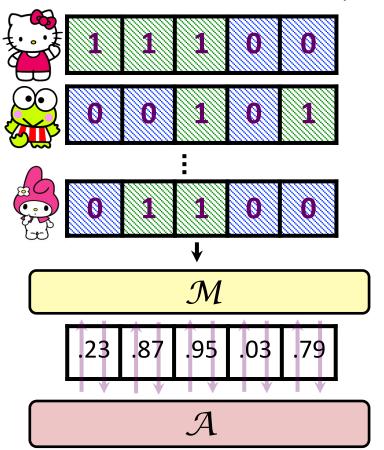
Reduction: Use \mathcal{M} to break security of the FP code

Database of n users = Coalition of n pirates



- ∃ FP code for *n* users with length *k* ⇒ *n* samples enables < *k* attribute means
- [Tardos03] \exists FP code for n users of length $k = O(n^2)$
 - \therefore attribute means require $k \le O(n^2)$

Next: How to embed attribute means into online prefix queries


Database of n users = Coalition of n pirates

Suppose \mathcal{M} can answer k prefix queries presented online

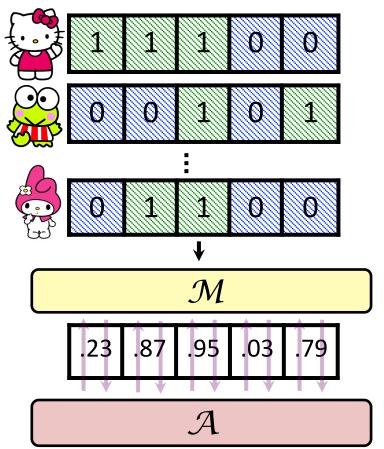
Reduction: Use \mathcal{M} to answer k attribute mean queries on FPC-based distribution

Database of *n* users = Coalition of *n* pirates \subseteq

Queries:

Recall $q_S(x) = 1$ iff $\exists y \in S$ that is a prefix of x

```
S_1 = \{1, 1, ..., 1\}


S_2 = \{11, 01, ..., 01\}

S_3 = \{111, 001, ..., 011\}

S_4 = \{1111, 0011, ..., 0111\}

S_5 = \{11101, 00101, ..., 01101\}
```

Database of *n* users = Coalition of *n* pirates Qu

Queries:

Recall $q_S(x) = 1$ iff $\exists y \in S$ that is a prefix of x

$$S_{1} = \{1, 1, ..., 1\}$$

$$S_{2} = \{C_{1,1}1, ..., C_{n+1,1}1\}$$

$$S_{3} = \{C_{1,1}C_{1,2}1, ..., C_{n+1,1}C_{n+1,2}1\}$$

$$S_{4} = \{C_{1,1}C_{1,2}C_{1,3}1, ...\}$$

Fact 1: $q_j(D) = j^{th}$ attribute mean Fact 2: q_1 , ..., q_{j-1} reveal nothing about q_j (But q_i reveals answers to

$$q_1, ..., q_{j-1}!$$

- n samples suffice for k online prefix queries $\Rightarrow n$ samples suffice for k attribute means*
- Attribute mean lower bound k = O(n²)
 ∴ online prefix queries require k ≤ O(n²)
 (Even for d = O(n²))

^{*}Not quite black-box use of FPCs / attribute mean lower bound, but follows from FP code analysis of [Steinke-Ullman15, Dwork-Smith-Steinke-Ullman-Vadhan15]

Our Results

All three models are distinct

Offline ≠ Online

Family Q_{prefix} of counting queries

Offline: Can answer $k = \exp(\Omega(n^{2/3}))$ queries

Online: Can only answer $k = O(n^2)$ queries

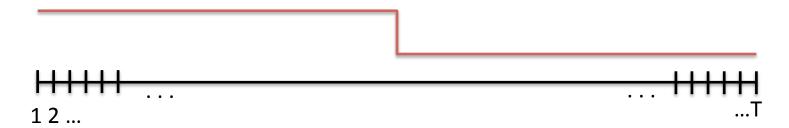
Online ≠ Adaptive

Family Q_{corr} of "search" queries

Online: $k = \exp(\Omega(n))$ queries Adaptive: k = O(1) queries

Online vs. Adaptive (Idea)

```
\begin{aligned} \mathbf{Q}_{\text{corr}} &= \{ \ q_{\text{S}} : \{0,1\}^n \  \  \, \} \end{aligned} \quad \text{*Not counting queries*} \\ \text{For S} &= \{y_1, ..., y_m \in \{0,1\}^n\} \quad \text{and} \quad x \in \{0,1\}^n: \\ q_{\text{S}} : \text{``Find me a vector } z \in \{0,1\}^n \text{ that is highly correlated} \\ \text{with } x, \text{ but not too correlated with any } y_j'' \end{aligned}
```


Intuition

Online: Randomized response [Warner65] – Choose z once and for all with z_i = Round(x_i + Noise(1/ ϵ))

Adaptive: Picking queries strategically enables a "reconstruction attack"

Conclusions

- To answer many queries with differential privacy, it can help to "make up your mind"
- Open questions:
 - Can counting queries separate online vs. adaptive?
 - Are there natural tasks that separate these models?
 Some evidence for one-dimensional thresholds

Thank you!