Differentially Private Release and Learning of Threshold Functions

Mark Bun Kobbi Nissim Uri Stemmer Salil Vadhan

Harvard Harvard and Ben-Gurion Ben-Gurion Harvard

Median Estimation

Data domain [**T**] = {1, ..., **T**}

Median Estimation

Data domain [**T**] = {1, ..., **T**}

Privacy-Preserving Data Analysis

Want curators that are:
Oifferentially
Private
"Threshold" Tasks
Efficient

This Talk

- Sample complexity of threshold tasks with approx. differential privacy
- These tasks have higher sample complexity than their non-private counterparts (*n* grows w/ *T*)
- Network of reductions to the simpler "interior point problem"
- New combinatorial lower bound techniques
 Distributed computing, Ramsey theory

Differential Privacy

```
DN03+Dwork, DN04, BDMN05,
```

Dwork-McSherry-Nissim-Smith06, Dwork-Kenthapadi-McSherry-Mironov-Naor06

Accuracy for Approx. Medians

 \mathcal{P} = unknown distribution over [7] with median m

(w.p. 99% over sample, coins(M))

PrivacyAccuracySample Complexity

Private Approx. Medians

- (ε, 0)-differential privacy: Changing one person's data alters PMF by factor of e^ε
- Accuracy: n = O(log T) samples suffice to produce approx. median

Privacy Accuracy Sample Complexity

Accuracy for Threshold Tasks $f_t : [T] \rightarrow \{0,1\}$ with $f_t(x) = 1$ if $x \le t, = 0$ if x > t

Threshold Estimation

For each t \in [*T*]: "What fraction of dist. \mathcal{P} satisfies the threshold property f_t ?"

(Properly) PAC Learning Thresholds [Val84]

"What threshold function generalizes labeled examples from \mathcal{P} ?"

Sample Complexity

Privacy

Accuracy

Accuracy for Threshold Tasks $f_t : [T] \rightarrow \{0,1\}$ with $f_t(x) = 1$ if $x \le t, = 0$ if x > t

Sample Complexity for Diff. Privacy

How big does *n* have to be to guarantee accuracy *and* privacy for threshold tasks?

Question: Is there an additional **price of diff. privacy** over statistical accuracy alone?

Sample Complexity for Diff. Privacy

Lower Bounds for $(\varepsilon, 0)$ -Diff. Priv.

Volume-based ("packing") arguments

- Tight characterization of (ε, 0)-DP [Hardt-Talwar10, Beimel-Nissim-Stemmer13a]
- Break down even for $\delta = negl(n)$ [De11, Beimel-Nissim-Stemmer13b]

Lower bounds via info. theory & comm. complexity

- LBs for two-party privacy problems [McGregor-Mironov-Pitassi-Reingold-Talwar-Vadhan10]
- Characterization of (ε, 0)-DP learning [Feldman-Xiao14]

Lower Bounds for (ε, δ) -Diff. Priv.

Reconstruction attacks [Dinur-Nissim03]

- Connection to sparse recovery [Dwork-McSherry-Talwar07]
- Combinatorial (hereditary) discrepancy [Muthukrishnan-Nikolov12, Nikolov-Talwar-Zhang13, Nikolov15]

Probabilistic fingerprinting codes [Boneh-Shaw95, Tardos03]

- LBs for contingency tables [B.-Ullman-Vadhan14, Steinke-Ullman15]
- LBs for convex optimization, PCA [Bassily-Smith-Thakurta14, Dwork-Talwar-Thakurta-Zhang14]

Lower Bounds for (ε, δ) -Diff. Priv.

Prior techniques for (ϵ , δ)-DP exploit **high dimensionality** of concepts/data

This work: Lower bounds for (ε, δ) -DP even for simple concepts (i.e. VC-dimension = 1)

Techniques

- Equivalence between threshold tasks and the "Interior Point Problem"
- New upper and lower bounds for solving IPP with approx. differential privacy

 $\log^* \mathbf{T} \le \mathbf{n} \le 2^{\log^* \mathbf{T}}$

Interior Point Problem

- Input: Database $D = (x_1, ..., x_n) \in [\mathbf{T}]^n$
- <u>Output:</u> Any $p \in [\mathbf{T}]$ with min_i $x_i \le p \le \max_i x_i$

Want (ϵ , δ)-diff. privacy + success w.p. 2/3

General Reductions

Results for Interior Point

- Lower bound: Sample complexity of IPP is $n \ge \Omega(\log^* T)$
- <u>Upper bound</u>: Sample complexity of IPP is $n \le 2^{\log^* T(1+o(1))}$
 - Simpler algorithm inspired by lower bound construction
 - Better dependence on error in applications

<u>Question:</u> How many clock ticks are needed for the processors to agree on a 3-coloring?

[Cole-Vishkin86]: O(log* T) rounds suffices

$$c_i^1 = ID_i \in [T]$$

<u>After round n:</u> j = first index where $c_i^n disagrees w/c_{i-1}^n$

$$c_i^{n+1} = j || (c_i^n)_j$$

<u>Question:</u> How many clock ticks are needed for the processors to agree on a 3-coloring?

[Linial92]: Ω(log* T) rounds required

Key observation:

Processor i's information after round n is (ID_{i-n}, ID_{i-n+1}, ..., ID_{i+n})

<=> Existence of a coloring C: $\binom{[T]}{2n+1} \rightarrow \{1,2,3\}$

Choose Your Own Adventure

Two proofs of the interior point lower bound:

Choose Your Own Adventure

Two proofs of the interior point lower bound:

Ramsey's Theorem

"Sufficiently large objects must necessarily contain a given structure" --Wikipedia

or: How to get really big numbers to appear in your proofs

Baby version: "Theorem on Friends and Strangers"

Any group of 6 people contains either:

3 mutual friends or3 mutual strangers

Ramsey's Theorem

- Ground set [**7**]
- Coloring function $C : \binom{[T]}{n} \rightarrow [K]$

<u>Thm:</u> For T > R(n, m, K), there exists a monochromatic S of size m (i.e. C is constant on $\binom{S}{n}$)

Ramsey vs. Interior Point

<u>Ramsey's Thm</u> Ground set Hyperedge Coloring function

 $[\mathbf{T}] \\ \{\mathbf{x}_1, ..., \mathbf{x}_n\} \in \binom{[\mathbf{T}]}{n} \\ C_{\mathsf{M}} \leftrightarrow \mathsf{M}$

Interior Point Problem Data domain Database DP Mechanism

<u>Claim</u>: M solves IPP $\Rightarrow \exists$ coloring $C_M : \binom{[n]}{n} \rightarrow [n]$ with no size-(3*n*) monochromatic set

.∴ By Ramsey, **T** < R(**n**, m=3**n**, K=**n**) (=tower(**n**))

[Erdős-Rado52]

Defining a Coloring

Write $D \in {\binom{T}{n}}$ as $\{x_1 < x_2 \dots < x_n\}$ Define $C_M(D) = \operatorname{argmax}_k \Pr[M(D) \in [x_k, x_{k+1})]$

Let S = { $x_0 < x_1 < < x_{m+1}$ } (recall m $\approx 3n$)									n)			
Suppose (for contradiction): $C_M(D) = k \forall D \in \binom{[7]}{n}$												
S	•	•	• x ₂	•		•					•	•
	x ₀	x ₁	x ₂	x _{k-1}	x _k	x _{k+1}					x _m	x _{m+1}
<i>D</i> ₁		•	• x ₂	•	•	•				•		
		x ₁	x ₂	x _{k-1}	x _k	x _{k+1}				x _{k+3n}	x _m	
D ₂		•	• x ₂	•		•	•			•		
		x ₁	x ₂	x _{k-1}		x _{k+1}	x _{k+2}			x _{k+3n}	x _m	
D ₃		•	• x ₂	•			•	•		•	•	
		x ₁	x ₂	x _{k-1}			x _{k+2}	x _{k+3}		x _{k+3n}	x _m	
: D _{3n}												
		× ₁	• x ₂	▼ x _{k-1}						• X _{k+3n}		

Let S = { $x_0 < x_1 < < x_{m+1}$ } (recall m $\approx 3n$)											
Suppose (for contradiction): $C_M(D) = k \forall D \in \binom{[T]}{n}$											
S	● x ₀	× ₁	• x ₂	● x _{k-1}	● x _k	● x _{k+1}			• x _m	• x _{m+1}	
<i>D</i> ₁		• x ₁	• x ₂	● x _{k-1}	× _k	• X _{k+1}	By a Pr[M(D _i)∈	ccuracy, [x _{k+i-1} , x _k	∀i ₊₁)] >	• 2/3 n	
<i>D</i> ₂		• x ₁	• x ₂	• x _{k-1}		• x _{k+1}	x _{k+2}	• x _{k+3n}	● X _m		
D ₃		• x ₁	• x ₂	● X _{k-1}			• • • • • • • • • • • • • • • • • • •	• x _{k+3n}	• x _m		
D _{3n}		• x ₁	• x ₂	● x _{k-1}			● X _{k+3n-}	• 1 X _{k+3n}	• x _m		

By privacy, $\forall i$ $Pr[M(D^*) ∈ [x_{k+i-1}, x_{k+1})] > e^{-2ε}(2/3n) - 2δ > 1/3n$

Proof Recap

M privately solves IPP on [7]

⇒ \exists coloring $C_M : \binom{[T]}{n} \rightarrow [n]$ with no size-(3*n*) monochromatic set

 $\Rightarrow T < R(n, m=3n, K=n) = tower(n) by Ramsey$ $\Rightarrow n > \Omega(log*T)$

Conclusions

- Diff. privacy-preserving reductions between threshold tasks
- Price of (ε, δ) -diff. privacy for simple statistics

Thank you!

• Open questions:

Combinatorial characterization of sample complexity?
 [e.g. HT10, Har11, NTZ13, BNS13]

- Sample complexity of *improper* PAC learning? [e.g. BKN10, FX14]

SUPPLEMENTARY CONTENT

- Recursively construct hard distributions \mathcal{P}_n on domain size $T(n) \approx \operatorname{tower}(n) \qquad \Rightarrow \qquad n \ge \log^* T$
- <u>Base case:</u> For *n* = 1, set *T*(1) = 2

Inductive case:

Suppose M solves IPP on \mathcal{P}_{n+1} over domain [T(n+1)] \Rightarrow construct M' for IPP on \mathcal{P}_n over [T(n)]

To sample D_{n+1} from \mathcal{P}_{n+1} : 1. Sample $D_n = (x_1, ..., x_n)$ from \mathcal{P}_n 2. Sample $y_0 \in [b^{T(n)}]$ at random cf. Cole-Vishkin86 3. For i = 1, ..., **n**, sample y_i that agrees with y_0 up to base b-"digit" x_i **Y**0 **Y**1 **X**1 $D_{n+1} =$ $D_n =$ **Y**2 X2 **y**3 **X**3

y_n

Xn

To sample D_{n+1} from \mathcal{P}_{n+1} : 1. Sample $D_n = (x_1, ..., x_n)$ from \mathcal{P}_n 2. Sample $y_0 \in [b^{T(n)}]$ at random cf. Cole-Vishkin86 3. For i = 1, ..., **n**, sample y_i that agrees with y_0 up to base b-"digit" x_i $y_0 = 8675309$ y₁ = 8674812 $x_1 = 3$ $D_{n+1} =$ y₂ = 8675365 $D_n =$

- Recursively construct hard distributions \mathcal{P}_n on domain size $T(n) \approx \operatorname{tower}(n) \qquad \Rightarrow \qquad n \ge \log^* T$
- <u>Base case:</u> For *n* = 1, set *T*(1) = 2

Inductive case:

Suppose M solves IPP on \mathcal{P}_{n+1} over domain [T(n+1)] => construct M' for IPP on \mathcal{P}_n over [T(n)]