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Median	Es'ma'on	
Data	domain	[T]	=	{1,	…,	T}	

.	.	.	 .	.	.	

.	.	.	T	1	2	3	.	.	.	

Vitamin	C	level	

m		m’	

x1											x2		.	.	.	 .	.	.	xn	

…but	naïve	computa'on	
may	violate	privacy!	

n	=	constant	#	of	samples	
(independent	of	T)	

guarantees	Error	<	0.05	w.h.p.	
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Privacy-Preserving	Data	Analysis	

Want	curators	that	are:			wDifferen'ally					wAccurate	for								wSample	
																																																					Private							“Threshold”	Tasks					Efficient	



This	Talk	
•  Sample	complexity	of	threshold	tasks	with	
approx.	differen'al	privacy	

•  These	tasks	have	higher	sample	complexity	than	
their	non-private	counterparts	(n	grows	w/	T)	

	
•  Network	of	reduc'ons	to	the	simpler	“interior	
point	problem”	

•  New	combinatorial	lower	bound	techniques	
Ø  Distributed	compu'ng,	Ramsey	theory	

	
	



M	is	(ε,δ)-differen-ally	private	if	for	all	
neighbors	D,	D’	and	S⊆Range(M):	

	
	

Pr[M(D’)∈S]	≤	eεPr[M(D)∈S]	+	δ	

small	const.,	e.g.	ε	=	0.1	
eε	≈	1	+	ε	

“cryptographically	small”	
require	δ	<<	1/n,	onen	δ	=	negl(n)		

D	and	D’	are	neighbors	if	they	
differ	on	one	row	

D	
x1	

x2	

xn	

D’	
x1	

x2'	

xn	

M	

M	

Differen'al	Privacy	
DN03+Dwork,	DN04,	BDMN05,		

Dwork-McSherry-Nissim-Smith06,			Dwork-Kenthapadi-McSherry-Mironov-Naor06	

wPrivacy							wAccuracy						wSample	Complexity	



Accuracy	for	Approx.	Medians	
P =	unknown	distribu'on	over	[T]	with	median	m	

.	.	.	T	1	2	3	.	.	.	

wPrivacy							wAccuracy						wSample	Complexity	

x1						x2		.	.	.	 .	.	.	xn	

x1	

x2	

xn	

M	 m’	P	

M	is	accurate	if	
Prx	~	P	[x∈[m,	m’]]	<	0.05	

	
(w.p.	99%	over	sample,	coins(M))		

m	m’	



	
	 ε	

	
	

Private	Approx.	Medians	
[McSherry-Talwar07]	

•  (ε,	0)-differen'al	privacy:	Changing	one	
person’s	data	alters	PMF	by	factor	of	eε	

•  Accuracy:	n	=	O(log	T)	samples	suffice	to	
produce	approx.	median	

wPrivacy							wAccuracy						wSample	Complexity	

.	.	.	 .	.	.	

.	.	.	T	1	2	3	.	.	.	

x1			.	.	.	 .	.	.	xn		.	.	.					xn/2	–	1					xn/2						xn/2	+	1					.	.	.	
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x1	

x2	

xn	

M	 m’	P	
Sample	m’	with	
exponen'ally	decaying	PMF:	

p p
pe-ε	
	 pe-2ε	

	

pe-ε	
	pe-2ε	

	



Threshold	Es'ma'on	
	

For	each	t∈[T]:	“What	frac'on	of	dist.	
P	sa'sfies	the	threshold	property	ft?”	

	
	
	
	
	
	
	
	
	
	

x1	

x2	

xn	

M	
f1,	f2,	…	
a1,	a2,	…	

M	is	accurate	if		
|at	–	ft(P)|	<	0.05	for	every	threshold	t	

P	

Accuracy	for	Threshold	Tasks	

wPrivacy							wAccuracy						wSample	Complexity	

(Properly)	PAC	Learning	
Thresholds	[Val84]	

	
“What	threshold	func'on	generalizes	

labeled	examples	from	P?”	
	
	
	
	
	
	
	
	
	

x1,	ft(x1)	

x2,	ft(x2)	

xn,	ft(xn)	

M	 fs	

M	is	accurate	if		
fs(x)	=	ft(x)	w.p.	>	0.95	over	x	~	P		

P	

t	

ft	:	[T]	g	{0,1}	with	ft(x)	=	1	if	x	≤	t,	=	0	if	x	>	t	
	



Threshold	Es'ma'on	
	

For	each	t∈[T]:	“What	frac'on	of	dist.	
P	sa'sfies	the	threshold	property	ft?”	

	
	
	
	
	
	
	
	
	
	

x1	

x2	

xn	

M	 a1,	a2,	…	

M	is	accurate	if		
|at	–	ft(P)|	<	0.05	for	every	threshold	t	

P	

Accuracy	for	Threshold	Tasks	

wPrivacy							wAccuracy						wSample	Complexity	

(Properly)	PAC	Learning	
Thresholds	[Val84]	

	
“What	threshold	func'on	generalizes	

labeled	examples	from	P?”	
	
	
	
	
	
	
	
	
	

x1,	ft(x1)	

x2,	ft(x2)	

xn,	ft(xn)	

M	 fs	

M	is	accurate	if		
fs(x)	=	ft(x)	w.p.	>	0.95	over	x	~	P		

P	

t	

=	CDF	
Learning	

Non-private	
sample	

complexity	=	
O(1)	[Vapnik]	

Non-private	
sample	

complexity	=	
O(1)	[DKW56]	

=	Empirical	
Risk	

Minimiza'on	
f1,	f2,	…	=	Quan'le	

Es'ma'on	

ft	:	[T]	g	{0,1}	with	ft(x)	=	1	if	x	≤	t,	=	0	if	x	>	t	
	



Sample	Complexity	for	Diff.	Privacy	

wPrivacy							wAccuracy						wSample	Complexity	

How	big	does	n	have	to	be	to	guarantee	
accuracy	and	privacy	for	threshold	tasks?	

	
Ques'on:	Is	there	an	addi'onal	price	of	diff.	privacy	

over	sta's'cal	accuracy	alone?	
			

M	

(1,	o(1/n))-diff.	priv.	

Accurate	answers	

x1	

x2	

xn	

P	



Sample	Complexity	for	Diff.	Privacy	
No	privacy	 Approximate	Medians	/		

Releasing	Thresholds	
(Proper)	PAC	Learning	

of	Thresholds	

n	=	Θ(1)								[DKW56]	 n	=	Θ(1)		[Vapnik]	

(1,	o(1/n))-diff.	
privacy	

Upper	bounds:	 O(T1/2)			[DN03,DN04,BDMN05,DMNS06]	

O(log	T)			[BLR08,DNPR10,CSS10,DNRR15]	
8log*T(1+o(1))		[Beimel-Nissim-Stemmer13]	

	
O(log	T)			[KLNRS08]	
8log*T(1+o(1))			[BNS13]	

Lower	bound:	
(This	work)	

	

Ω(log*T)	
	

Ω(log*T)	

wPrivacy							wAccuracy						wSample	Complexity	

This	work:	Plus	somewhat	improved	upper	bounds	

First	separa-on		
(generalizes	to	higher	VC-dim)	

Iterated	logarithm		
=	#	of	logs	needed	to	

reach	1	



Lower	Bounds	for	(ε,	0)-Diff.	Priv.		

Volume-based	(“packing”)	arguments	
•  Tight	characteriza'on	of	(ε,	0)-DP	[Hardt-Talwar10,	Beimel-Nissim-

Stemmer13a]	

•  Break	down	even	for	δ=negl(n)	[De11,	Beimel-Nissim-Stemmer13b]	

	
Lower	bounds	via	info.	theory	&	comm.	complexity	
•  LBs	for	two-party	privacy	problems	

			[McGregor-Mironov-Pitassi-Reingold-Talwar-Vadhan10]	

•  Characteriza'on	of	(ε,	0)-DP	learning	[Feldman-Xiao14]	



Reconstruc-on	aXacks	[Dinur-Nissim03]		

•  Connec'on	to	sparse	recovery	[Dwork-McSherry-Talwar07]	

•  Combinatorial	(hereditary)	discrepancy	[Muthukrishnan-
Nikolov12,	Nikolov-Talwar-Zhang13,	Nikolov15]	

	
	

Probabilis-c	fingerprin-ng	codes	[Boneh-Shaw95,	Tardos03]	
•  LBs	for	con'ngency	tables	[B.-Ullman-Vadhan14,	Steinke-Ullman15]	

•  LBs	for	convex	op'miza'on,	PCA	[Bassily-Smith-Thakurta14,	
Dwork-Talwar-Thakurta-Zhang14]	

	

	

Lower	Bounds	for	(ε,	δ)-Diff.	Priv.		



Prior	techniques	for	(ε,	δ)-DP	exploit	high	dimensionality	
of	concepts/data	
	
	
This	work:	Lower	bounds	for	(ε,	δ)-DP	even	for	simple	
concepts	(i.e.	VC-dimension	=	1)	
	

	

Lower	Bounds	for	(ε,	δ)-Diff.	Priv.		



Techniques	

•  Equivalence	between	threshold	tasks	and	the	
“Interior	Point	Problem”	
	

•  New	upper	and	lower	bounds	for	solving	IPP	
with	approx.	differen'al	privacy	

log*T	≤	n	≤	2log*T	



Interior	Point	Problem	

•  Input:	Database	D	=	(x1,	…,	xn)	∈	[T]n	

•  Output:	Any	p∈[T]	with	mini	xi	≤	p	≤	maxi	xi	

	

Want		(ε,	δ)-diff.	privacy			+			success	w.p.	2/3	

.	.	.	 .	.	.	

.	.	.	T	

24	 57	 83	 121	 153	 176	

1	2	3	.	.	.	 p	=	78	

(																																																																																																			)	



(Properly)	PAC	
Learning	Thresholds	

	
“What	threshold	func'on	

generalizes	labeled	
examples	from	P?”	

	

Query	Release	for	
Thresholds	

	
“What	frac'on	of	P 
sa'sfies	the	threshold	

property	ft?”	

General	Reduc'ons	

Interior	Point	
Problem	

=	CDF	
Learning	

=	Approximate	
Medians	/	Quan'le	

Es'ma'on	

=	Empirical	
Risk	

Minimiza'on	



Results	for	Interior	Point	

•  Lower	bound:		Sample	complexity	of	IPP	is	
n	≥	Ω(log*T)	

	
•  Upper	bound:		Sample	complexity	of	IPP	is	

n	≤	2log*T(1+o(1))	
	

Ø 	Simpler	algorithm	inspired	by	lower	bound	construc'on	
Ø 	Be�er	dependence	on	error	in	applica'ons	

	



A	Detour	in	Distributed	Compu'ng	

ID1	

ID2	 ID3	

ID4	

ID5	IDT	 .	.	.	

m1
1	

m2
1	 m3

1	

m4
1	

Clock	'ck:	1	

mT
1	 m5

1	

IDi∈	[T]	



A	Detour	in	Distributed	Compu'ng	

ID1	

ID2	 ID3	

ID4	

ID5	IDT	 .	.	.	

m1
2	

m2
2	 m3

2	

m4
2	

Clock	'ck:	2	

mT
2	 m5

2	

IDi∈	[T]	



A	Detour	in	Distributed	Compu'ng	

ID1	

ID2	 ID3	

ID4	

ID5	IDT	 .	.	.	

m1
n	

m2
n	 m3

n	

m4
n	

Clock	'ck:	n	

Ques'on:	How	many	clock	'cks	are	needed	for	the	
processors	to	agree	on	a	3-coloring?	

IDi∈	[T]	



A	Detour	in	Distributed	Compu'ng	
Ques'on:	How	many	clock	'cks	are	needed	for	the	
processors	to	agree	on	a	3-coloring?	

ID1	

ID2	 ID3	

ID4	

ID5	IDT	 .	.	.	

c1n	

c2n	 c3n	

c4n	

cTn	 c5n	

[Cole-Vishkin86]:	
O(log*	T)	rounds	suffices	
	
ci1	=	IDi	∈	[T]	
	
Aner	round	n:	
j	=	first	index	where	
cin	disagrees	w/	ci-1n	
	
cin+1	=		j			||		(cin)j	

|cin+1|	≈	log	|cin|		
	
⇒Reach	constant	#	colors	
aner	n	=	O(log*	T)	rounds	



A	Detour	in	Distributed	Compu'ng	
Ques'on:	How	many	clock	'cks	are	needed	for	the	
processors	to	agree	on	a	3-coloring?	

[Linial92]:	
Ω(log*	T)	rounds	required	
	
Key	observa'on:	
Processor	i’s	informa'on	
aner	round	n	is	
(IDi-n,	IDi-n+1,	…,	IDi+n)	
	
<=>	Existence	of	a	coloring	
C:	(						)	g	{1,2,3}	
	

[T]		
2n+1	

ID1	

ID2	 ID3	

ID4	

ID5	IDT	 .	.	.	

m1
n	

m2
n	 m3

n	

m4
n	

mT
n	 m5

n	



Choose	Your	Own	Adventure	
Two	proofs	of	the	interior	point	lower	bound:	

[Cole-Vishkin86]:	
O(log*	T)	rounds	suffices	
	

	 	 			IPP	Proof	1	
	
	
[Linial92]:	
Ω(log*	T)	rounds	required	
	

	 	 			IPP	Proof	2	
		

	

ID1	

ID2	 ID3	

ID4	

ID5	IDT	 .	.	.	

m1
n	

m2
n	 m3

n	

m4
n	

mT
n	 m5

n	

Thanks	to	Avi	
Wigderson	



Choose	Your	Own	Adventure	
Two	proofs	of	the	interior	point	lower	bound:	

[Cole-Vishkin86]:	
O(log*	T)	rounds	suffices	
	

	 	 			IPP	Proof	1	
	go	to	slide	37	↵	

	
[Linial92]:	
Ω(log*	T)	rounds	required	
	

	 			 			IPP	Proof	2	
	go	to	slide	27	↵	

	
	

ID1	

ID2	 ID3	

ID4	

ID5	IDT	 .	.	.	

m1
n	

m2
n	 m3

n	

m4
n	

mT
n	 m5

n	

Thanks	to	Avi	
Wigderson	



“Sufficiently	large	objects	must	necessarily	contain	a	
given	structure” 	 	 	 	 	 		 	--Wikipedia	
	
	
	

Baby	version:	“Theorem	on	Friends	and	Strangers”	

Any	group	of	6	people	
contains	either:	
	

3	mutual	friends	or		
3	mutual	strangers	

or:	How	to	get	really	big	numbers	to	appear	in	your	proofs	

Ramsey’s	Theorem	



Ramsey’s	Theorem	
•  Ground	set	[T]		
•  Coloring	func'on	C	:	(			)	g	[K]	
	
	
	
	
	
Thm:	For	T	>	R(n,	m,	K),	there	exists	a	monochroma'c	S	
of	size	m	(i.e.	C	is	constant	on	(		))	

[T]		
n	

S		
n	



Ramsey	vs.	Interior	Point	

Claim:	M	solves	IPP	⇒					coloring	CM	:	(			)	g	[n]	
with	no	size-(3n)	monochroma'c	set	
						By	Ramsey,	T	<	R(n,	m=3n,	K=n)				(=tower(n))
	 	 	 	 	 	 	 	 	 	 	 	 	 				[Erdős-Rado52]	

Ramsey’s	Thm	
Ground	set	
Hyperedge	
Coloring	func'on	
	

Interior	Point	Problem	
Data	domain	

Database	
DP	Mechanism	

∴

[T]	
{x1,	…,	xn}∈(			)	

CM		1				M	
	

[T]		
n	

[T]		
n	∃



Defining	a	Coloring	

Write	D	∈	(		)	as	{x1	<	x2	…	<	xn}	
Define	CM(D)	=	argmaxk	Pr[M(D)∈[xk,	xk+1)]	
	
	
	

.	.	.	 .	.	.	

.	.	.	T	

x1	 x2	 x3	 x4	 x5	 x6	

1	2	3	.	.	.	

E.g.			CM(D)	=	3	

[T]		
n	

PMF	of	M(D)	



Let	S	=	{x0	<	x1	<	…	<	xm+1} 	 	(recall	m	≈	3n)	
Suppose	(for	contradic'on):		CM(D)	=	k						D	∈	(			)	

x0	 x1	 xk	 xk+1	 xm	 xm+1	x2	 xk-1	
S	 .	.	.	.	.	.	

x1	 xk	 xm	x2	 xk-1	
D1	 .	.	.	.	.	.	

xk+3n	xk+1	

x1	 xk+2	 xm	x2	 xk-1	
D2	 .	.	.	.	.	.	

xk+3n	xk+1	

x1	 xk+2	 xm	x2	 xk-1	
D3	 .	.	.	.	.	.	

xk+3n	xk+3	

x1	 xm	x2	 xk-1	
D3n	 .	.	.	.	.	.	

xk+3n	xk+3n-1	

.	

.	

.	

∀ [T]		
n	



Let	S	=	{x0	<	x1	<	…	<	xm+1} 	 	(recall	m	≈	3n)	
Suppose	(for	contradic'on):		CM(D)	=	k						D	∈	(			)	

x0	 x1	 xk	 xk+1	 xm	 xm+1	x2	 xk-1	
S	 .	.	.	.	.	.	

x1	 xk	 xm	x2	 xk-1	
D1	 .	.	.	.	.	.	

xk+3n	xk+1	

x1	 xk+2	 xm	x2	 xk-1	
D2	 .	.	.	.	.	.	

xk+3n	xk+1	

x1	 xk+2	 xm	x2	 xk-1	
D3	 .	.	.	.	.	.	

xk+3n	xk+3	

x1	 xm	x2	 xk-1	
D3n	 .	.	.	.	.	.	

xk+3n	xk+3n-1	

.	

.	

.	

By	accuracy,					i	
Pr[M(Di)∈[xk+i-1,	xk+1)]	>	2/3n		

∀

∀ [T]		
n	



x0	 x1	 xm	 xm+1	x2	 xk-1	
D*	 .	.	.	

x1	 xk	 xm	x2	 xk-1	
D1	 .	.	.	.	.	.	

xk+3n	xk+1	

x1	 xk+2	 xm	x2	 xk-1	
D2	 .	.	.	.	.	.	

xk+3n	xk+1	

x1	 xk+2	 xm	x2	 xk-1	
D3	 .	.	.	.	.	.	

xk+3n	xk+3	

x1	 xm	x2	 xk-1	
D3n	 .	.	.	.	.	.	

xk+3n	xk+3n-1	

.	

.	

.	

By	privacy,					i	
Pr[M(D*)∈[xk+i-1,	xk+1)]		>		e-2ε(2/3n)	–	2δ		>		1/3n	

xk+3n	
.	.	.	

By	accuracy,					i	
Pr[M(Di)∈[xk+i-1,	xk+1)]	>	2/3n		

∀

∀

_\	S	can’t	be	
monochroma'c!	



Proof	Recap	

M	privately	solves	IPP	on	[T]	

	⇒					coloring	CM	:	(		)	g	[n]	with	no	size-(3n)	
	 	monochroma'c	set	
	⇒	T	<	R(n,	m=3n,	K=n)	=	tower(n)	by	Ramsey	
	⇒	n	>	Ω(log*T)	

[T]		
n	∃



Conclusions	
•  Diff.	privacy-preserving	reduc-ons	between	
threshold	tasks	

	

•  Price	of	(ε,	δ)-diff.	privacy	for	simple	sta-s-cs	
	

•  Open	ques'ons:		
– Combinatorial	characteriza'on	of	sample	
complexity?	
	[e.g.	HT10,	Har11,	NTZ13,	BNS13]	

– Sample	complexity	of	improper	PAC	learning?	
[e.g.	BKN10,	FX14]	

	

	

Thank	you!	



SUPPLEMENTARY	CONTENT	



Interior	Point	Lower	Bound	

•  Recursively	construct	hard	distribu'ons	Pn	on	domain	
size	T(n)	≈	tower(n)		 	 	⇒											n	≥	log*	T	

•  Base	case:	For	n	=	1,	set	T(1)	=	2	

	
	
•  Induc've	case:	
				Suppose	M	solves	IPP	on	Pn+1	over	domain	[T(n+1)]		
				⇒	construct	M’	for	IPP	on	Pn	over	[T(n)]	

Output	1	w.p.	≥	2/3	 Output	1	w.p.	

1							2	 1							2	

≥
(2 / 3)−δ
eε

>
1
3



Interior	Point	Lower	Bound	
To	sample	Dn+1	from	Pn+1:	
		1.	Sample	Dn	=	(x1,	…,	xn)	from	Pn	

		2.	Sample	y0∈[bT(n)]	at	random	
		3.	For	i	=	1,	…,	n,	sample	yi	that	agrees	with	y0					
									up	to	base	b-“digit”	xi	

x1	
x2	
x3	

xn	

y0	
y1	
y2	
y3	

yn	

Dn	=		 Dn+1	=		

cf.	Cole-Vishkin86	



Interior	Point	Lower	Bound	

y0	=	8675309	
y1	=	8674812	
y2	=	8675365	
y3	=	8671863	

yn	=	8675052	

cf.	Cole-Vishkin86	

To	sample	Dn+1	from	Pn+1:	
		1.	Sample	Dn	=	(x1,	…,	xn)	from	Pn	

		2.	Sample	y0∈[bT(n)]	at	random	
		3.	For	i	=	1,	…,	n,	sample	yi	that	agrees	with	y0					
									up	to	base	b-“digit”	xi	

x1	=	3	
x2	=	5	
x3	=	3	

xn		=	4	

E.g.	
b	=	10	

Dn	=		 Dn+1	=		



Interior	Point	Lower	Bound	

	

																																																			M’		

Pn+1	is	a	hard	distribu'on	
by	contradic'on:	
	M	solves	IPP	on	Pn+1		

				⇒	M’	solves	IPP	on	Pn	

x1	=	3	

x2	=	5	

xn	=	4	

y0	=	8675309	

y1	=	8674812	

y2	=	8675365	

yn	=	8675052	

Dn	=		

Dn+1	=		
	

M	 y	=	8675113	

x	=	max	agreement	
between	y	and	y0	

x	=	4	



Interior	Point	Lower	Bound	

	

																																																			M’		

x1	=	3	

x2	=	5	

xn	=	4	

y0	=	8675309	

y1	=	8674812	

y2	=	8675365	

yn	=	8675052	

Dn	=		

Dn+1	=		
	

M	 y	=	8675113	

x	=	max	agreement	
between	y	and	y0	

x	=	4	

If	M	succeeds,	
•  x	≥	mini	xi	by	construc'on	
•  x	≤	maxi	xi	by	privacy	(whp)	
⇒	M’	succeeds	



Interior	Point	Lower	Bound	

	

																																																			M’		

x1	=	3	

x2	=	5	

xn	=	4	

y0	=	8675309	

y1	=	8674812	

y2	=	8675365	

yn	=	8675052	

Dn	=		

Dn+1	=		
	

M	 y*	=	8675305	

x	=	max	agreement	
between	y	and	y0	

x*	=	6	

If	M	succeeds,	
•  x	≥	mini	xi	by	construc'on	
•  x	≤	maxi	xi	by	privacy	(whp)	
⇒	M’	succeeds	



Interior	Point	Lower	Bound	

	

																																																			M’		

x1	=	3	

x2	=	5	

xn	=	4	

y0	=	8675309	

y1	=	8674812	

y2	=	8675365	

yn	=	8675052	

Dn	=		

Dn+1	=		
	

M	 y*	=	8675305	

x	=	max	agreement	
between	y	and	y0	

x*	=	6	

If	M	succeeds,	
•  x	≥	mini	xi	by	construc'on	
•  x	≤	maxi	xi	by	privacy	(whp)	
⇒	M’	succeeds	

Since	y0[6]	random,		
Pr[y*[6]	=	y0[6]]	≤	eε/b	+	δ	



Interior	Point	Lower	Bound	

•  Recursively	construct	hard	distribu'ons	Pn	on	domain	
size	T(n)	≈	tower(n)		 	 	⇒											n	≥	log*	T	

•  Base	case:	For	n	=	1,	set	T(1)	=	2	

•  Induc've	case:	
				Suppose	M	solves	IPP	on	Pn+1	over	domain	[T(n+1)]	
							=>	construct	M’	for	IPP	on	Pn	over	[T(n)]	

Output	1	w.p.	≥	2/3	 Output	1	w.p.	

1							2	 1							2	

≥
(2 / 3)−δ
eε

>
1
3


