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Median Estimation

Data domain [T] =11, ..., T}
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Median Estimation

Data domain [T] =11, ..., T}

n = constant # of samples
(independent of T)
guarantees Error < 0.05 w.h.p.
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may violate privacy!



Privacy-Preserving Data Analysis
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This Talk

Sample complexity of threshold tasks with
approx. differential privacy

These tasks have higher sample complexity than
their non-private counterparts (n grows w/ T)

Network of reductions to the simpler “interior
point problem”

New combinatorial lower bound techniques
» Distributed computing, Ramsey theory



Differential Privacy

DNO3+Dwork, DNO4, BDMNOS5,
Dwork-McSherry-Nissim-Smith06, Dwork-Kenthapadi-McSherry-Mironov-Naor06
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: small const., e.g. € =0.1 “cryptographically small”

X, \) . 1+ . require & << 1/n, often & = negl(n)
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Accuracy for Approx. Medians

P = unknown distribution over [T] with median m
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Pr.~ p[xe[m, m’]] <0.05
(w.p. 99% over sample, coins(M))

. *Accuracy



Private Approx. Medians

[McSherry-Talwar07]

Sample m’ with
exponentially decaying PMF:
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* (g, 0)-differential privacy: Changing one
person’s data alters PMF by factor of e€

e Accuracy: n = O(log T) samples suffice to
produce approx. median

-

*Privacy *Accuracy



Accuracy for Threshold Tasks
f.:[T] 2 {0,1} with f(x)=1ifx<t,=0ifx>t

*Privacy *Accuracy OSampIe Complexity



Accuracy for Threshold Tasks
f.:[T] 2 {0,1} with f(x)=1ifx<t,=0ifx>t

Non-private
sample
complexity =
O(1) [vapni

Non-private
sample
complexity =

*Privacy ¢Accuracy *Sample Complexity



Sample Complexity for Diff. Privacy

How big does n have to be to guarantee
accuracy and privacy for threshold tasks?

Question: Is there an additional price of diff. privacy
over statistical accuracy alone?
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Sample Complexity for Diff. Privacy

No privacy Approximate Medians / (Proper) PAC Learning
Releasing Thresholds of Thresholds
n=0(1) [DKW56] n=0(1) [vapnik]
(1, o(1/n))-diff. First separation
privacy (generalizes to higheryc-dim)

Upper bounds: |  O(T%/2) [pno3,DN04,BDMNOS,DMNSO6]
O(log T) (BLrR0S,DNPR10,cSS10,0NRR15] | Q(log T) [KLNRS08]
8Iog;T(1+o(1)) [Beimel-Nissim-Stemmer13] | 8!02°T(1+o(1)) gNs13]

Lower bound: * *
(This work) / Q(log*T) Q(log*T)

This work: Plus somewhat improved upper bounds

Iterated logarithm

*Privacy  ®Accuracy *Sample Complexity



Lower Bounds for (g, 0)-Diff. Priv.

Volume-based (“packing”) arguments
* Tight characterization of (g, 0)-DP [Hardt-Talwar10, Beimel-Nissim-

Stemmerl3a]

* Break down even for 6=neg|(n) [Dell, Beimel-Nissim-Stemmer13b]

Lower bounds via info. theory & comm. complexity

e |Bs for two-party privacy problems
[McGregor-Mironov-Pitassi-Reingold-Talwar-Vadhan10]

e Characterization of (€, 0)-DP learning [reldman-xiao14]



Lower Bounds for (g, 8)-Diff. Priv.

Reconstruction attacks [pinur-Nissimo3]
* Connection to sparse recovery [pwork-McSherry-Talwar07]

 Combinatorial (hereditary) discrepancy [Muthukrishnan-
Nikolov12, Nikolov-Talwar-Zhangl13, Nikolov15]

Probabilistic fingerprinting codes [Boneh-shaw9s, Tardos03]
e |Bs for contingency tables [B.-Ullman-Vadhan14, Steinke-Ullman15]

* LBs for convex optimization, PCA [Bassily-Smith-Thakurta14,
Dwork-Talwar-Thakurta-Zhangl14]



Lower Bounds for (g, 8)-Diff. Priv.

Prior techniques for (g, 6)-DP exploit high dimensionality
of concepts/data

Lower bounds for (€, 8)-DP even for simple
concepts (i.e. VC-dimension = 1)



Techniques

* Equivalence between threshold tasks and the
“Interior Point Problem”

* New upper and lower bounds for solving IPP
with approx. differential privacy

log*T < n < 2/08°T



Interior Point Problem

* |Input: Database D = (x,, ..., X,,) € [T]"
* Output: Any pE€[T] with min, x. < p < max x.
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Want (g, 6)-diff. privacy + success w.p. 2/3



General Reductions

/\/\/

Interior Point
Problem
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Results for Interior Point

* Lower bound: Sample complexity of IPP is
n = Q(log*T)

 Upper bound: Sample complexity of IPP is
n < 2log*T(1+o(1))

» Simpler algorithm inspired by lower bound construction
» Better dependence on error in applications



A Detour in Distributed Computing

ID, € [T]
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A Detour in Distributed Computing

ID, € [T]

v

D,

ID,

Clock tick: 2




A Detour in Distributed Computing

m" —»  «—— m," Clock tick: n

D [T] / D, D, \

\ D; | | D,

Question: How many clock ticks are needed for the
processors to agree on a 3-coloring?




A Detour in Distributed Computing

Question: How many clock ticks are needed for the
processors to agree on a 3-coloring?

[Cole-Vishkin86]:
== i O(log* T) rounds suffices

S ct=1D, € [T]

/ After round n:
j = first index where

=Reach constant # colors ¢;" disagrees w/ ¢, ;"
after n = O(log™ T) rounds

|Cin+1| =~ log |Cin|

Cin+1 =J | (Cin)j



A Detour in Distributed Computing

Question: How many clock ticks are needed for the

processors to agree on a 3-coloring?

[Linial92]:
m," —> €« m;" Q " .
an o] N\ (log* T) rounds required
/ '\ Key observation:
oL o,| m" Processor i’s information

/ after round n is
(ID_,, ID. .4, -, ID.,,)

e my" <=> Existence of a coloring

T
C: (z[nj1 = {1,2,3}



Choose Your Own Adventure

of the interior point lower bound:

[Cole-Vishkin86]:
O(log™ T) rounds suffices

/ ID, ID, \ Thanks to Avi

Wigderson

D, | m,"

/  [Linial92]:

Q(log™* T) rounds required




Choose Your Own Adventure

of the interior point lower bound:

[Cole-Vishkin86]:
O(log™ T) rounds suffices

/ ID, ID, \ Thanks to Avi

Wigderson

AN go to slide 37 «

D, | m,"

/  [Linial92]:
Q(log™* T) rounds required

go to slide 27 +



Ramsey’s Theorem

“Sufficiently large objects must necessarily contain a
given structure” --Wikipedia

or: How to get really big numbers to appear in your proofs

Baby version: “Theorem on Friends and Strangers”

Any group of 6 people
contains either:

3 mutual friends or
3 mutual strangers

SN\



Ramsey’s Theorem

e Ground set [T]

» Coloring function C: ('7') = [K]

Thm: For T > R(n, m, K), there exists a monochromatic S

of size m (i.e. Cis constant on (rsy))



Ramsey vs. Interior Point

Ramsey’s Thm Interior Point Problem
Ground set [T] Data domain
Hyperedge {xy, -y xn}E([,?) Database
Coloring function Cy ¢ M DP Mechanism

Claim: M solves IPP = Jcoloring Cy, : (1) = [n]
with no size-(3n) monochromatic set
. By Ramsey, T < R(n, m=3n, K=n) (=tower(n))

[Erd6s-Rado52]




Defining a Coloring

Write D € ([,7,1) as {X; <X, ... <X}

Define C,,(D) = argmax, Pr[M(D) & [x,, X,,,)]

E.g. Cy(D)=3

PMF of M(D)




Let S = {X; < X; < ... <X, .1}
Suppose (for contradiction): C,,(D)=k VD € (')

o
Xy

@)

Xk+1

Xk+1

O O

Xk+1 Xk+2

O O

Xk+2 Xk+3

(recall m = 3n)
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Let S = {X, < X; < ... <X, .1} (recall m = 3n)
Suppose (for contradiction): C,,(D)=k VD € (')
S

Xo X1 X5 Xeier Xk Xpnr Xm Xm+1

D1 e o By accuracy, Vi
X1 X2 X1 X Xw1  PrIM(D:) € [X,,: 1, X >2/3n
| k+i-17 ~k+1
D o ®
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D*

By privacy, Vi
PrIM(D*) € [X,i.1s X1)] > €25(2/3n) =26 > 1/3n

Xk+3n
=>4 S can’t be
monochromatic!
e e
X Xgs1

® ®
Xk+1 Xk+2 Xk+3n
® ®
Xk+2 Xk+3 XI«,+3n
® ®

Xk+3n-1 Xk+3n

By accuracy, Vi
PriM(D.) € [X,,i.1, Xs1)] > 2/3n



Proof Recap

M privately solves IPP on [T]

= 3 coloring C,, : ([,7,1) - [n] with no size-(3n)
monochromatic set

= T < R(n, m=3n, K=n) = tower(n) by Ramsey

= n > Q(log*T)



Conclusions

* Diff. privacy-preserving reductions between
threshold tasks

* Price of (g, 8)-diff. privacy for simple statistics

. |
* Open questions: Fhankyou.

— Combinatorial characterization of sample
complexity?
[e.g. HT10, Har11, NTZ13, BNS13]

— Sample complexity of improper PAC learning?
[e.g. BKN10, FX14]



SUPPLEMENTARY CONTENT



Interior Point Lower Bound

* Recursively construct hard distributions P, on domain
size T(n) = tower(n) = n=log*T

e Basecase:Forn=1,setT(1)=2

— o
1 2 1 2
Output 1 w.p.>2/3 Output 1 w.p. = (2/33_5 >%
e

 |nductive case:

Suppose M solves IPP on 2., over domain [T(n+1)]
= construct M’ for IPP on P _over [T(n)]



Interior Point Lower Bound

Tosample D, ., from P __.:
1. Sample D, = (x4, ..., X,,) from P_
2. Sample YoE [bT(n)] at random cf. Cole-Vishkin86

3.Fori=1, .., n,sampley, that agrees with y,

up to base b-“digit” x. "o

X1 y1
Dn = X2 Dn+1 = Y2
X3 > Y3




Interior Point Lower Bound

Tosample D, ., from P __.:

n+1
1. Sample D, = (x4, ..., X,,) from P_
2. Sample YoE [bT(n)] at random cf. Cole-Vishkin86

3.Fori=1, .., n,sampley, that agrees with y,

“_l: ~:147
up to base b-“digit” x, o= 8675309
X1 =3 y1= 8674812
D, = X, =5 D1 = y2= 8675365
E.g.
b2 10 X3 = 3 ~ | _y:=8671863
x, =4 y, = 8675052




Interior Point Lower Bound

P .. is a hard distribution
X1=3 . L.
— by contradiction:
Dn = X2—5
M solves IPP on P,
X,=4 ,
| = M’ solves IPP on P,
l N
yo= 8675309 M’ X = max agreement
yi= 8674812 between yandy,
ne1 = |Y2=8675365 _,_, y =8675113
Y, = 8675052 l >[x=4

J




Interior Point Lower Bound

If M succeeds,

Xx1=3 . .
D : - * X 2 min, X, by construction
= X2
n .
* X < max x; by privacy (whp)
X"T‘ = M’ succeeds
Vo= 8675309 M’ X = max agreement
y1= 8674812 betweeny andy,
Dn+1 = |y2=8675365 _)_) y = 8675113
Y, = 8675052 | slx=2

J




Interior Point Lower Bound

If M succeeds,

X1=3 . .
5 — * X =min, x. by construction
= X,
n .
* X < max, X, by privacy (whp)
Xni“ = M’ succeeds
yo= 8675309 M’ X = max agreement
yi= 8674812 between y and y,
Dn+1 = |y2=8675365 _)_) y* = 8675305 l
y, = 8675052 l >|x* =6

J




Interior Point Lower Bound

If M succeeds,

X1=3 . .
5 - - * X2 min, x; by construction
= X5
n [}
* X < max, X, by privacy (whp)
an‘ = M’ succeeds
l Since y,[6] random,
] Prly*[6] = yo[b]] < €°/b + &
yo= 8675309 //agreement
y1= 8674812 \ between y andy,
D, = |y2=8675365 _,_, v* = 8675305 |
y, = 8675052 | >| X* =6

J




Interior Point Lower Bound

* Recursively construct hard distributions °, on domain
size T(n) = tower(n) = nlog*T

e Basecase:Forn=1,setT(1)=2

— o
1 2 1 2
Output 1 w.p.>2/3 Output 1 w.p. = (2/33_5 >%
e

* |nductive case:
Suppose M solves IPP on 2., over domain [T(n+1)]
=> construct M’ for IPP on 2 over [T(n)]




