FaceChanger for Android

Megan Van Welie
Tufts University, Computer Science Department
December 6, 2016
An open source, face swapping and morphing program for Android, which is explored as an application for face tracking, orientation alignment, and image blending.
Motivation
Motivation

General techniques are applicable to a wide range of fields, including medical image processing and accessibility software.
Motivation

Entertainment and Marketing
Background
Background Outline

Primary Techniques:

- Facial landmark detection
- Absolute orientation for image alignment
- Poisson image blending
Background Outline

Primary Techniques:

- Facial landmark detection
- Absolute orientation for image alignment
- Poisson image blending

Tools:

- OpenCV
- Dlib, a C++ machine learning toolkit
- Android NDK
Background

Facial Landmark Detection

- Addressed using machine learning techniques
- Dlib implementation based on:

Kazemi, Vahid, and Josephine Sullivan. "One millisecond face alignment with an ensemble of regression trees."

- Identifies 68 landmarks around the face
Background

Absolute Orientation

\[
\min_{x_0, y_0, \theta} \sum_{i=1}^{N} \| \mathbf{r}_{r,i} - (R \mathbf{r}_{l,i} - \mathbf{r}_0) \|^2
\]

Solve for angle of rotation, translation, and scale difference between two sets of landmark points.
Background

Image blending

Source image: \(S(x, y) \)
Mask image: \(M(x, y) \)
Target image: \(T(x, y) \)
Composite image: \(I(x, y) \)

- Ideas:
 - Hard copy the source image \(S(x,y) \) onto \(T(x,y) \) where \(M(x,y) = 1 \)
 \[
 I(x, y) = S(x, y)M(x, y) + T(x, y)(1 - M(x, y))
 \]
 - Blurred transition between \(S(x,y) \) and \(T(x,y) \) along edge of \(M(x,y) \)
 Can be achieved with Gaussian and Laplacian image pyramids
Background

Poisson Image blending

\[
\min_{I(x,y) \in \Omega} \iint \| \nabla I(x,y) - \nabla S(x,y) \|^2 \, dx \, dy
\]

constrained such that

\[
I(x,y) = T(x,y) \text{ on } \partial \Omega
\]

- OpenCV implementation: seamlessClone
- Great lecture by Professor Rich Radke (RPI)
Background

Tools and how I used them

OpenCV:
- Image manipulation
- Poisson image blending

Dlib:
- Facial landmark detection

Android SDK and NDK:
- Android Native Development Kit, toolset that allows processing within application in C++
Methodology
Methodology

- Developed each technique in a sandbox with ideal data
- Joined each step into a complete system
Experiments and Results
Results

Facial landmark points detected
Results

Extracted face in original position
Results

Aligned with swapped position
Results

Extracted face in original position
Results

Aligned with swapped position
Results

Final mask to be used with hard copy
Results

Hard copy from mask
Results

Poisson Image Blending
Conclusions

- Still working to fully port to Android (close!)
- Still working to make it run in real-time

- Improvements:
 - Blending could add additional constraints to prevent edge smudging seen when the target image has a strong edge (as in the case of the beard).
 - Real-time processing is not quite achieved.
 - Color blending between images for a more realistic result.

- Takeaways:
 - Even simple tasks still take a lot of forethought to achieve desired results.
 - Computational photography looks like an interesting field that I would love to explore.