Continuous Facility Location Algorithms for *k*-Means and *k*-Median

Nathan Cordner

Boston University

4 November 2019

Clustering Problems

Given discrete subsets C and F of metric space (X, d)

Given discrete subsets C and F of metric space (X, d)• k-Median problem:

Given discrete subsets C and F of metric space (X, d)• k-Median problem:

• Choose k centers in F

Given discrete subsets C and F of metric space (X, d) \blacksquare *k*-Median problem:

- Choose k centers in F
- Minimize distances from each point in C to its nearest center

Given discrete subsets C and F of metric space (X, d) \blacksquare *k*-Median problem:

- Choose k centers in F
- Minimize distances from each point in C to its nearest center
- *k*-Means problem:

Given discrete subsets C and F of metric space (X, d) \blacksquare *k*-Median problem:

- Choose k centers in F
- Minimize distances from each point in C to its nearest center
- *k*-Means problem:
 - Choose k centers within X

Given discrete subsets C and F of metric space (X, d)• k-Median problem:

- Choose k centers in F
- Minimize distances from each point in C to its nearest center
- *k*-Means problem:
 - Choose k centers within X
 - Minimize squared distances from each point in C to its nearest center

Given discrete subsets C and F of metric space (X, d)• k-Median problem:

- Choose k centers in F
- Minimize distances from each point in C to its nearest center
- *k*-Means problem:
 - Choose k centers within X
 - Minimize squared distances from each point in C to its nearest center
 - Can discretize the possible choices for centers with negligible approximation loss

k-Median:

■ 2001: Jain and Vazirani 6-approx.

- 2001: Jain and Vazirani 6-approx.
- 2002: Jain et al. 4-approx.

- 2001: Jain and Vazirani 6-approx.
- 2002: Jain et al. 4-approx.
- 2003: Archer et al. exponential 3-approx.

- 2001: Jain and Vazirani 6-approx.
- 2002: Jain et al. 4-approx.
- 2003: Archer et al. exponential 3-approx.
- 2012: Li and Svensson 2.732-approx.

- 2001: Jain and Vazirani 6-approx.
- 2002: Jain et al. 4-approx.
- 2003: Archer et al. exponential 3-approx.
- 2012: Li and Svensson 2.732-approx.
- 2014: Byrka et al. 2.675-approx.

- 2001: Jain and Vazirani 6-approx.
- 2002: Jain et al. 4-approx.
- 2003: Archer et al. exponential 3-approx.
- 2012: Li and Svensson 2.732-approx.
- 2014: Byrka et al. 2.675-approx.
- 2017: Ahmadian et al. 2.633-approx. (Euclidean)

- 2001: Jain and Vazirani 6-approx.
- 2002: Jain et al. 4-approx.
- 2003: Archer et al. exponential 3-approx.
- 2012: Li and Svensson 2.732-approx.
- 2014: Byrka et al. 2.675-approx.
- 2017: **Ahmadian et al.** 2.633-approx. (Euclidean) Hardness: 1.736

k-Means:

■ 2001: Jain and Vazirani 54-approx.

- 2001: Jain and Vazirani 54-approx.
- 2003: Archer et al. exponential 9-approx.

- 2001: Jain and Vazirani 54-approx.
- 2003: Archer et al. exponential 9-approx.
- 2004: Kanungo et al. 9-approx. (Euclidean)

- 2001: Jain and Vazirani 54-approx.
- 2003: Archer et al. exponential 9-approx.
- 2004: Kanungo et al. 9-approx. (Euclidean)
- 2008: Gupta and Tangwongsan 16-approx.

- 2001: Jain and Vazirani 54-approx.
- 2003: Archer et al. exponential 9-approx.
- 2004: Kanungo et al. 9-approx. (Euclidean)
- 2008: Gupta and Tangwongsan 16-approx.
- 2017: Ahmadian et al. 9-approx.

- 2001: Jain and Vazirani 54-approx.
- 2003: Archer et al. exponential 9-approx.
- 2004: Kanungo et al. 9-approx. (Euclidean)
- 2008: Gupta and Tangwongsan 16-approx.
- 2017: Ahmadian et al. 9-approx.
- 2017: Ahmadian et al. 6.357-approx. (Euclidean)

k-Means:

- 2001: Jain and Vazirani 54-approx.
- 2003: Archer et al. exponential 9-approx.
- 2004: Kanungo et al. 9-approx. (Euclidean)
- 2008: Gupta and Tangwongsan 16-approx.
- 2017: Ahmadian et al. 9-approx.
- 2017: Ahmadian et al. 6.357-approx. (Euclidean)

Hardness: 3.94 (General), 1.0013 (Euclidean)

Talk Outline

Facility Location Problem

Facility Location Problem Jain and Vazirani (JV) Algorithm

- Jain and Vazirani (JV) Algorithm
- Relation to k-Means and k-Median

- Jain and Vazirani (JV) Algorithm
- Relation to k-Means and k-Median

Continuous Adaptations of the JV Algorithm

- Jain and Vazirani (JV) Algorithm
- Relation to *k*-Means and *k*-Median

Continuous Adaptations of the JV Algorithm

Archer et al. Exponential Algorithm

- Jain and Vazirani (JV) Algorithm
- Relation to *k*-Means and *k*-Median
- Continuous Adaptations of the JV Algorithm
 - Archer et al. Exponential Algorithm
 - Ahmadian et al. Quasipolynomial Algorithm

- Jain and Vazirani (JV) Algorithm
- Relation to *k*-Means and *k*-Median
- Continuous Adaptations of the JV Algorithm
 - Archer et al. Exponential Algorithm
 - Ahmadian et al. Quasipolynomial Algorithm
 - Ahmadian et al. Polynomial Algorithm

Figure: researchgate.net/figure/Facility-location-problem-example_fig1_221182599

Given a set of *facilities* F, and a set of *clients* C

Given a set of *facilities F*, and a set of *clients C* ■ Each facility *i* has an *opening cost*

Given a set of *facilities* F, and a set of *clients* C

- Each facility *i* has an *opening cost*
- Want to minimize facility opening costs plus distances of clients to their nearest facility
Uncapacitated Facility Location

Primal LP:

minimize $\sum_{i \in F, j \in C} c_{ij} x_{ij} + \sum_{i \in F} f_i y_i$ subject to $\sum x_{ij} \ge 1$, $\forall j \in C$, $i \in F$ $y_i - x_{ij} \ge 0, \quad \forall i \in F, j \in C,$ $x_{ij} \ge 0, \quad \forall i \in F, j \in C,$ $y_i > 0, \qquad \forall i \in F.$

 $c_{ij} = \text{distance}, f_i = \text{facility cost},$ $x_{ij} = \text{client connection}, y_i = \text{facility open}$

Uncapacitated Facility Location

Dual LP:

maximize $\sum_{j \in C} \alpha_j$ subject to $\alpha_i - \beta_{ij} \leq c_{ij}, \forall i \in F, j \in C,$ $\sum_{j \in C} \beta_{ij} \le f_i, \quad \forall i \in F,$ $\alpha_i \geq 0$, $\forall i \in C.$ $\beta_{ii} > 0,$ $\forall i \in F, j \in C.$

 $c_{ij} = \text{distance}, f_i = \text{facility cost}, \\ \beta_{ij} = \text{client contribution}, \alpha_j = \text{client value}$

Stage 1

Each client is initially unconnected

- Each client is initially *unconnected*
- Each facility is not *tight* or *temporarily open*

- Each client is initially *unconnected*
- Each facility is not *tight* or *temporarily open*
- Event *time* starts at t = 0

- Each client is initially *unconnected*
- Each facility is not *tight* or *temporarily open*
- Event *time* starts at t = 0
- As t increases, each α_j also increases at the same rate until an event occurs

- Each client is initially *unconnected*
- Each facility is not *tight* or *temporarily open*
- Event *time* starts at t = 0
- As t increases, each α_j also increases at the same rate until an event occurs
- Stage 1 ends when no unconnected clients remain

An *edge goes tight* when some $\alpha_j = c_{ij}$

An edge goes tight when some $\alpha_j = c_{ij}$ If facility *i* is not temporarily open, then start increasing β_{ij}

An *edge goes tight* when some $\alpha_j = c_{ij}$ If facility *i* is not temporarily open, then start increasing β_{ij}

• Client j is now *contributing* to facility i

An *edge goes tight* when some $\alpha_j = c_{ij}$

• If facility i is not temporarily open, then start increasing β_{ij}

• Client j is now *contributing* to facility i

 If facility i is temporarily open, then declare client j to be connected

An *edge goes tight* when some $\alpha_j = c_{ij}$

• If facility i is not temporarily open, then start increasing β_{ij}

• Client j is now contributing to facility i

- If facility i is temporarily open, then declare client j to be connected
 - Stop increasing α_j and each β_{hj} for all facilities $h \in F$

An *edge goes tight* when some $\alpha_j = c_{ij}$

• If facility i is not temporarily open, then start increasing β_{ij}

• Client j is now contributing to facility i

- If facility i is temporarily open, then declare client j to be connected
 - Stop increasing α_j and each β_{hj} for all facilities $h \in F$
 - Facility i is the connecting witness for client j

Facility *i* is *paid* for when $\sum_{j \in C} \beta_{ij} = f_i$

Facility *i* is *paid* for when $\sum_{j \in C} \beta_{ij} = f_i$ ■ Declare facility *i* to be temporarily open

- Facility *i* is *paid* for when $\sum_{j \in C} \beta_{ij} = f_i$
 - Declare facility *i* to be temporarily open
 - Each unconnected client j that was contributing to facility i is now declared to be connected

- Facility *i* is *paid* for when $\sum_{j \in C} \beta_{ij} = f_i$
 - Declare facility *i* to be temporarily open
 - Each unconnected client j that was contributing to facility i is now declared to be connected
 - Facility *i* is the connecting witness for these clients

- Facility *i* is *paid* for when $\sum_{j \in C} \beta_{ij} = f_i$
 - \blacksquare Declare facility i to be temporarily open
 - Each unconnected client j that was contributing to facility i is now declared to be connected
 - Facility *i* is the connecting witness for these clients
 - The dual variables for each of these clients now stops increasing

Stage 2

■ Construct a graph G with vertices given by the temporarily opened facilities from Stage 1

- Construct a graph G with vertices given by the temporarily opened facilities from Stage 1
- Allow an edge between facilities $i \neq i'$ if some client j made positive contributions to both

- Construct a graph G with vertices given by the temporarily opened facilities from Stage 1
- Allow an edge between facilities $i \neq i'$ if some client j made positive contributions to both
- Return any maximal independent set of G

Relating UFL to k-Median and k-Means

JV Algorithm Approximation Bound:

$$\sum_{i \in F, j \in C} c_{ij} x_{ij} + \sum_{i \in F} f_i y_i \le 3 \sum_{j \in C} \alpha_j$$

Relating UFL to k-Median and k-Means

JV Algorithm Approximation Bound:

$$\sum_{i \in F, j \in C} c_{ij} x_{ij} + \sum_{i \in F} f_i y_i \le 3 \sum_{j \in C} \alpha_j$$

The JV algorithm also satisfies a *Lagrange-multiplier preserving* (LMP) property:

$$\sum_{i \in F, j \in C} c_{ij} x_{ij} + 3 \sum_{i \in F} f_i y_i \le 3 \sum_{j \in C} \alpha_j$$

Relating UFL to k-Median and k-Means

Setting each facility cost $f_i = \lambda \ge 0$ yields

$$\sum_{i \in F, j \in C} c_{ij} x_{ij} \le 3 \left(\sum_{j \in C} \alpha_j - \lambda \sum_{i \in F} y_i \right)$$

Setting each facility cost $f_i = \lambda \ge 0$ yields

$$\sum_{i \in F, j \in C} c_{ij} x_{ij} \le 3 \left(\sum_{j \in C} \alpha_j - \lambda \sum_{i \in F} y_i \right)$$

This corresponds to the primal and dual objectives of k-median when the number of opened facilities equals k

Setting each facility cost $f_i = \lambda \ge 0$ yields

$$\sum_{i \in F, j \in C} c_{ij} x_{ij} \le 3 \left(\sum_{j \in C} \alpha_j - \lambda \sum_{i \in F} y_i \right)$$

This corresponds to the primal and dual objectives of k-median when the number of opened facilities equals k

Bound for (discrete) k-means is 9

Given a UFL instance with uniform facility cost $\lambda \geq 0$

Given a UFL instance with uniform facility cost $\lambda \ge 0$ When $\lambda = 0$, all facilities open

Given a UFL instance with uniform facility cost $\lambda \ge 0$ When $\lambda = 0$, all facilities open

 \blacksquare When λ is large enough, only one facility opens

Given a UFL instance with uniform facility cost $\lambda \geq 0$

- When $\lambda = 0$, all facilities open
- \blacksquare When λ is large enough, only one facility opens
- The JV algorithm is *continuous* if, as λ increases, the total number of opened facilities never jumps by more than 1 at a time

JV Algorithm Continuity

A bad example:

Figure: https://en.wikipedia.org/wiki/Star_(graph_theory)

JV Algorithm Continuity

Fixing bad examples:

Fixing bad examples:

Perturb the distances so that no $c_{ij} = c_{i'j'}$

Fixing bad examples:

- Perturb the distances so that no $c_{ij} = c_{i'j'}$
- Always choose a maximum independent set of facilities in Stage 2
Fixing bad examples:

- Perturb the distances so that no $c_{ij} = c_{i'j'}$
- Always choose a maximum independent set of facilities in Stage 2

Theorem (Archer et al.): as λ increases, the number of opened facilities changes by at most 1 at a time

Fixing bad examples:

- Perturb the distances so that no $c_{ij} = c_{i'j'}$
- Always choose a maximum independent set of facilities in Stage 2

Theorem (Archer et al.): as λ increases, the number of opened facilities changes by at most 1 at a time

Exponential time algorithm

Instead of choosing maximum IS, we will just allow for "larger" maximal IS

- Instead of choosing maximum IS, we will just allow for "larger" maximal IS
 - Let t_i be the time that facility i opens in Stage 1

Instead of choosing maximum IS, we will just allow for "larger" maximal IS

Let t_i be the time that facility i opens in Stage 1
Stage 2: edge between facilities i, i' if some client has positive contributions to both and if c_{ii'} ≤ δ min{t_i, t_{i'}}

Instead of choosing maximum IS, we will just allow for "larger" maximal IS

- Let t_i be the time that facility i opens in Stage 1
- Stage 2: edge between facilities *i*, *i'* if some client has positive contributions to both and if c_{ii'} ≤ δ min{t_i, t_{i'}}

Note that $\delta = \infty$ yields the original JV algorithm

The $\mathsf{JV}(\delta)$ algorithm satisfies the LMP property with constant

- The $\mathsf{JV}(\delta)$ algorithm satisfies the LMP property with constant
 - 9 for k-means in general metrics ($\delta = \infty$)

- The JV(δ) algorithm satisfies the LMP property with constant
 - 9 for k-means in general metrics ($\delta = \infty$)
 - 6.3574 for k-means in the Euclidean metric $(\delta = 2.3146)$

The $\mathsf{JV}(\delta)$ algorithm satisfies the LMP property with constant

- 9 for k-means in general metrics ($\delta = \infty$)
- 6.3574 for k-means in the Euclidean metric $(\delta = 2.3146)$
- **3** for k-median in general metrics ($\delta = \infty$)

The $\mathsf{JV}(\delta)$ algorithm satisfies the LMP property with constant

- 9 for k-means in general metrics ($\delta = \infty$)
- 6.3574 for k-means in the Euclidean metric $(\delta = 2.3146)$
- 3 for k-median in general metrics ($\delta = \infty$)
- 2.633 for k-median in the Euclidean metric $(\delta = 1.633)$

Given a maximal independent set IS of facilities

- Given a maximal independent set IS of facilities
- Let i be the witness facility for some client j

- Given a maximal independent set IS of facilities
- Let i be the witness facility for some client j
- If $i \in IS$, the distance c_{ij} is bounded by α_j

- Given a maximal independent set IS of facilities
- Let i be the witness facility for some client j
- If $i \in IS$, the distance c_{ij} is bounded by α_j
- If $i \notin IS$, then some client j' contributed to both iand some $i' \in IS$: $c_{i'j} \leq c_{ij} + c_{ij'} + c_{i'j'} \leq 3\alpha_j$

- Given a maximal independent set IS of facilities
- Let i be the witness facility for some client j
- If $i \in \mathsf{IS}$, the distance c_{ij} is bounded by α_j
- If $i \notin IS$, then some client j' contributed to both iand some $i' \in IS$: $c_{i'j} \leq c_{ij} + c_{ij'} + c_{i'j'} \leq 3\alpha_j$
- Leads to overall 3-approximation result

Consider $JV(\delta)$ for k-median (Euclidean metric): Let ρ be our approximation bound

- Let ρ be our approximation bound
- \blacksquare Now j may have contributed to s>1 facilities in IS

- \blacksquare Let ρ be our approximation bound
- \blacksquare Now j may have contributed to s>1 facilities in IS
- \blacksquare A centroid inequality yields $s < \delta^2/(\delta^2-2)$

- \blacksquare Let ρ be our approximation bound
- \blacksquare Now j may have contributed to s>1 facilities in IS
- \blacksquare A centroid inequality yields $s < \delta^2/(\delta^2-2)$
- $\blacksquare \ \text{If} \ s=0 \text{, then} \ \rho \geq 1+\delta$

- \blacksquare Let ρ be our approximation bound
- \blacksquare Now j may have contributed to s>1 facilities in IS
- \blacksquare A centroid inequality yields $s < \delta^2/(\delta^2-2)$

• If
$$s = 0$$
, then $\rho \ge 1 + \delta$

If s > 1, then $\rho \ge 1/\left(\frac{1}{s-1}\binom{s}{2}\delta - (s-1)\right)$

- \blacksquare Let ρ be our approximation bound
- \blacksquare Now j may have contributed to s>1 facilities in IS
- \blacksquare A centroid inequality yields $s < \delta^2/(\delta^2-2)$

• If
$$s = 0$$
, then $\rho \ge 1 + \delta$

If s > 1, then $\rho \ge 1/\left(\frac{1}{s-1}\binom{s}{2}\delta - (s-1)\right)$

Best result: $\delta = \sqrt{8/3}$ yields s < 4 and $\rho \approx 2.633$

Goal: find "good, close" dual solutions $\alpha^{(0)}, \ldots, \alpha^{(L)}$

Goal: find "good, close" dual solutions α⁽⁰⁾,...,α^(L)
■ We also control the change in number of open

facilities between solutions

Goal: find "good, close" dual solutions $\alpha^{(0)}, \ldots, \alpha^{(L)}$

We also control the change in number of open facilities between solutions

Parameter values $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$

Goal: find "good, close" dual solutions $\alpha^{(0)}, \ldots, \alpha^{(L)}$

- We also control the change in number of open facilities between solutions
- Parameter values $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$

• Let ϵ be an approximation error factor, let n = |C|

Goal: find "good, close" dual solutions $\alpha^{(0)}, \ldots, \alpha^{(L)}$

We also control the change in number of open facilities between solutions

Parameter values $\lambda = 0, \epsilon_z, 2\epsilon_z, \ldots, L\epsilon_z$

• Let ϵ be an approximation error factor, let n = |C|• Fix $\epsilon_z = n^{-3-30 \log_{1+\epsilon} n}$, $L = 4n^7 \cdot \epsilon_z^{-1} = n^{O(\epsilon^{-1} \log n)}$

Goal: find "good, close" dual solutions $\alpha^{(0)}, \ldots, \alpha^{(L)}$

We also control the change in number of open facilities between solutions

Parameter values $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$

• Let ϵ be an approximation error factor, let n = |C|• Fix $\epsilon_z = n^{-3-30 \log_{1+\epsilon} n}$, $L = 4n^7 \cdot \epsilon_z^{-1} = n^{O(\epsilon^{-1} \log n)}$

List is quasipolynomial in length

Goal: find "good, close" dual solutions $\alpha^{(0)}, \ldots, \alpha^{(L)}$

We also control the change in number of open facilities between solutions

Parameter values $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$

Let ϵ be an approximation error factor, let n = |C|Fix $\epsilon_z = n^{-3-30 \log_{1+\epsilon} n}$, $L = 4n^7 \cdot \epsilon_z^{-1} = n^{O(\epsilon^{-1} \log n)}$

List is quasipolynomial in length

Two parts: QUASISWEEP, QUASIGRAPHUPDATE

For $x \in \mathbb{R}$, define

$$B(x) = \begin{cases} 0, & \text{if } x < 1, \\ 1 + \lfloor \log_{1+\epsilon}(x) \rfloor, & \text{if } x \ge 1 \end{cases}$$

For $x \in \mathbb{R}$, define

$$B(x) = \begin{cases} 0, & \text{if } x < 1, \\ 1 + \lfloor \log_{1+\epsilon}(x) \rfloor, & \text{if } x \ge 1 \end{cases}$$

• B(x) is the index of the *bucket* that contains x

For $x \in \mathbb{R}$, define

$$B(x) = \begin{cases} 0, & \text{if } x < 1, \\ 1 + \lfloor \log_{1+\epsilon}(x) \rfloor, & \text{if } x \ge 1 \end{cases}$$

- B(x) is the index of the *bucket* that contains x
- \blacksquare The $\alpha\text{-values}$ for any two clients in the same bucket differ by at most $1+\epsilon$

QUASISWEEP

Begin with good dual solution $\alpha^{(l)}$ for parameter λ

Begin with good dual solution $\alpha^{(l)}$ for parameter λ Raise the facility price to $\lambda + \epsilon_z$
Begin with good dual solution $\alpha^{(l)}$ for parameter λ Raise the facility price to $\lambda + \epsilon_z$ Let $A = \emptyset$ and $\theta = 0$. Increase θ continuously:

 \blacksquare Raise the facility price to $\lambda+\epsilon_z$

Let $A = \emptyset$ and $\theta = 0$. Increase θ continuously:

• Whenever $\theta = \alpha_j$, add j to A

 \blacksquare Raise the facility price to $\lambda+\epsilon_z$

Let $A = \emptyset$ and $\theta = 0$. Increase θ continuously:

- Whenever $\theta = \alpha_j$, add j to A
- Remove j from A whenever j has a tight edge to a tight facility i where $B(\alpha_j) \ge B(t_i)$

 \blacksquare Raise the facility price to $\lambda+\epsilon_z$

Let $A = \emptyset$ and $\theta = 0$. Increase θ continuously:

- Whenever $\theta = \alpha_j$, add j to A
- Remove j from A whenever j has a tight edge to a tight facility i where $B(\alpha_j) \ge B(t_i)$
- Decrease each α_j with $B(\alpha_j) > B(\theta)$ at a rate of |A| times the rate that θ is increasing

 \blacksquare Raise the facility price to $\lambda+\epsilon_z$

Let $A = \emptyset$ and $\theta = 0$. Increase θ continuously:

• Whenever $\theta = \alpha_j$, add j to A

- Remove j from A whenever j has a tight edge to a tight facility i where B(α_j) ≥ B(t_i)
- Decrease each α_j with $B(\alpha_j) > B(\theta)$ at a rate of |A| times the rate that θ is increasing

Stop when every client is added and removed from \boldsymbol{A}

 \blacksquare Raise the facility price to $\lambda+\epsilon_z$

Let $A = \emptyset$ and $\theta = 0$. Increase θ continuously:

• Whenever $\theta = \alpha_j$, add j to A

- Remove j from A whenever j has a tight edge to a tight facility i where B(α_j) ≥ B(t_i)
- Decrease each α_j with $B(\alpha_j) > B(\theta)$ at a rate of |A| times the rate that θ is increasing

Stop when every client is added and removed from A Output dual solution $\alpha^{(l+1)}$ for parameter $\lambda+\epsilon_z$

Each $\alpha^{(l)}$ has a graph $G^{(l)}$ of facilities Generate (polynomially many) intermediate graphs $G^{(l)} = G^{(l,0)}, G^{(l,1)}, \dots, G^{(l,p_l)} = G^{(l+1)}$

Generate (polynomially many) intermediate graphs $G^{(l)} = G^{(l,0)}, G^{(l,1)}, \ldots, G^{(l,p_l)} = G^{(l+1)}$

• Obtain maximal independent sets $IS^{(l)} = IS^{(l,0)}, IS^{(l,1)}, \dots, IS^{(l,p_l)} = IS^{(l+1)}$

- Generate (polynomially many) intermediate graphs $G^{(l)} = G^{(l,0)}, G^{(l,1)}, \ldots, G^{(l,p_l)} = G^{(l+1)}$
- Obtain maximal independent sets $IS^{(l)} = IS^{(l,0)}, IS^{(l,1)}, \dots, IS^{(l,p_l)} = IS^{(l+1)}$

Size decreases by at most one after each step

- Generate (polynomially many) intermediate graphs $G^{(l)} = G^{(l,0)}, G^{(l,1)}, \ldots, G^{(l,p_l)} = G^{(l+1)}$
- Obtain maximal independent sets $IS^{(l)} = IS^{(l,0)}, IS^{(l,1)}, \dots, IS^{(l,p_l)} = IS^{(l+1)}$

■ Size decreases by at most one after each step Return first independent set we find with size k

Input: $G^{(l)}, G^{(l+1)}$, and $IS^{(l)}$ (of size greater than k)

Input: $G^{(l)}, G^{(l+1)}$, and IS^(l) (of size greater than k) Copy $G^{(l)}, G^{(l+1)}$ into disjoint sets $V^{(l)}, V^{(l+1)}$

Input: $G^{(l)}, G^{(l+1)}$, and IS^(l) (of size greater than k) Copy $G^{(l)}, G^{(l+1)}$ into disjoint sets $V^{(l)}, V^{(l+1)}$ Bipartite graph G' over $V^{(l)} \cup V^{(l+1)}$ and C

Input: $G^{(l)}, G^{(l+1)}$, and $\mathsf{IS}^{(l)}$ (of size greater than k)

- \blacksquare Copy $G^{(l)}\text{, }G^{(l+1)}$ into disjoint sets $V^{(l)}\text{, }V^{(l+1)}$
- \blacksquare Bipartite graph G' over $V^{(l)} \cup V^{(l+1)}$ and C
- Edge j to $i \in V^{(l)}$ if j contributes to i in $\alpha^{(l)}$, etc.

Input: $G^{(l)}, G^{(l+1)}$, and IS^(l) (of size greater than k)

- \blacksquare Copy $G^{(l)}\text{, }G^{(l+1)}$ into disjoint sets $V^{(l)}\text{, }V^{(l+1)}$
- \blacksquare Bipartite graph G' over $V^{(l)} \cup V^{(l+1)}$ and C
- Edge j to $i \in V^{(l)}$ if j contributes to i in $\alpha^{(l)}$, etc.
- Generate $G^{(l,1)}$ on G', where the induced subgraph of $G^{(l,1)}$ on $V^{(l)}$ equals $G^{(l)} = G^{(l,0)}$

Input: $G^{(l)}, G^{(l+1)}$, and IS $^{(l)}$ (of size greater than k)

- \blacksquare Copy $G^{(l)}\text{, }G^{(l+1)}$ into disjoint sets $V^{(l)}\text{, }V^{(l+1)}$
- Bipartite graph G' over $V^{(l)} \cup V^{(l+1)}$ and C
- Edge j to $i \in V^{(l)}$ if j contributes to i in $\alpha^{(l)}$, etc.
- Generate $G^{(l,1)}$ on G', where the induced subgraph of $G^{(l,1)}$ on $V^{(l)}$ equals $G^{(l)} = G^{(l,0)}$
- Greedily extend $IS^{(l)} = IS^{(l,0)}$ to a maximal independent set $IS^{(l,1)}$ for $G^{(l,1)}$

Input: $G^{(l)}, G^{(l+1)}$, and IS^(l) (of size greater than k)

- \blacksquare Copy $G^{(l)}\text{, }G^{(l+1)}$ into disjoint sets $V^{(l)}\text{, }V^{(l+1)}$
- \blacksquare Bipartite graph G' over $V^{(l)} \cup V^{(l+1)}$ and C
- Edge j to $i \in V^{(l)}$ if j contributes to i in $\alpha^{(l)}$, etc.
- Generate $G^{(l,1)}$ on G', where the induced subgraph of $G^{(l,1)}$ on $V^{(l)}$ equals $G^{(l)} = G^{(l,0)}$
- Greedily extend $IS^{(l)} = IS^{(l,0)}$ to a maximal independent set $IS^{(l,1)}$ for $G^{(l,1)}$
- Continue generating graphs and IS's by removing facilities in *V*^(*l*) from *G*′ one by one

Input: $G^{(l)}, G^{(l+1)}$, and IS^(l) (of size greater than k)

- \blacksquare Copy $G^{(l)}\text{, }G^{(l+1)}$ into disjoint sets $V^{(l)}\text{, }V^{(l+1)}$
- Bipartite graph G' over $V^{(l)} \cup V^{(l+1)}$ and C
- Edge j to $i \in V^{(l)}$ if j contributes to i in $\alpha^{(l)}$, etc.
- Generate $G^{(l,1)}$ on G', where the induced subgraph of $G^{(l,1)}$ on $V^{(l)}$ equals $G^{(l)} = G^{(l,0)}$
- Greedily extend $IS^{(l)} = IS^{(l,0)}$ to a maximal independent set $IS^{(l,1)}$ for $G^{(l,1)}$
- Continue generating graphs and IS's by removing facilities in *V*^(*l*) from *G*′ one by one

• After $p_l = |V^{(l)}|$ steps, arrive at $G^{(l,p_l)} = G^{(l+1)}$

Quasipolynomial Algorithm: in Review

QUASISWEEP generates a quasipolynomial length list of dual solutions $\alpha^{(0)}, \ldots, \alpha^{(L)}$

QuasiSweep generates a quasipolynomial length list of dual solutions $\alpha^{(0)},\ldots,\alpha^{(L)}$

 $\rm QUASIGRAPHUPDATE$ interpolates between every two solutions $\alpha^{(l)}$, $\alpha^{(l+1)}$ to make sure we eventually find a set of open facilities of size k

QuasiSweep generates a quasipolynomial length list of dual solutions $\alpha^{(0)},\ldots,\alpha^{(L)}$

 $\rm QUASIGRAPHUPDATE$ interpolates between every two solutions $\alpha^{(l)}$, $\alpha^{(l+1)}$ to make sure we eventually find a set of open facilities of size k

Analysis:
$$\sum_{i \in F, j \in C} c_{ij} x_{ij} \le (\rho + O(\epsilon)) \cdot \mathsf{OPT}_k$$

Good dual solutions $\rightarrow \lambda$ -roundable dual solutions

Good dual solutions $\rightarrow \lambda$ -roundable dual solutions

Facility costs $\lambda = 0, 1 \cdot \epsilon_z, \dots, L \cdot \epsilon_z$ where $L = 4n^7 \cdot \epsilon_z^{-1}$ and $\epsilon_z = n^{-O(1)}$

Good dual solutions $\rightarrow \lambda$ -roundable dual solutions

Facility costs $\lambda = 0, 1 \cdot \epsilon_z, \dots, L \cdot \epsilon_z$ where $L = 4n^7 \cdot \epsilon_z^{-1}$ and $\epsilon_z = n^{-O(1)}$

RAISEPRICE increases facility costs one by one

Good dual solutions $\rightarrow \lambda$ -roundable dual solutions

Facility costs $\lambda = 0, 1 \cdot \epsilon_z, \dots, L \cdot \epsilon_z$ where $L = 4n^7 \cdot \epsilon_z^{-1}$ and $\epsilon_z = n^{-O(1)}$

 $\operatorname{RAISEPRICE}$ increases facility costs one by one

Given facility i raised from λ to $\lambda + \epsilon_z$

Good dual solutions $\rightarrow \lambda$ -roundable dual solutions

Facility costs $\lambda = 0, 1 \cdot \epsilon_z, \dots, L \cdot \epsilon_z$ where $L = 4n^7 \cdot \epsilon_z^{-1}$ and $\epsilon_z = n^{-O(1)}$

 $\operatorname{RAISEPRICE}$ increases facility costs one by one

- Given facility i raised from λ to $\lambda + \epsilon_z$
- \blacksquare Obtain close sequence of roundable solutions $S^{(1)},\ldots,S^{(q)},$ using a SWEEP subroutine

Good dual solutions $\rightarrow \lambda$ -roundable dual solutions

Facility costs $\lambda = 0, 1 \cdot \epsilon_z, \dots, L \cdot \epsilon_z$ where $L = 4n^7 \cdot \epsilon_z^{-1}$ and $\epsilon_z = n^{-O(1)}$

 $\operatorname{RAISEPRICE}$ increases facility costs one by one

- Given facility i raised from λ to $\lambda + \epsilon_z$
- Obtain close sequence of roundable solutions $S^{(1)}, \ldots, S^{(q)}$, using a SWEEP subroutine

GRAPHUPDATE interpolates between each $S^{(l)}$, $S^{(l+1)}$

Good dual solutions $\rightarrow \lambda$ -roundable dual solutions

Facility costs $\lambda = 0, 1 \cdot \epsilon_z, \dots, L \cdot \epsilon_z$ where $L = 4n^7 \cdot \epsilon_z^{-1}$ and $\epsilon_z = n^{-O(1)}$

 $\operatorname{RAISEPRICE}$ increases facility costs one by one

- Given facility i raised from λ to $\lambda + \epsilon_z$
- Obtain close sequence of roundable solutions $S^{(1)},\ldots,S^{(q)}$, using a SWEEP subroutine

GRAPHUPDATE interpolates between each $S^{(l)}$, $S^{(l+1)}$

■ Similar to QUASIGRAPHUPDATE

Initialize the current integral solution $IS^{(0)} = F$

Initialize the current integral solution $IS^{(0)} = F$ Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$:

Initialize the current integral solution $IS^{(0)} = F$ Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$: While some facility *i* still has cost λ :

Initialize the current integral solution $IS^{(0)} = F$ Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$:

• While some facility i still has cost λ :

• Call RAISEPRICE on i and produce a sequence $S^{(1)}, \ldots, S^{(q)}$ of λ -roundable solutions

Initialize the current integral solution $IS^{(0)} = F$ Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$:

• While some facility i still has cost λ :

- Call RAISEPRICE on i and produce a sequence $S^{(1)}, \ldots, S^{(q)}$ of λ -roundable solutions
- For l = 0 to q 1:

Initialize the current integral solution $IS^{(0)} = F$

Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \ldots, L\epsilon_z$:

• While some facility i still has cost λ :

- Call RAISEPRICE on i and produce a sequence $S^{(1)}, \ldots, S^{(q)}$ of λ -roundable solutions
- For l = 0 to q 1:
 - Call GRAPHUPDATE on $S^{(l)}$, $S^{(l+1)}$ to produce a sequence $\mathsf{IS}^{(l,0)}, \dots, \mathsf{IS}^{(l,p_l)}$

Initialize the current integral solution $IS^{(0)} = F$

Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \ldots, L\epsilon_z$:

• While some facility i still has cost λ :

- Call RAISEPRICE on i and produce a sequence $S^{(1)}, \ldots, S^{(q)}$ of λ -roundable solutions
- For l = 0 to q 1:
 - Call GRAPHUPDATE on $S^{(l)}$, $S^{(l+1)}$ to produce a sequence $\mathsf{IS}^{(l,0)}, \dots, \mathsf{IS}^{(l,p_l)}$

 \blacksquare if one of these has k unique facilities, return it
Initialize the current integral solution $IS^{(0)} = F$

Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \dots, L\epsilon_z$:

• While some facility i still has cost λ :

• Call RAISEPRICE on i and produce a sequence $S^{(1)}, \ldots, S^{(q)}$ of λ -roundable solutions

For
$$l = 0$$
 to $q - 1$:

- Call GRAPHUPDATE on $S^{(l)}$, $S^{(l+1)}$ to produce a sequence $\mathsf{IS}^{(l,0)}, \dots, \mathsf{IS}^{(l,p_l)}$
- \blacksquare if one of these has k unique facilities, return it

else, set
$$\mathsf{IS}^{(l+1)} = \mathsf{IS}^{(l,p_l)}$$

Initialize the current integral solution $IS^{(0)} = F$

Loop over $\lambda = 0, \epsilon_z, 2\epsilon_z, \ldots, L\epsilon_z$:

• While some facility i still has cost λ :

• Call RAISEPRICE on i and produce a sequence $S^{(1)}, \ldots, S^{(q)}$ of λ -roundable solutions

For
$$l = 0$$
 to $q - 1$:

- Call GRAPHUPDATE on $S^{(l)}$, $S^{(l+1)}$ to produce a sequence $\mathsf{IS}^{(l,0)}, \dots, \mathsf{IS}^{(l,p_l)}$
- **\blacksquare** if one of these has k unique facilities, return it

else, set
$$\mathsf{IS}^{(l+1)} = \mathsf{IS}^{(l,p_l)}$$

• Reset
$$S^{(0)} = S^{(q)}$$
, $\mathsf{IS}^{(0)} = \mathsf{IS}^{(q)}$

Analysis:

Analysis:

Each step of the algorithm runs in polynomial time

Analysis:

- Each step of the algorithm runs in polynomial time
- Still not efficient: outer loop is $O(n^8)$

Analysis:

- Each step of the algorithm runs in polynomial time
- **Still not efficient:** outer loop is $O(n^8)$
 - Small values of k require more iterations

Analysis:

- Each step of the algorithm runs in polynomial time
- Still not efficient: outer loop is $O(n^8)$

Small values of k require more iterations

 \blacksquare Returned solution is a $(\rho + O(\epsilon))\text{-approximation}$

We discussed the JV facility location algorithm
Good approximations to k-means and k-median when it opens k facilities

 Good approximations to k-means and k-median when it opens k facilities

We overviewed three modifications to make the JV algorithm *continuous*

 Good approximations to k-means and k-median when it opens k facilities

We overviewed three modifications to make the JV algorithm *continuous*

• Guaranteed to find k facilities for any value of k

 Good approximations to k-means and k-median when it opens k facilities

We overviewed three modifications to make the JV algorithm *continuous*

■ Guaranteed to find k facilities for any value of k Can we do the same for other LMP algorithms?

Cordner (Boston University)