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m k-Median problem:

m Choose k centers in F
m Minimize distances from each point in C' to its nearest
center

m k-Means problem:

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C' and F of metric space (X, d)
m k-Median problem:

m Choose k centers in F
m Minimize distances from each point in C' to its nearest
center

m k-Means problem:
m Choose k centers within X

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C' and F of metric space (X, d)
m k-Median problem:
m Choose k centers in F
m Minimize distances from each point in C' to its nearest
center
m k-Means problem:
m Choose k centers within X
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Clustering Problems

Given discrete subsets C' and F of metric space (X, d)
m k-Median problem:
m Choose k centers in F
m Minimize distances from each point in C' to its nearest
center
m k-Means problem:
m Choose k centers within X
m Minimize squared distances from each point in C to its
nearest center
m Can discretize the possible choices for centers with
negligible approximation loss
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Approximation Bounds Overview

k-Median:

m 2001: Jain and Vazirani 6-approx.

m 2002: Jain et al. 4-approx.

m 2003: Archer et al. exponential 3-approx.

m 2012: Li and Svensson 2.732-approx.

m 2014: Byrka et al. 2.675-approx.

m 2017: Ahmadian et al. 2.633-approx. (Euclidean)
Hardness: 1.736
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Approximation Bounds Overview

k-Means:
m 2001: Jain and Vazirani 54-approx.
2003: Archer et al. exponential 9-approx.
2004: Kanungo et al. 9-approx. (Euclidean)

2017: Ahmadian et al. 9-approx.

n

n

m 2008: Gupta and Tangwongsan 16-approx.

n

m 2017: Ahmadian et al. 6.357-approx. (Euclidean)
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Approximation Bounds Overview

k-Means:

m 2001: Jain and Vazirani 54-approx.

m 2003: Archer et al. exponential 9-approx.

m 2004: Kanungo et al. 9-approx. (Euclidean)

m 2008: Gupta and Tangwongsan 16-approx.

m 2017: Ahmadian et al. 9-approx.

m 2017: Ahmadian et al. 6.357-approx. (Euclidean)
Hardness: 3.94 (General), 1.0013 (Euclidean)
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Talk Outline

Facility Location Problem
m Jain and Vazirani (JV) Algorithm
m Relation to k-Means and k-Median
Continuous Adaptations of the JV Algorithm
m Archer et al. Exponential Algorithm
m Ahmadian et al. Quasipolynomial Algorithm
m Ahmadian et al. Polynomial Algorithm
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Uncapacitated Facility Location

FIgU re: researchgate.net/figure/Facility-location-problem-example_figl 221182599
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Uncapacitated Facility Location

Given a set of facilities I', and a set of clients C'
m Each facility ¢ has an opening cost

m Want to minimize facility opening costs plus
distances of clients to their nearest facility
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Uncapacitated Facility Location

Primal LP:
minimize Yoo cmip Y. fiyi
ieF,jeC el
subject to Y x;; > 1, VjeC,
el

xiij, Vie F,j e,
v >0, VieF

c;j = distance, f; = facility cost,
x;; = client connection, y; = facility open

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Uncapacitated Facility Location

Dual LP:

maximize ) «;
jeC
subject to o — Bij < Cij, Vie F,j e,

> Bij < fi, VieF,

jeC
o > 0, Vi e,
Bij > 0, Vie F,jecC.

c;j = distance, f; = facility cost,
Bij = client contribution, a; = client value
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JV Primal-Dual Algorithm (Stage 1)

Stage 1
m Each client is initially unconnected
m Each facility is not tight or temporarily open
m Event time starts at t = 0

m As t increases, each «a; also increases at the same
rate until an event occurs

m Stage 1 ends when no unconnected clients remain
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increasing [3;;
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JV Primal-Dual Algorithm (Stage 1)

Facility i is paid for when > Bi; = f;
m Declare facility ¢ to be temporarily open

m Each unconnected client j that was contributing to
facility ¢ is now declared to be connected

m Facility ¢ is the connecting witness for these clients
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JV Primal-Dual Algorithm (Stage 1)

Facility i is paid for when > Bi; = f;
m Declare facility ¢ to be temporarily open

m Each unconnected client j that was contributing to
facility ¢ is now declared to be connected

m Facility ¢ is the connecting witness for these clients

m The dual variables for each of these clients now
stops increasing
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JV Primal-Dual Algorithm (Stage 2)

Stage 2

m Construct a graph G with vertices given by the
temporarily opened facilities from Stage 1

m Allow an edge between facilities i # 4’ if some client
J made positive contributions to both

m Return any maximal independent set of GG
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Relating UFL to k-Median and k-Means

JV Algorithm Approximation Bound:

Z CijTij + Zfiyi < 32043'

ieF,jeC el jel
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Relating UFL to k-Median and k-Means

JV Algorithm Approximation Bound:
Z CijTij + Z Jiyi <3 Z aj
ieF,jeC 1€F jeC

The JV algorithm also satisfies a Lagrange-multiplier
preserving (LMP) property:

Z CijTij + BZfiyi < 32%’

1€FjeC ieF jeC
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Setting each facility cost f; = A > 0 yields
DTN DaIEe) ot
1€F,jeC jeC 1€F

This corresponds to the primal and dual objectives of
k-median when the number of opened facilities equals &
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Relating UFL to k-Median and k-Means

Setting each facility cost f; = A > 0 yields

Z Cijibij §3 ZO&j—AZyZ‘

1€F,jeC jeC s

This corresponds to the primal and dual objectives of
k-median when the number of opened facilities equals &

m Bound for (discrete) k-means is 9
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JV Algorithm Continuity

Given a UFL instance with uniform facility cost A > 0
m When A = 0, all facilities open
m When X is large enough, only one facility opens

m The JV algorithm is continuous if, as A increases,
the total number of opened facilities never jumps by
more than 1 at a time
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JV Algorithm Continuity

A bad example:

Figure: https://en.wikipedia.org/wiki/Star_(graph_theory)

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



JV Algorithm Continuity

Fixing bad examples:

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



JV Algorithm Continuity

Fixing bad examples:
m Perturb the distances so that no ¢;; = ¢y

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



JV Algorithm Continuity

Fixing bad examples:
m Perturb the distances so that no ¢;; = ¢y

m Always choose a maximum independent set of
facilities in Stage 2

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



JV Algorithm Continuity

Fixing bad examples:
m Perturb the distances so that no ¢;; = ¢y

m Always choose a maximum independent set of
facilities in Stage 2

Theorem (Archer et al.): as X increases, the number of
opened facilities changes by at most 1 at a time
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JV Algorithm Continuity

Fixing bad examples:
m Perturb the distances so that no ¢;; = ¢y

m Always choose a maximum independent set of
facilities in Stage 2

Theorem (Archer et al.): as X increases, the number of
opened facilities changes by at most 1 at a time

m Exponential time algorithm

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms
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A New Approach

Instead of choosing maximum IS, we will just allow for
“larger” maximal IS

m Let ¢; be the time that facility 7 opens in Stage 1

m Stage 2: edge between facilities 4, i’ if some client
has positive contributions to both and if
Cii! < ) min{ti, ti/}
Note that 6 = oo yields the original JV algorithm
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LMP Properties of JV(6)

The JV(6) algorithm satisfies the LMP property with
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LMP Properties of JV(6)

The JV(6) algorithm satisfies the LMP property with
constant

m 9 for k-means in general metrics (§ = o0)

m 6.3574 for k-means in the Euclidean metric
(6 = 2.3146)

m 3 for k-median in general metrics (§ = o)

m 2.633 for k-median in the Euclidean metric
(6 =1.633)
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LMP Analysis

Consider JV(oo) for k-median:
m Given a maximal independent set IS of facilities
m Let ¢ be the witness facility for some client
m If ¢ € IS, the distance ¢;; is bounded by «;

m If 4 ¢ IS, then some client j' contributed to both i
and some ¢’ € IS: Citj < ¢j+ Cijr + Cirjr < 304]'
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LMP Analysis

Consider JV(oo) for k-median:
m Given a maximal independent set IS of facilities
m Let ¢ be the witness facility for some client
m If ¢ € IS, the distance ¢;; is bounded by «;
m If 4 ¢ IS, then some client j' contributed to both i
and some i’ € IS: ¢;rj < ¢ + ¢ij + iy < 3y
m Leads to overall 3-approximation result
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LMP Analysis

Consider JV(9) for k-median (Euclidean metric):
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LMP Analysis

Consider JV(9) for k-median (Euclidean metric):
m Let p be our approximation bound
m Now j may have contributed to s > 1 facilities in IS
m A centroid inequality yields s < §2/(§% — 2)
mlfs=0thenp>1+0
mlfs>1,thenp>1/(5()0—(s—1))
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LMP Analysis

Consider JV(9) for k-median (Euclidean metric):
m Let p be our approximation bound
m Now j may have contributed to s > 1 facilities in IS
m A centroid inequality yields s < §2/(§% — 2)
mlfs=0thenp>1+0
mlfs>1,thenp>1/(5()0—(s—1))

Best result: § = \/8/3 yields s < 4 and p ~ 2.633
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Quasipolynomial Algorithm

Goal: find “good, close” dual solutions o, ... ab)
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facilities between solutions
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Quasipolynomial Algorithm

Goal: find “good, close” dual solutions o, ... ab)

m We also control the change in number of open
facilities between solutions

Parameter values A = 0,¢,,2¢,, ..., Le,

m Let € be an approximation error factor, let n = |C|
1 -1
m Fix e, = n~3-30081en [, = 47 1 = O logn
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Quasipolynomial Algorithm

Goal: find “good, close” dual solutions o, ... ab)

m We also control the change in number of open
facilities between solutions

Parameter values A = 0,¢,,2¢,, ..., Le,
m Let € be an approximation error factor, let n = |C]|
. —1
m Fixe, = n—3—3010g1+5n’ L = 4n" - GZ_I — nO(e logn)

m List is quasipolynomial in length
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Quasipolynomial Algorithm

Goal: find “good, close” dual solutions o, ... ab)

m We also control the change in number of open
facilities between solutions

Parameter values A = 0,¢,,2¢,, ..., Le,
m Let € be an approximation error factor, let n = |C]|
m Fix e, = n 373008 [ — 4p7. 1 = nOc ogn)
m List is quasipolynomial in length

Two parts: QUASISWEEP, QUASIGRAPHUPDATE
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(QUASISWEEP

For x € R, define

0, if v <1,
B(z) = { 1+ [logi ()], ifz>1
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0, if v <1,
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m B(x) is the index of the bucket that contains z
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(QUASISWEEP

For x € R, define

0, if v <1,
B = {1 Loy o)), 125

m B(x) is the index of the bucket that contains z

m The a-values for any two clients in the same bucket
differ by at most 1 + ¢
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Begin with good dual solution a¥) for parameter A
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(QUASISWEEP

Begin with good dual solution a¥) for parameter A
m Raise the facility price to A\ + ¢,
Let A =0 and 6 = 0. Increase # continuously:
m Whenever ¢ = «;, add j to A
m Remove j from A whenever j has a tight edge to a
tight facility ¢ where B(«a;) > B(t;)
m Decrease each o with B(«;) > B(f) at a rate of
| A| times the rate that 6 is increasing

Stop when every client is added and removed from A
Output dual solution a!*V for parameter A\ + ¢,
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QUASIGRAPHUPDATE

Each o) has a graph G of facilities
m Generate (polynomially many) intermediate graphs
G(l) — G(Z,O)’ G(l’l), — G(l,pl) — G(l—l—l)
m Obtain maximal independent sets
15O = 1500 15l gle) — gU+)
m Size decreases by at most one after each step
Return first independent set we find with size k
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QUASIGRAPHUPDATE

Input: GV, G and ISY (of size greater than k)

m Copy GO, GU+1) into disjoint sets V), 1 (+1)

m Bipartite graph G’ over V) U V+1) and C

m Edge j to i € VU if j contributes to i in oV, etc.

m Generate GV on G/, where the induced subgraph
of G&D on VI equals GV = G10)

m Greedily extend IS?) = 1579 to a maximal
independent set IS¢ for G(:1)

m Continue generating graphs and IS's by removing
facilities in V" from G’ one by one

m After p; = |V U] steps, arrive at GUP) = GU+D)

Continuous FL Algorithms
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Quasipolynomial Algorithm: in Review

QUASISWEEP generates a quasipolynomial length list of
dual solutions a9, ... a(F)

QUASIGRAPHUPDATE interpolates between every two
solutions a®), a1 to make sure we eventually find a
set of open facilities of size k

Analysis: Y ¢z < (p+ O(e)) - OPTy
el jeC
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Polynomial Algorithm: an Overview

Good dual solutions — A-roundable dual solutions
m Facility costs A=0,1-€,,...,L ¢, where
L=4n"-¢'ande, =n W
RAISEPRICE increases facility costs one by one
m Given facility ¢ raised from A to A + ¢,

m Obtain close sequence of roundable solutions
S ... 8@ using a SWEEP subroutine

GRAPHUPDATE interpolates between each S, S(+1)
m Similar to QUASIGRAPHUPDATE

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms
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Polynomial Algorithm: an Overview

Initialize the current integral solution IS = F
Loop over A =0,¢,,2¢,,..., Le,:
m While some facility ¢ still has cost A:

m Call RAISEPRICE on ¢ and produce a sequence

SM ... 8@ of \-roundable solutions
mForl=0toq—1:

m Call GRAPHUPDATE on S®), SU+1) to produce a sequence
IS0 1stpo)

m if one of these has k unique facilities, return it
B else, set IS0+ = [s(bpy)

m Reset SO = 5@ |50) — 5@
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Polynomial Algorithm: an Overview

Analysis:
m Each step of the algorithm runs in polynomial time

m Still not efficient: outer loop is O(n?®)
m Small values of k require more iterations

m Returned solution is a (p + O(¢))-approximation
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In Summary

We discussed the JV facility location algorithm

m Good approximations to k-means and k-median
when it opens k facilities

We overviewed three modifications to make the JV
algorithm continuous

m Guaranteed to find k facilities for any value of k
Can we do the same for other LMP algorithms?
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