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Clustering Problems

Given discrete subsets C and F of metric space (X, d)

k-Median problem:
Choose k centers in F
Minimize distances from each point in C to its nearest
center

k-Means problem:
Choose k centers within X
Minimize squared distances from each point in C to its
nearest center
Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C and F of metric space (X, d)
k-Median problem:

Choose k centers in F
Minimize distances from each point in C to its nearest
center

k-Means problem:
Choose k centers within X
Minimize squared distances from each point in C to its
nearest center
Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C and F of metric space (X, d)
k-Median problem:

Choose k centers in F

Minimize distances from each point in C to its nearest
center

k-Means problem:
Choose k centers within X
Minimize squared distances from each point in C to its
nearest center
Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C and F of metric space (X, d)
k-Median problem:

Choose k centers in F
Minimize distances from each point in C to its nearest
center

k-Means problem:
Choose k centers within X
Minimize squared distances from each point in C to its
nearest center
Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C and F of metric space (X, d)
k-Median problem:

Choose k centers in F
Minimize distances from each point in C to its nearest
center

k-Means problem:

Choose k centers within X
Minimize squared distances from each point in C to its
nearest center
Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C and F of metric space (X, d)
k-Median problem:

Choose k centers in F
Minimize distances from each point in C to its nearest
center

k-Means problem:
Choose k centers within X

Minimize squared distances from each point in C to its
nearest center
Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C and F of metric space (X, d)
k-Median problem:

Choose k centers in F
Minimize distances from each point in C to its nearest
center

k-Means problem:
Choose k centers within X
Minimize squared distances from each point in C to its
nearest center

Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Clustering Problems

Given discrete subsets C and F of metric space (X, d)
k-Median problem:

Choose k centers in F
Minimize distances from each point in C to its nearest
center

k-Means problem:
Choose k centers within X
Minimize squared distances from each point in C to its
nearest center
Can discretize the possible choices for centers with
negligible approximation loss

Cordner (Boston University) 4 November 2019 Continuous FL Algorithms



Approximation Bounds Overview

k-Median:

2001: Jain and Vazirani 6-approx.

2002: Jain et al. 4-approx.

2003: Archer et al. exponential 3-approx.

2012: Li and Svensson 2.732-approx.

2014: Byrka et al. 2.675-approx.

2017: Ahmadian et al. 2.633-approx. (Euclidean)

Hardness: 1.736
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Approximation Bounds Overview

k-Means:

2001: Jain and Vazirani 54-approx.

2003: Archer et al. exponential 9-approx.

2004: Kanungo et al. 9-approx. (Euclidean)

2008: Gupta and Tangwongsan 16-approx.

2017: Ahmadian et al. 9-approx.

2017: Ahmadian et al. 6.357-approx. (Euclidean)

Hardness: 3.94 (General), 1.0013 (Euclidean)
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Talk Outline

Facility Location Problem

Jain and Vazirani (JV) Algorithm

Relation to k-Means and k-Median

Continuous Adaptations of the JV Algorithm

Archer et al. Exponential Algorithm

Ahmadian et al. Quasipolynomial Algorithm

Ahmadian et al. Polynomial Algorithm
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Uncapacitated Facility Location

Figure: researchgate.net/figure/Facility-location-problem-example fig1 221182599
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Uncapacitated Facility Location

Given a set of facilities F , and a set of clients C

Each facility i has an opening cost

Want to minimize facility opening costs plus
distances of clients to their nearest facility
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Uncapacitated Facility Location

Primal LP:

minimize
∑

i∈F,j∈C
cijxij +

∑
i∈F

fiyi

subject to
∑
i∈F

xij ≥ 1, ∀j ∈ C,

yi − xij ≥ 0, ∀i ∈ F, j ∈ C,

xij ≥ 0, ∀i ∈ F, j ∈ C,

yi ≥ 0, ∀i ∈ F.

cij = distance, fi = facility cost,
xij = client connection, yi = facility open
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Uncapacitated Facility Location

Dual LP:

maximize
∑
j∈C

αj

subject to αj − βij ≤ cij, ∀i ∈ F, j ∈ C,∑
j∈C

βij ≤ fi, ∀i ∈ F,

αj ≥ 0, ∀j ∈ C,

βij ≥ 0, ∀i ∈ F, j ∈ C.

cij = distance, fi = facility cost,
βij = client contribution, αj = client value
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JV Primal-Dual Algorithm (Stage 1)

Stage 1

Each client is initially unconnected

Each facility is not tight or temporarily open

Event time starts at t = 0

As t increases, each αj also increases at the same
rate until an event occurs

Stage 1 ends when no unconnected clients remain
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JV Primal-Dual Algorithm (Stage 1)

An edge goes tight when some αj = cij

If facility i is not temporarily open, then start
increasing βij

Client j is now contributing to facility i

If facility i is temporarily open, then declare client j
to be connected

Stop increasing αj and each βhj for all facilities h ∈ F
Facility i is the connecting witness for client j
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JV Primal-Dual Algorithm (Stage 1)

Facility i is paid for when
∑

j∈C βij = fi

Declare facility i to be temporarily open

Each unconnected client j that was contributing to
facility i is now declared to be connected

Facility i is the connecting witness for these clients

The dual variables for each of these clients now
stops increasing
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JV Primal-Dual Algorithm (Stage 2)

Stage 2

Construct a graph G with vertices given by the
temporarily opened facilities from Stage 1

Allow an edge between facilities i 6= i′ if some client
j made positive contributions to both

Return any maximal independent set of G
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Relating UFL to k-Median and k-Means

JV Algorithm Approximation Bound:∑
i∈F,j∈C

cijxij +
∑
i∈F

fiyi ≤ 3
∑
j∈C

αj

The JV algorithm also satisfies a Lagrange-multiplier
preserving (LMP) property:∑

i∈F,j∈C

cijxij + 3
∑
i∈F

fiyi ≤ 3
∑
j∈C

αj
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Relating UFL to k-Median and k-Means

Setting each facility cost fi = λ ≥ 0 yields

∑
i∈F,j∈C

cijxij ≤ 3

∑
j∈C

αj − λ
∑
i∈F

yi



This corresponds to the primal and dual objectives of
k-median when the number of opened facilities equals k

Bound for (discrete) k-means is 9
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JV Algorithm Continuity

Given a UFL instance with uniform facility cost λ ≥ 0

When λ = 0, all facilities open

When λ is large enough, only one facility opens

The JV algorithm is continuous if, as λ increases,
the total number of opened facilities never jumps by
more than 1 at a time
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JV Algorithm Continuity

A bad example:

Figure: https://en.wikipedia.org/wiki/Star (graph theory)
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JV Algorithm Continuity

Fixing bad examples:

Perturb the distances so that no cij = ci′j′

Always choose a maximum independent set of
facilities in Stage 2

Theorem (Archer et al.): as λ increases, the number of
opened facilities changes by at most 1 at a time

Exponential time algorithm
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A New Approach

Instead of choosing maximum IS, we will just allow for
“larger” maximal IS

Let ti be the time that facility i opens in Stage 1

Stage 2: edge between facilities i, i′ if some client
has positive contributions to both and if
cii′ ≤ δmin{ti, ti′}

Note that δ =∞ yields the original JV algorithm
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LMP Properties of JV(δ)

The JV(δ) algorithm satisfies the LMP property with
constant

9 for k-means in general metrics (δ =∞)

6.3574 for k-means in the Euclidean metric
(δ = 2.3146)

3 for k-median in general metrics (δ =∞)

2.633 for k-median in the Euclidean metric
(δ = 1.633)
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LMP Analysis

Consider JV(∞) for k-median:

Given a maximal independent set IS of facilities

Let i be the witness facility for some client j

If i ∈ IS, the distance cij is bounded by αj
If i /∈ IS, then some client j’ contributed to both i
and some i′ ∈ IS: ci′j ≤ cij + cij′ + ci′j′ ≤ 3αj
Leads to overall 3-approximation result
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LMP Analysis

Consider JV(δ) for k-median (Euclidean metric):

Let ρ be our approximation bound

Now j may have contributed to s > 1 facilities in IS

A centroid inequality yields s < δ2/(δ2 − 2)

If s = 0, then ρ ≥ 1 + δ

If s > 1, then ρ ≥ 1/
(

1
s−1
(
s
2

)
δ − (s− 1)

)
Best result: δ =

√
8/3 yields s < 4 and ρ ≈ 2.633
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Quasipolynomial Algorithm

Goal: find “good, close” dual solutions α(0), . . . , α(L)

We also control the change in number of open
facilities between solutions

Parameter values λ = 0, εz, 2εz, . . . , Lεz
Let ε be an approximation error factor, let n = |C|
Fix εz = n−3−30 log1+ε n, L = 4n7 · ε−1z = nO(ε−1 log n)

List is quasipolynomial in length

Two parts: QuasiSweep, QuasiGraphUpdate
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QuasiSweep

For x ∈ R, define

B(x) =

{
0, if x < 1,
1 + blog1+ε(x)c, if x ≥ 1

B(x) is the index of the bucket that contains x

The α-values for any two clients in the same bucket
differ by at most 1 + ε
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QuasiSweep

Begin with good dual solution α(l) for parameter λ

Raise the facility price to λ+ εz
Let A = ∅ and θ = 0. Increase θ continuously:

Whenever θ = αj, add j to A

Remove j from A whenever j has a tight edge to a
tight facility i where B(αj) ≥ B(ti)

Decrease each αj with B(αj) > B(θ) at a rate of
|A| times the rate that θ is increasing

Stop when every client is added and removed from A
Output dual solution α(l+1) for parameter λ+ εz
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QuasiGraphUpdate

Each α(l) has a graph G(l) of facilities

Generate (polynomially many) intermediate graphs
G(l) = G(l,0), G(l,1), . . . , G(l,pl) = G(l+1)

Obtain maximal independent sets
IS(l) = IS(l,0), IS(l,1), . . . , IS(l,pl) = IS(l+1)

Size decreases by at most one after each step

Return first independent set we find with size k
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QuasiGraphUpdate

Input: G(l), G(l+1), and IS(l) (of size greater than k)

Copy G(l), G(l+1) into disjoint sets V (l), V (l+1)

Bipartite graph G′ over V (l) ∪ V (l+1) and C

Edge j to i ∈ V (l) if j contributes to i in α(l), etc.

Generate G(l,1) on G′, where the induced subgraph
of G(l,1) on V (l) equals G(l) = G(l,0)

Greedily extend IS(l) = IS(l,0) to a maximal
independent set IS(l,1) for G(l,1)

Continue generating graphs and IS’s by removing
facilities in V (l) from G′ one by one

After pl = |V (l)| steps, arrive at G(l,pl) = G(l+1)
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Generate G(l,1) on G′, where the induced subgraph
of G(l,1) on V (l) equals G(l) = G(l,0)

Greedily extend IS(l) = IS(l,0) to a maximal
independent set IS(l,1) for G(l,1)

Continue generating graphs and IS’s by removing
facilities in V (l) from G′ one by one

After pl = |V (l)| steps, arrive at G(l,pl) = G(l+1)
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Quasipolynomial Algorithm: in Review

QuasiSweep generates a quasipolynomial length list of
dual solutions α(0), . . . , α(L)

QuasiGraphUpdate interpolates between every two
solutions α(l), α(l+1) to make sure we eventually find a
set of open facilities of size k

Analysis:
∑

i∈F,j∈C
cijxij ≤ (ρ+O(ε)) · OPTk
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Polynomial Algorithm: an Overview

Good dual solutions → λ-roundable dual solutions

Facility costs λ = 0, 1 · εz, . . . , L · εz where
L = 4n7 · ε−1z and εz = n−O(1)

RaisePrice increases facility costs one by one

Given facility i raised from λ to λ+ εz
Obtain close sequence of roundable solutions
S(1), . . . , S(q), using a Sweep subroutine

GraphUpdate interpolates between each S(l), S(l+1)

Similar to QuasiGraphUpdate
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Polynomial Algorithm: an Overview

Initialize the current integral solution IS(0) = F

Loop over λ = 0, εz, 2εz, . . . , Lεz:
While some facility i still has cost λ:

Call RaisePrice on i and produce a sequence
S(1), . . . , S(q) of λ-roundable solutions
For l = 0 to q − 1:

Call GraphUpdate on S(l), S(l+1) to produce a sequence
IS(l,0), . . . , IS(l,pl)

if one of these has k unique facilities, return it
else, set IS(l+1) = IS(l,pl)

Reset S(0) = S(q), IS(0) = IS(q)
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Polynomial Algorithm: an Overview

Analysis:

Each step of the algorithm runs in polynomial time

Still not efficient: outer loop is O(n8)
Small values of k require more iterations

Returned solution is a (ρ+O(ε))-approximation
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In Summary

We discussed the JV facility location algorithm

Good approximations to k-means and k-median
when it opens k facilities

We overviewed three modifications to make the JV
algorithm continuous

Guaranteed to find k facilities for any value of k

Can we do the same for other LMP algorithms?
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