
Continuous Facility Location Algorithms

for k-Means and k-Median

Nathan Cordner

October 25, 2019

Abstract

k-means and k-median clustering are classic NP-hard problems that have many applications in
computer science. Both problems can be expressed as instances of an uncapacitated facility location
(UFL) problem, which seeks to open a minimum cost number of facilities to service a set of clients.
In 2001, Jain and Vazirani introduced an algorithm for UFL that guarantees a 3-approximation for
k-median and a 9-approximation for k-means—provided that the algorithm is able to open exactly k
facilities. In this paper, we will summarize the work of Archer et al. and Ahmadian et al. to create
a continuous Jain and Vazirani algorithm that can find solutions for all possible values of k.

1 Introduction

A k-median instance is defined with an integer k ≥ 0, a set F of potential facilities, a set C of clients,
and a metric d. The objective is to choose a subset of k facilities to open, that minimizes the total
distance of each client to its nearest open facility. A typical k-means instance can be defined similarly,
but its objective is to minimize squared distances from clients to their nearest open facilities. Also, the
facility space is often infinite (e.g. a high-dimensional Euclidean space). Under standard discretization
techniques [5], we can choose a discrete set of facilities for k-means and only incur an arbitrarily small
loss in the final approximation guarantee.

Related to the k-means and k-median problems is the uncapacitated facility location (UFL) problem.
This problem swaps the hard constraint of opening k facilities for a nonnegative (possibly unique) cost
for opening any given facility. The objective is similar in wanting to minimize distances from clients to
their nearest open facility, but it also seeks to minimize the total cost of opening facilities.

In 2001, Jain and Vazirani [7] presented a primal-dual approximation algorithm for the UFL problem.
They also related the UFL problem to k-means and k-median using a Lagrangean relaxation. By allowing
each facility to have uniform cost λ ≥ 0, the Jain and Vazirani algorithm will open more facilities when
λ is low and fewer facilities when λ is high. Because the algorithm further satisfies a Lagrange-multiplier
preserving (LMP) property, if it happens to open exactly k facilities then the same solution will also be
a 3-approximation for the k-median problem and a 9-approximation for the k-means problem [7; 12].

However, their algorithm does not always allow for opening k facilities for each value of k. Jain
and Vazirani also developed a rounding method. Using two UFL solutions (one with fewer than k
facilities, and one with more than k), we can combine them into a solution that has exactly k facilities.
This rounding process loses a factor of 2 in the approximation guarantee for k-median, giving a 6-
approximation algorithm in general. The loss increases to 6 for k-means, creating a 54-approximation
algorithm. A (9 + ε)-approximation algorithm for k-means was given in 2004 by Kanungo et al. [9] for
the Euclidean metric. A 16-approximation algorithm for k-means in general metrics was given by Gupta
and Tangwongsan [6] in 2008. In 2002, Jain et al. [8] developed a greedy 2-approximation algorithm
for the UFL that also satisfies the LMP property for k-median. Using the same rounding technique as
before immediately gave a 4-approximation algorithm for k-median.

In 2003, Archer et al. [2] demonstrated a way to adapt the Jain and Vazirani algorithm to satisfy a
continuity property by opening every possible number of facilities while still maintaining the approxima-
tion guarantee. Their algorithm uses a solver for the NP-complete maximum independent set problem,
and so runs in exponential time, but they were able to prove an upper bound of 3 for the integrality gap
of the k-median problem and 9 for the k-means problem. They asked whether it were possible to find a
polynomial time version of the Jain and Vazirani algorithm.

By 2012, Li and Svensson [11] reduced the approximation error in the Jain and Vazirani rounding
method down to (1 +

√
3)/2, leading to an overall 1 +

√
3 ≈ 2.732-approximation algorithm for k-median

via the Jain et al. algorithm. This rounding was further improved by Byrka et al. [4] in 2014 for an
overall 2.675-approximation algorithm. Since both algorithms solve modified instances of their given
input, these approximation improvements do not improve the integrality gap in general for k-median.

In 2017, Ahmadian et al. [1] demonstrated a polynomial time, continuous version of the Jain and
Vazirani algorithm answering a question posed by Archer et al. They also introduced a variant of the
algorithm that guarantees a 2.633-approximation algorithm for k-median and a 6.357-approximation for
k-means in the special case where the metric is Euclidean.

As for lower bounds, Jain et al. [8] established that it is hard to approximate the k-median problem
within a factor of 1 + 2/e ≈ 1.736. It can also be shown that the natural linear programming relaxation
of the k-median problem has an integrality gap of at least 2 [2; 11]. Lee et al. [10] proved that it is
hard to approximate the k-means problem in the Euclidean metric within a factor of 1.0013. For general
metrics, the bound is 3.94 [8; 1]. This paper will focus on the work of Archer et al. and Ahmadian et al.
in creating a polynomial time version of the Jain and Vazirani algorithm.

2 Background

2.1 UFL and k-Median

The UFL problem was first formulated as an integer program by Balinski [3]. We will present the LP
relaxation and its dual here. We define cij to be distance between facility i and client j. We let fi be

1

the cost of opening facility i, xij be an indicator for whether client j connects to facility i, and yi be an
indicator for whether facility i is open. We state the UFL as:

Primal Dual

minimize
∑

i∈F,j∈C
cijxij +

∑
i∈F

fiyi

subject to
∑
i∈F

xij ≥ 1, ∀j ∈ C,

yi − xij ≥ 0, ∀i ∈ F, j ∈ C,
xij ≥ 0, ∀i ∈ F, j ∈ C,
yi ≥ 0, ∀i ∈ F.

maximize
∑
j∈C

αj

subject to αj − βij ≤ cij , ∀i ∈ F, j ∈ C,∑
j∈C

βij ≤ fi, ∀i ∈ F,

αj ≥ 0, ∀j ∈ C,
βij ≥ 0, ∀i ∈ F, j ∈ C.

In the primal, the constraints
∑
i∈F xij ≥ 1 ensure that each client is assigned to some facility, and the

constraints yi − xij ≥ 0 ensure that clients can only be assigned to facilities that appear in the solution.
We interpret the dual variables αj as the overall value derived from client j, and βij as the amount that
client j contributes towards the opening cost of facility i. A client’s value is no more than the sum of its
distance and contribution to any given facility i (i.e. αj ≤ cij + βij), and contributions from all clients
for a particular facility i cannot exceed the opening cost (

∑
j∈C βij ≤ fi).

The statement of the k-median problem is very similar to the UFL problem. We reuse many of
the same variables. We drop the facility opening costs from the primal objective, but introduce a hard
constraint of choosing at most k facilities in the primal constraints. We state the k-median primal and
dual programs as:

Primal Dual

minimize
∑

i∈F,j∈C
cijxij

subject to
∑
i∈F

xij ≥ 1, ∀j ∈ C,

yi − xij ≥ 0, ∀i ∈ F, j ∈ C,∑
i∈F
−yi ≥ −k,

xij ≥ 0, ∀i ∈ F, j ∈ C,
yi ≥ 0, ∀i ∈ F.

maximize
∑
j∈C

αj − λk

subject to αj − βij ≤ cij , ∀i ∈ F, j ∈ C,∑
j∈C

βij ≤ λ, ∀i ∈ F,

αj ≥ 0, ∀j ∈ C,
βij ≥ 0, ∀i ∈ F, j ∈ C,
λ ≥ 0.

Now suppose that in the initial instance of the UFL problem we set each facility cost fi = λ ≥ 0. We
can consider a new objective for the k-median problem by replacing the term

∑
i∈F fiyi with the penalty

term
∑
i∈F λyi − λk:

minimize
∑

i∈F,j∈C
cijxij + λ

∑
i∈F

yi − λk.

We can then remove the hard constraint of opening at most k facilities from the primal, as well as the
constraint λ ≥ 0 from the dual. This yields the the Lagrangean relaxation of the k-median problem.
The constraints of this primal and dual relaxation exactly match the primal and dual constraints for the
UFL problem. This relaxation also favors solutions that do not open more than k facilities.

2.2 UFL and k-means

The general k-means problem is defined over a subset of points (clients) C of a metric space (X, d). We
want to find k centers within X that minimize the total squared distance between each point of C to its
nearest center.

Applying a discretization technique, such as the one proposed by Feldman et al. [5], we can choose
a finite set F ⊆ X of potential centers (facilities) and only incur an arbitrarily small loss in the approx-
imation guarantee. From now on we will refer to the k-means problem by its discrete version.

Now the only difference between k-median and k-means is the use of squared distances in k-means.
Thus k-means can be modeled with the same primal and dual LPs (substituting the values for cij) that
we used for UFL and k-median.

2.3 The Jain and Vazirani Algorithm for UFL

The Jain and Vazirani (JV) algorithm builds a feasible solution for the UFL problem by maintaining
a feasible solution to the dual LP. The algorithm continues to increase the values of the dual variables

2

until each of its constraints go tight. The algorithm proceeds in two stages. The initial dual feasible
solution begins with each αj and βij set to 0.

Stage 1: each client is initially unconnected, and each facility is not temporarily open. We start the
time of the algorithm at t = 0. As the time increases, each dual variable αj also increases at the same
rate until one of the following events occurs (breaking ties arbitrarily).

• An edge goes tight when αj = cij for some facility i and client j.

– If facility i is not temporarily open, then we start to increase βij at the same rate as the other
dual variables. We say that client j is contributing to facility i.

– If facility i is temporarily open, then we declare client j to be connected. We stop increasing
αj and each βhj for all facilities h ∈ F . We say that facility i is the connecting witness for
client j.

• Facility i is paid for when
∑
j∈C βij = fi. We declare facility i to be temporarily open. Each

unconnected client j that was contributing to facility i is now declared to be connected (with
facility i as the connecting witness), and the corresponding dual variables for each of these clients
now stops increasing.

Stage 1 ends when no unconnected clients remain.
Stage 2: construct a graph G with vertices given by the temporarily opened facilities from Stage 1.

We allow an edge between facilities i 6= i′ if there is some client j that made positive contributions to
both (i.e. βij > 0 and βi′j > 0). We return any maximal independent set of facilities for graph G.

2.4 The LMP property

The JV algorithm provides a 3-approximation solution to the UFL problem. Given some UFL instance
and solution, weak duality guarantees that∑

j∈C
αj ≤

∑
i∈F,j∈C

cijxij +
∑
i∈F

fiyi.

A pair of primal and dual solutions are optimal if this equation becomes an equality. The primal and
dual solutions generated by the JV algorithm satisfy∑

i∈F,j∈C
cijxij +

∑
i∈F

fiyi ≤ 3
∑
j∈C

αj ,

which shows that the primal solution is no worse than 3 times the optimal solution. Jain and Vazirani
demonstrated the slightly stronger result∑

i∈F,j∈C
cijxij + 3

∑
i∈F

fiyi ≤ 3
∑
j∈C

αj .

By replacing each fi by λ ≥ 0, we see that

∑
i∈F,j∈C

cijxij ≤ 3

∑
j∈C

αj − λ
∑
i∈F

yi

 .

If
∑
i∈F yi happens to equal k, then the inner part of the right-hand side of the last equation becomes∑

j∈C αj − λk. The left-hand side is now the primal objective of the k-median problem, and the right-
hand side resembles the dual objective of the k-median problem. Thus a solution to the UFL problem
using the JV algorithm that opens k facilities is immediately a 3-approximate solution for the k-median
problem. For k-means, we obtain the weaker guarantee of a 9-approximate solution.

We note that the JV algorithm satisfies the following Lagrange-multiplier preserving (LMP) property
when then facility opening costs are set to a uniform value λ.

Definition 2.1. A ρ-approximation algorithm is LMP for the UFL problem with opening costs λ ≥ 0 if
it returns a primal and dual solution that satisfies

∑
i∈F,j∈C

cijxij ≤ ρ

∑
j∈C

αj − λ
∑
i∈F

yi

 .

3

Though better approximation algorithms exist for the UFL without the LMP property, solutions
from these algorithms that open k-facilities do not guarantee good approximation results for k-means or
k-median. The focus of the rest of this paper is to create an approximation algorithm for UFL with the
LMP property that can open k facilities for all possible values of k.

3 First Attempt for a Continuous JV Algorithm

In this section we summarize the work of Archer et al. The main result of this work is to create a
continuous version of the JV algorithm, in order to use it as an immediate solver for the k-median and
k-means problems.

3.1 Discontinuity in the JV Algorithm

We state the desired continuity property as

Definition 3.1. Given an instance of the UFL problem with uniform facility cost λ ≥ 0. An algorithm
that solves the UFL problem is continuous if, as λ increases, the total number of facilities opened by the
algorithm never jumps by more than 1 at a time.

We would like for a UFL solver to be able to create solutions that open any number of facilities for
each value k = 1, . . . ,m. If the UFL algorithm satisfies the LMP property, then we immediately obtain
solutions to the k-means and k-median problems for each value of k. For the rest of this section, we will
focus on how this work relates to the k-median problem.

We know that when λ = 0, the JV algorithm opens every facility (since there is no cost to open
them). As λ increases the number of facilities opened by the JV algorithm diminishes until just one
facility remains open. However, the following example shows that the JV algorithm is generally not
continuous in its current form.

Example 3.2. Consider a star graph with h arms, each of length 1. At the end of each arm is a client
and a facility (at the same location). In the center there is one additional facility. When λ < 1 + 1

h−1 ,
each client pays for its own facility by time λ. The solution opens h facilities, one for each client, and
the center facility remains closed. When λ > 1 + 1

h−1 , the center facility opens before time λ and each
client connects to it. Therefore the solution opens just one facility in this case. The number of opened
facilities thus jumps from h down to 1 at the value λ = 1 + 1

h−1 .

3.2 Modifying the JV Algorithm

We propose two main ideas to remedy the discontinuity problem:

1. Perturb the data slightly so that no pair of distinct distances cij and ci′j′ (for clients j, j′ and
facilities i, i′) are exactly equal.

2. In Stage 2 of the JV algorithm, always choose a maximum (rather than maximal) independent set
of facilities.

We pause to note that the modification to the JV algorithm removes the guarantee of a polynomial
run time, since it requires a solver for the maximum independent set problem. However, showing that
this new algorithm does satisfy the continuity property will still show that the integrality gap for the
k-median is at most 3.

We define an event of the JV algorithm as either when an edge goes tight, or when a facility gets
paid for during Stage 1. We say that an instance of the UFL problem is degenerate if there is some point
in time where three or more events coincide, or if there are two or more points in time where at least
two events coincide. An instance of the k-median problem is said to be degenerate if there is some λ > 0
that yields a degenerate UFL instance. We note that the since the set of degenerate k-median instances
has Lebesgue measure zero, we might as well just focus on the non-degenerate instances.

For a non-degenerate UFL instance, we further define the trace of the JV algorithm to be the timeline
(according to the values of t) of events encountered in Stage 1. We define λ0 to be a critical value if
when λ = λ0 there is some point in the trace where two events coincide. For the graph G of Stage 2 of
the JV algorithm, we let I(G) denote the size of the maximum independent set in G. For a k-median
instance, we let G(λ) denote the Stage 2 graph for the given value of λ. We state our main result as

4

Theorem 3.3. Given a non-degenerate k-median instance. As λ passes through a critical value, I(G(λ))
changes by at most 1.

This theorem is directly implied by the following more technical result.

Theorem 3.4. When λ passes through a critical value, the graph G(λ) can change only in one of the
following ways:

1. a single existing facility is deleted (with its incident edges),

2. a single new facility is added, along with edges to one or more cliques of existing facilities,

3. a single existing facility gains edges to one clique of facilities, or loses edges to one clique.

To prove this theorem, we define a new graph H(λ) that has one node per client, one node for
temporarily opened facility, and an edge between every client j and facility i where βij > 0. Thus
facilities in G(λ) are connected if and only if there is a distance two path between them in H(λ). It
suffices to show that at a critical value λ, H(λ) changes by either adding/deleting one facility (with its
incident edges), or by adding/deleting a single client-facility edge.

We now examine the traces of UFL instances. As λ varies, the times of tight edge events remain
fixed. The possible differences between traces lie in the timing of the facility opening events. The proof
breaks down into cases. The first three cases deal with two consecutive facility events i and i′ with no
edge events in between.

1. If events i and i′ trade places, then H(λ) does not change.

2. If events i and i′ trade places, but then i disappears from the new trace, we remove i and its
incident edges from H(λ).

3. If events i and i′ trade places, but i happens after at least one edge event cij has occurred, then
we add edge (i, j) to H(λ).

The last three cases deal with an edge event ci′j and a facility event i.

4. If events ci′j and i swap to i and then ci′j , then one of two things could happen. If i = i′, then we
remove edge (i, j) from H(λ). If i 6= i′, then H(λ) remains the same.

5. If events i and ci′j swap to become just ci′j , then we again remove i and its incident edges from
H(λ).

6. If events i and ci′j swap (with i 6= i′), and i happens later in the trace after at least one other edge
event cij′ , then H(λ) gets one new edge (i, j′).

This finishes the proof outline of the theorems. By creating a continuous version of the JV algorithm,
we establish an upper bound of 3 for the integrality gap of the natural LP relaxation for the k-median
problem. We again note that if the JV algorithm can be made continuous in polynomial time, then we
would have a 3-approximation algorithm for the k-median problem.

4 Better Rounding for the JV Algorithm

In this section we summarize the work of Ahmadian et al. related to the k-means and k-median problems.

4.1 The JV(δ) Algorithm

We begin with a few definitions. For a client j, define the set of neighbors of j as N(j) = {i ∈ F |
αj − cij > 0}. Similarly, we define the set of neighbors of a facility i as N(i) = {j ∈ C | αj − cij > 0}.
For a temporarily opened facility in Stage 1 of the JV algorithm, let ti = maxj∈N(i) αj , and let ti = 0
if N(i) is empty. If N(i) is not empty, then ti denotes the time that facility i was temporarily opened
during Stage 1.

We now introduce a variant of the JV algorithm, called the JV(δ) algorithm. We run Stage 1 of the
JV algorithm the same as before, but alter the way we construct the graph G in Stage 2. For JV(δ), we
admit an edge between two facilities i 6= i′ in G if some client j made positive contributions to both and
if the distance between i and i′ is less than or equal to δmin{ti, ti′}.

5

We first note that if δ =∞, then the JV(δ) algorithm is exactly the same as the original JV algorithm.
In general metrics, this is the best analysis we have so far. But we can do better when considering the
Euclidean metric. We note the following results about the LMP property of the JV(δ) algorithm:

Theorem 4.1. There are choices of δ > 0 where the JV(δ) algorithm satisfies the LMP property with

1. ρ ≈ 6.3574 for k-means in the Euclidean metric, and

2. ρ ≈ 2.633 for k-median in the Euclidean metric.

Proof. We will give the details of the proof for k-median in the Euclidean metric. Let IS denote the
maximal independent set of open facilities chosen by the JV(δ) algorithm, and let d(j, IS) denote the
distance of client j to its nearest facility in IS. We will choose a value of δ so that the JV(δ) algorithm
returns a solution that satisfies

∑
j∈C

d(j, IS) ≤ ρ

∑
j∈C

αj − λ|IS|

 .

To show this, we will prove for each client j that

d(j, IS)

ρ
≤ αj −

∑
i∈N(j)∩IS

(αj − cij) = αj −
∑
i∈IS

[αj − cij]+, (1)

where [a]+ denotes max{a, 0}. Note that αj − cij ≤ βij , and for a temporarily opened facility i we
have

∑
j∈C βij = λ. Since each facility i in IS was temporarily opened (and thus fully paid for), then∑

j∈C [αj − cij]+ = λ. Summing Equation 1 over all clients gives the desired result.
For a fixed client j, let S := N(j) ∩ IS, and let s = |S|. We want to find a bound on the value of s.

Using a centroid property of squared distances in Euclidean space, we have∑
i∈S

d(i, j)2 ≥ 1

2s

∑
i∈S

∑
i′∈S

d(i, i′)2 =
1

2s

∑
i∈S

∑
i′ 6=i∈S

d(i, i′)2.

Now each pair of facilities i, i′ are in IS, and so d(i, i′) > δmin{ti, ti′}. Also, min{ti, ti′} ≥ αj , since both
i, i′ ∈ N(j). So

1

2s

∑
i∈S

∑
i′ 6=i∈S

d(i, i′)2 >
1

2s

∑
i∈S

∑
i′ 6=i∈S

(δαj)
2 =

1

2s
s(s− 1)δ2α2

j =
1

2
(s− 1)δ2α2

j .

Now sα2
j ≥

∑
i∈S d(i, j)2, so we end up with s > (1/2)(s− 1)δ2 and thus s < δ2/(δ2 − 2). Our choice of

δ will bound the value of s. We will consider three cases: s = 0, s = 1, and s > 1.
Recall that for a client j and its witness facility i, we have αj ≥ ti. And for any j′ ∈ N(i), we have

ti ≥ αj′ . For s = 0, let i1 be the witness of j. Thus αj ≥ ti1 , and αj ≥ d(j, i1). Now either i1 ∈ IS, in
which case d(j, IS) ≤ d(j, i1), or there is some i2 ∈ IS such that edge (i1, i2) is in the graph G from Stage
2 of the JV(δ) algorithm. In this case,

d(j, IS) ≤ d(j, i1) + d(i1, i2) ≤ d(j, i1) + δti1 ≤ (1 + δ)αj .

Thus we must have ρ ≥ 1 + δ.
For s = 1, let S = {i∗}. Then for ρ ≥ 1,

d(j, IS)

ρ
≤ d(j, IS) ≤ d(j, i∗) = αj − (αj − d(j, i∗)) = αj −

∑
i∈N(j)∩IS

(αj − d(j, i∗)).

Now consider s > 1. We have

sαj =
∑
i∈S

d(i, j) +
∑
i∈S

(αj − d(i, j))

≥ 1

s− 1

∑
{i,i′}⊆S

d(i, i′) +
∑
i∈S

(αj − d(i, j))

≥ 1

s− 1

(
s

2

)
δαj +

∑
i∈S

(αj − d(i, j))

6

since d(i, i′) > δmin{ti, ti′} ≥ δαj for i, i′ ∈ S (thus i, i′ are not adjacent in the graph G). Rearranging

the inequality yields
(

(s− 1)− 1
s−1
(
s
2

)
δ
)
αj ≥ −αj +

∑
i∈S(αj − d(i, j)). Using αj ≥ d(j, IS), and

multiplying both sides by -1 yields(
1

s− 1

(
s

2

)
δ − (s− 1)

)
d(j, IS) ≤ αj −

∑
i∈S

(αj − d(i, j)).

We can quickly generate bounds on ρ for different values of s. For example, s = 2 yields ρ ≥ 1/(δ−1),
s = 3 yields ρ ≥ 1/((3/2)δ − 2), and s = 4 yields ρ ≥ 1/(3δ − 3). Recall that s < δ2/(δ2 − 2). We want
to choose a value of δ that minimizes the value of ρ. We achieve an optimal value by picking δ =

√
8/3.

Then s < 4, and ρ = 1 +
√

8/3 ≈ 2.633 is the max of δ + 1, 1/(δ − 1), and 1/((3/2)δ − 2).

As with Archer et al., before we continue we need to scale the distances of the input instance. These
adjustments will help with the later analysis, and satisfy the following guarantee:

Lemma 4.2. We can scale the distances between each client j and facility i to satisfy 1 ≤ d(i, j) ≤ n6,
where n = |C|, and lose only a factor of 1 + 100/n2 in the approximation guarantee.

4.2 A Quasi-Polynomial Time Algorithm

We will consider some properties of the dual solutions constructed by the JV(δ) algorithm. We seek to
create a (ρ + O(ε))-approximation algorithm for k-means/k-median. Let α = {αj}j∈C . We have two
important definitions:

1. We say that α is good if for every j ∈ C there is a temporarily opened facility i such that (1 +√
δ + ε)

√
αj ≥ d(j, i) +

√
δti.

2. Two solutions α, α′ are close if |α′j − αj | ≤ 1/n2 for all j ∈ C.

Our goal now is to generate a list of parameter values λ = 0, εz, 2εz, . . . , Lεz with corresponding
good dual solutions α(0), α(1), . . . , α(L) such that each consecutive pair α(l), α(l+1) of dual solutions is
close. We let εz be a small step size, and L = nO(ε−1 logn). Thus the list is of quasipolynomial length.
We interpolate between each pair of consecutive dual solutions, so the number of open facilities doesn’t
change by more than one at any step. Thus we will find a solution that opens exactly k facilities.

To begin, fix εz = n−3−30 log1+ε n and L = 4n7 ·ε−1z = nO(ε−1 logn). For any real value x ∈ R, we define
B(x) = 0 if x < 1 and B(x) = 1 + blog1+ε(x)c if x ≥ 1. We say that B(x) is the index of the bucket that
contains x. We note that the α-values for any two clients in the same bucket differ by at most 1 + ε.

For each solution α = α(l), we would like the following invariant to hold: every client j ∈ C has a
tight edge to a temporarily open facility w(j) ∈ F (its witness) such that B(tw(j)) ≤ B(αj). Under this

invariant, every client j will have some facility i = w(j) where
√
αj ≥ d(i, j) and

√
(1 + ε)δαj ≥

√
δti.

Then
(1 +

√
δ + ε)

√
αj ≥

(
1 +

√
(1 + ε)δ

)√
αj ≥ d(i, j) +

√
δti,

which implies that α is good.

4.2.1 QuasiSweep

We use the QuasiSweep procedure to generate a list of good, close dual solutions. Let α(0) be the dual
solution for λ = 0 where each client is assigned to its nearest facility. QuasiSweep will take a good dual
solution for parameter λ and generate a new good dual solution for parameter λ+ εz.

Begin with good dual solution α for parameter λ, and raise the facility price to λ + εz. Thus no
facility is currently paid for. Start with a set of active clients A = ∅, and a threshold θ = 0. We increase
θ continuously:

• Whenever θ = αj , we add j to A.

• We remove j from A whenever j has a tight edge to some temporarily open facility i where
B(αj) ≥ B(ti) (this could happen as soon as j enters A).

• To prevent facilities getting too many contributions, we also decrease each αj with B(αj) > B(θ)
at a rate of |A| times the rate that θ is increasing.

7

We stop increasing θ once every client has been added and removed from A. We output the augmented
dual solution α′ for parameter λ+ εz.

By construction, α′ is good. We note that once a facility is temporarily opened, contributions to it
do not increase any more. Every client j, once removed from A, will have a witness w(j) for the rest of
the algorithm. Thus B(tw(j)) ≤ B(αj), which satisfies the invariant (implying that α′ is good).

We also need to show that each consecutive pair of solutions α(l) and α(l+1) is close. That is, we want

all clients j ∈ C to have |α(l)
j −α

(l+1)
j | ≤ 1/n2. By fixing our distances, we note that the largest possible α-

value is at most (λ+εz)+n6 ≤ Lεz+n6 = 4n7+n6 ≤ 5n7. Thus B(αj) ≤ 1+blog1+ε(5n
7)c ≤ 10 log1+ε(n)

for any client j and dual solution α.
We claim that any αj increases by at most εzn

3b while B(θ) ≤ b. Proceeding by induction on
b = 0, 1, . . . , 10 log1+ε(n), we note that this is trivially true for b = 0 since by the way we have fixed our
distances no clients have B(αj) = 0. Now assume that the claim holds for 0, 1, . . . , b − 1. The proof
proceeds by showing that if αj was decreased during QuasiSweep for B(θ) < b, then it needs to increase
by at most εzn

3b−2 to return it to its original level. And if αj continues to increase, it can only increase
by at most (n− 1)εzn

3b−2 + εz before its witness facility becomes fully paid for. The total increase of αj
is thus bounded by εzn

3b.

Therefore the increase of α
(l)
j to α

(l+1)
j is no more than εzn

3·10 log1+ε(n) = n−3−30 log1+ε(n)+30 log1+ε(n) =

n−3 ≤ n−2. Some α values may decrease, but the proof of the claim also shows that this is no more than

n times the maximum α value increase. Thus α
(l+1)
j − α(l)

j is also bounded by n−2 in this case.

4.2.2 QuasiGraphUpdate

To make sure we return a solution that opens exactly k facilities, we introduce the QuasiGraphUpdate
procedure. Each dual solution α(l) in our sequence has a graph G(l) of facilities generated after Stage
1 of the JV(δ) algorithm. We also recall the graph H(l) that is a bipartite graph of temporarily open
facilities on one side and clients on the other, with edges between if some client positively contributes to
a facility. Between every two good dual solutions, we generate polynomially many intermediate graphs
G(l) = G(l,0), G(l,1), . . . , G(l,pl) = G(l+1). We generate a list of maximal independent sets of these graphs
IS(l) = IS(l,0), IS(l,1), . . . , IS(l,pl) = IS(l+1) such that the size of the independent set decreases by no more
than one after each step. We return the first independent set we encounter of size k.

The QuasiGraphUpdate algorithm takes G(l), G(l+1), and IS(l) (of size greater than k) as input.
Create distinct copies of the facilities found in G(l) and G(l+1), and put them into the disjoint sets V (l)

and V (l+1). Create a new bipartite graph G′ with facilities V (l) ∪ V (l+1) on one side, and all clients on
the other. Create an edge from client j to facility i ∈ V (l) if (j, i) is present in H(l), and an edge from j
to i ∈ V (l+1) if (j, i) is present in H(l+1). Generate the graph G(l,1) on G′, where the induced subgraph

of G(l,1) on V (l) equals G(l) = G(l,0). We note that IS(l) = IS(l,0) is already an independent set for H(l,1),
and we greedily extend it to a maximal independent set IS(l,1) for H(l,1). We generate the next graphs
in the sequence by removing the facilities in V (l) from G′ one by one. After pl = |V (l)| steps, we arrive
at G(l,pl) = G(l+1). The size of each intermediate IS is reduced by at most one at each step.

If we happen to encounter a maximal independent set of size k that corresponds directly to a dual
solution (e.g. some IS(l)), then previous proofs will guarantee our approximation result. The tricky part
comes if we happen to return some IS = IS(l,s) where 1 ≤ s ≤ pl.

Let G = G(l,s), and let H denote the “hybrid” client-facility graph that G is based on. We form a

hybrid solution α by setting αj = min(α
(l)
j , α

(l+1)
j). We note that α ≤ α(l) is a feasible solution for the

dual with parameter λ = l·εz. Since α(l) and α(l+1) are close, we have αj ≥ α(l)− 1
n2 and αj ≥ α(l+1)− 1

n2 .
For each client j, we define the set Sj ⊆ IS where i ∈ Sj if αj > d(j, i)2. We have the following lemmas:

Lemma 4.3. For any client j with |Sj | > 0, d(j, IS)2 ≤ ρ ·
(
αj −

∑
i∈Sj βij

)
.

Lemma 4.4. For any client j with |Sj | = 0, d(j, IS)2 ≤ (1 + 5ε)ρ · αj.

Lemma 4.5. For any i ∈ IS,
∑
j∈C βij ≥ λ−

1
n .

Combining the first two lemmas, we see that

∑
j∈C

d(j, IS)2 ≤ (1 + 5ε)ρ ·
∑
j∈C

αj −∑
i∈Sj

βij

 .

8

By the third lemma,

∑
j∈C

αj −∑
i∈Sj

βij

 ≤∑
j∈C

αj − |IS|
(
λ− 1

n

)
=
∑
j∈C

αj − kλ+
k

n
≤ OPTk + 1,

where OPTk denotes the value of the optimal solution with k facilities. In all, we have that
∑
j∈C d(j, IS)2 ≤

(1 + 5ε)ρ ·OPTk. This gives our ρ+ ε guarantee for k-means and k-median.
We note that the number of dual solutions generated is quasipolynomial in length, making this a

quasipolynomial time algorithm.

4.3 A Polynomial Time Algorithm

The main bottleneck of the previous algorithm is the number of dual solutions required to guarantee the
approximation result. We will now strive to reduce this list to a polynomial number of dual solutions.

Recall that in the original UFL problem we allowed each facility to have its own price. We will relax
the uniform facility costs that we have been using to letting each facility have cost zi ∈ {λ, λ + 1/n}
for a given parameter λ. We will designate a set FS ⊆ F of special facilities to open, even if they are
not fully paid for. For each i ∈ FS , we assign a set of special clients CS(i) ⊆ C that are allowed to
pay for i. For each i ∈ FS , we define the time τi = maxj∈N(i)∩CS(i) αj . For each i ∈ F \ FS , we define
τi = ti = maxj∈N(i) αj as before. We say that τi = 0 if the max is performed over an empty set. We
require the total payments for all facilities in FS to be about equal to λ|FS |.

Like the good dual solutions of the previous section, we expect most clients j to satisfy (1 +
√
δ +

10ε)
√
αj ≥ d(j, i) +

√
δτi. However, we will allow for a set of “bad” clients CB that only satisfy 6

√
αj ≥

d(j, i) +
√
δτi. We will ensure that the total contribution of bad clients to the overall solution is small.

A dual solution (α, z, FS , CS) that satisfies these constraints is called λ-roundable.
The algorithm will maintain a base facility cost λ, a current λ-roundable solution S(0), and a corre-

sponding integral solution IS(0). We will again iterate over a list of facility costs λ = 0, 1 · εz, . . . , L · εz
where L = 4n7 · ε−1z . However, now we will let εz = n−O(1). We will use a new procedure called
RaisePrice to increase the costs of a given facility i to λ+ εz, and produce a close sequence of round-
able solutions S(1), . . . , S(q). The GraphUpdate procedure is similar to the QuasiGraphUpdate
procedure from the previous section.

To construct the first S(0), we begin with λ = 0, FS = ∅, and αj = 0 for each client j. We
increase all α-values uniformly. We stop increasing αj if j gains a tight edge to some facility i, or
2
√
αj ≥ d(j, j′) + 6

√
αj for some other client j′. We initialize the current integral solution IS(0) = F .

We loop over λ = 0, 1 · εz, 2 · εz, . . . , L · εz:

• While some facility i still has cost λ:

– Call RaisePrice on i and produce a sequence S(1), . . . , S(q) of λ-roundable solutions

– For l = 0 to q − 1:

∗ Call GraphUpdate on S(l), S(l+1) to produce a sequence IS(l,0), . . . , IS(l,pl)

∗ if one of these has size k, then return it

∗ else, set IS(l+1) = IS(l,pl)

– Reset S(0) = S(q), IS(0) = IS(q)

We note that the list of facility costs now has polynomial length, and the sequences produced by
RaisePrice and GraphUpdate are also of polynomial length. Each process runs in polynomial time,
which guarantees a polynomial runtime overall. Since the GraphUpdate procedure is similar to the
QuasiGraphUpdate procedure, we will focus on describing how RaisePrice works.

4.3.1 RaisePrice

We will first introduce a few definitions:

• A client j is witnessed if it has a tight edge to a facility i with B(αj) ≥ B(ti). Then i is a witness
for j, and we have (1 + ε)αj ≥ ti.

• A client j is stopped if 2
√
αj ≥ d(j, j′) + 6

√
αj′ for some other client j′. If j′ stops j, then√

αj ≥ 3
√
αj′ and αj ≥ 9αj′ .

9

• A client j is undecided if it is neither witnessed nor stopped.

We will also require the following invariants to hold throughout the RaisePrice procedure:

1. (Feasibility): For all j ∈ C, αj ≥ 1. For all i ∈ F ,
∑
j∈C βij ≤ zi.

2. (No strict containment): For any two clients j, j′ ∈ C,
√
αj ≤ d(j, j′) +

√
αj′ .

3. (Completely decided): Every client in (α(0), z(0)) is decided.

RaisePrice takes the following as input: (α(0), z(0)), a λ-roundable solution satisfying the three in-
variants; IS(0), a maximal independent set of conflict graph G(0) of (α(0), z(0)); i+, a facility whose
price zi+ is being raised from λ to λ + εz. As output, RaisePrice produces a sequence S(1) =

(α(1), z(1), F
(1)
S , C

(1)
S), . . . , (α(q), z(q), F

(q)
S , C

(q)
S) of close λ-roundable solutions where all clients are de-

cided in S(q).
To begin, assume |IS(0)| ≥ k. For facility i+, we raise zi+ to zi+ + εz. Some clients using i+

as a witness may now be undecided. These are clients that are note stopped, and have no witness
except i+ in (α(0), z(0)). We let U (0) be the set of initially undecided clients. We maintain a set U of
currently undecided clients, and repair our solution in stages by calling the Sweep procedure. Each
repair stage s has a threshold θs, and makes multiple calls to Sweep. Each call produces a new solution
α. RaisePrice constructs a roundable solution S = (α, z, FS , CS) from each new α, and returns the
sequence S(1), . . . , S(q) in the order it was constructed. We finish when we reach a solution where all
clients are decided.

The analysis of RaisePrice shows that it only requires O(log n) stages, where each stage makes
polynomially many calls to Sweep.

4.3.2 Sweep

The Sweep procedure is an adaptation of QuasiSweep, and only requires a few adjustments. We begin
with a the initial solution (α(0), z(0)) given to RaisePrice, the previously constructed solution α, a
threshold θs, and the set U of currently undecided clients. We set A = ∅, and θ = 0. We increase θ
continuously. Whenever θ = αj , we add j to A. We remove j from A whenever:

• j has some witness i;

• j is stopped by some client j′;

• j ∈ U , and αj is εz larger that its value at the start of Sweep;

• αj ≥ θs and αj ≥ α(0)
j ;

• There is a client j′ already removed from A such that
√
αj ≥ d(j, j′) +

√
αj′ .

We say that facility i is potentially tight if either there exists j ∈ N(i) with αj > α
(0)
j , or for all

j ∈ N (0)(i) we have αj ≥ α
(0)
j . We decrease αj′ (at the rate of |A| times the rate that θ is increasing)

if B(αj′) > B(θ) and if for some potentially tight facility i with j′ ∈ N(i) and |N(i) ∩ A| ≥ 1 we have
αj′ = ti. We stop increasing θ once every client has been added and removed from A. We output the
augmented dual solution α′.

4.3.3 Analysis

We observe that all parts of the new algorithm are polynomial in length, and have polynomial running
times. Though the run time is not good (the outermost loop is O(n8)), the algorithm does indeed run in
polynomial time. We can also show that the solutions produced satisfy the ρ+ ε approximation bound.

5 Conclusion

Though we have now constructed a continuous polynomial time algorithm for k-means and k-median,
it would be interesting to know if we can find such an algorithm that has an efficient running time.
Further, it would be interesting to explore possibilities to adapt other UFL solvers with better LMP
guarantees (such as the Jain et al. 2-approximation algorithm for k-median). These algorithms may
require completely different strategies to make them continuous.

10

References

[1] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means and eu-
clidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 61–72. IEEE, 2017.

[2] A. Archer, R. Rajagopalan, and D. B. Shmoys. Lagrangian relaxation for the k-median problem: new
insights and continuity properties. In European Symposium on Algorithms, pages 31–42. Springer,
2003.

[3] M. L. Balinski. On finding integer solutions to linear programs. Proceedings of the IBM Scientific
Computing Symposium on Combinatorial Problems, pages 225–248, 1966.

[4] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation for k-
median, and positive correlation in budgeted optimization. In Proceedings of the twenty-sixth annual
ACM-SIAM symposium on Discrete algorithms, pages 737–756. SIAM, 2014.

[5] D. Feldman, M. Monemizadeh, and C. Sohler. A ptas for k-means clustering based on weak coresets.
In Proceedings of the twenty-third annual symposium on Computational geometry, pages 11–18.
ACM, 2007.

[6] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location.
arXiv preprint arXiv:0809.2554, 2008.

[7] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation. Association for Computing Ma-
chinery, 48(2):274–296, 2001.

[8] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 731–740.
ACM, 2002.

[9] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A local
search approximation algorithm for k-means clustering. Computational Geometry, 28(2-3):89–112,
2004.

[10] E. Lee, M. Schmidt, and J. Wright. Improved and simplified inapproximability for k-means. Infor-
mation Processing Letters, 120:40–43, 2017.

[11] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. SIAM Journal on
Computing, 45(2):530–547, 2016.

[12] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cambridge university
press, 2011.

11

