An Efficient Cluster-Improving Algorithm for Correlation Clustering

Nathan Cordner

Boston University

12 May 2021

- Correlation Clustering [BBC]
- Weighted CC and CC-Pivot [ACN]
- Probabilistic Graphs and pKwikCluster [KPT]
- Node Algorithms and Cluster Improvement
- Parallel Algorithms
- Constrained Cluster Sizes [PM]

Correlation Clustering [BBC]

Given a complete graph G = (V, E) $E = E^+ \cup E^-$

Want to cluster + edges and separate - edges

Maximize Agreements

Minimize Disagreements

Some Applications

- Classification
- Entity Resolution

$$\mathsf{CC-Pivot}(G = (V, E = E^+ \cup E^-)):$$

$$\blacksquare \mathsf{Pick random pivot } i \in V$$

$$\blacksquare \mathsf{Set } C = \{i\}, V' = \emptyset$$

$$\blacksquare \mathsf{For all } j \in V \setminus \{i\}:$$

$$\blacksquare \mathsf{If } \{i, j\} \in E^+: \mathsf{Add } j \mathsf{ to } C$$

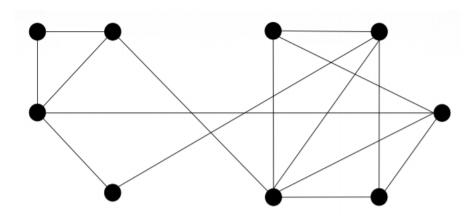
$$\blacksquare \mathsf{Else: } \mathsf{Add } j \mathsf{ to } V'$$

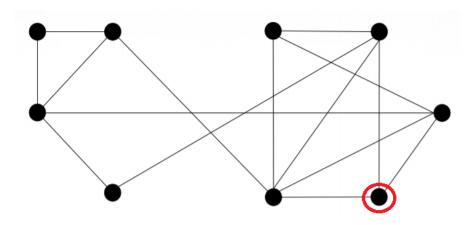
 \blacksquare Let G' be the subgraph induced by V'

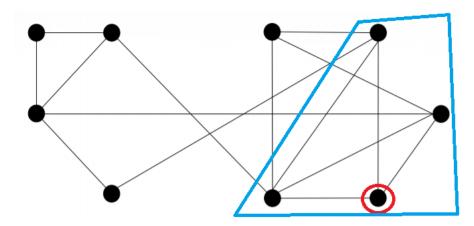
Return clustering C, CC-Pivot(G')

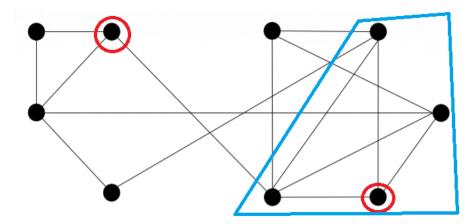
Runs in O(|E|) time

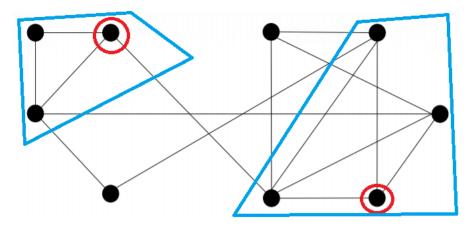
Randomized expected 3-approximation

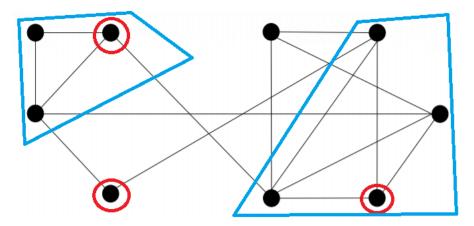


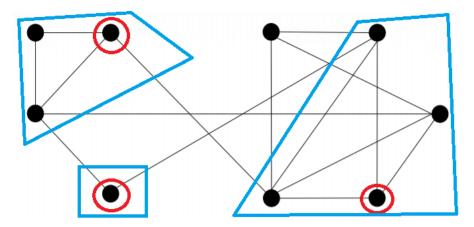


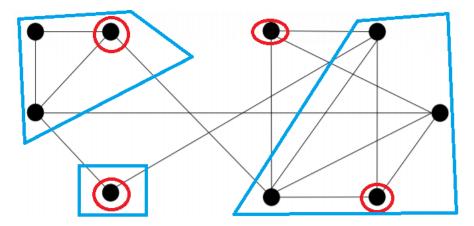


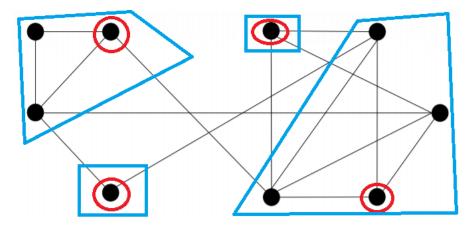








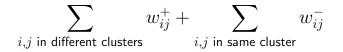




Weighted Corr. Clustering [BBC, ACN]

Every pair of nodes i, j has weights $w_{ij}^+ \ge 0$ and $w_{ij}^- \ge 0$ **Probability Constraints**: $w_{ij}^+ + w_{ij}^- = 1$

Clustering Cost:



Relation to original CC problem:

$$\begin{array}{l} \bullet \ \{i,j\} \in E^+ \Leftrightarrow w^+_{ij} = 1 \ \text{and} \ w^-_{ij} = 0 \\ \bullet \ \{i,j\} \in E^- \Leftrightarrow w^+_{ij} = 0 \ \text{and} \ w^-_{ij} = 1 \end{array}$$

Extending CC-Pivot [ACN]

$$\begin{array}{l} \mbox{Given } G = (V, E, w) \mbox{:} \\ \bullet \mbox{ Form the unweighted majority instance } G_w \mbox{:} \\ \bullet \mbox{ Place } \{i, j\} \mbox{ in } E_w^+ \mbox{ if } w_{ij}^+ > w_{ij}^- \\ \bullet \mbox{ Place } \{i, j\} \mbox{ in } E_w^- \mbox{ if } w_{ij}^- > w_{ij}^+ \\ \bullet \mbox{ Break ties arbitrarily} \\ \bullet \mbox{ Run CC-Pivot on } G_w = (V, E_w = E_w^+ \cup E_w^-) \end{array}$$

Approximation Results:

• 5-approx if w satisfies the probability constraints

Proof Outline of Approx Bounds [ACN]

- "Bad Triangles":
 - Two edges are + but one is -

Lemma: Approx ratio of CC-Pivot \leq worst cost ratio for bad triangles

- 0/1: $\{i, j, k\}$ has cost 1 but $\{i\}, \{j, k\}$ has cost 3
- Prob: $\{i, j, k\}$ has cost $\frac{1}{2}$ but $\{i\}, \{j, k\}$ has cost $\frac{5}{2}$

Relation to Probabilistic Graphs [KPT]

Probabilistic graph $\mathcal{G} = (V, p)$:

■ p(u, v) = probability edge exists between $u, v \in V$ ■ Possible world $G \sqsubseteq \mathcal{G}$ sampled with probability

$$\Pr(G) = \prod_{\{u,v\}\in E_G} p(u,v) \cdot \prod_{\{u,v\}\notin E_G} (1 - p(u,v))$$

Useful for modelling uncertainty

Relation to Probabilistic Graphs [KPT]

Edit distance: "number of disagreeing edges" Between possible worlds

Detween possible worlds

$$D(G,G') = |E_G \setminus E_{G'}| + |E_{G'} \setminus E_G|$$

Between probabilistic graph and possible world

$$D(\mathcal{G}, G') = \mathop{\mathbb{E}}_{G \sqsubseteq \mathcal{G}} [D(G, G')] = \sum_{G \sqsubseteq \mathcal{G}} \Pr(G) D(G, G')$$

Efficient calculation

$$D(\mathcal{G}, G') = \sum_{\{u,v\} \in E_{G'}} (1 - p(u, v)) + \sum_{\{u,v\} \notin E_{G'}} p(u, v)$$

pClusterEdit: find clustering C that minimizes D(G, C)
■ Same objective as CC with probabilistic weights

$$w_{uv}^+ = p(u, v), \ w_{uv}^- = 1 - p(u, v)$$

pKwikCluster: CC-Pivot for probabilistic graphs

- cluster nodes with $p(u,v) \ge 1/2$
- Same running time / approximation ratios

pKwikCluster has been successfully used on

- Social network graphs [KPT]
- Protein-protein interaction graphs [KPT; HWH]
- Event graphs generated from news stories [CMB]

Other Algorithms for CC Problem

Deterministic CC-Pivot [ZW]

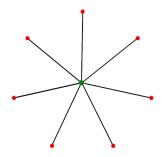
- Fixed "best" order of choosing pivots
- Same approximation ratios as CC-Pivot
- **Runs in** $O(|V|^3)$ time
- LP rounding methods
 - 2.5-approx for probability weights [ACN]
 - 2.06-approx for 0/1 weights [CMSY]
 - Run time dominated by LP solver

CC-Pivot / pKwik still most efficient for large graphs

Drawbacks of CC-Pivot

CC-Pivot / pKwik performs poorly on star graphs

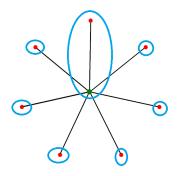
- Expected 1.5 \times OPT for 0/1 star
- Expected 2 \times OPT for 1/2 edge weight star

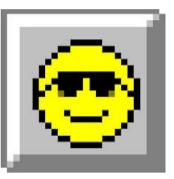


Drawbacks of CC-Pivot

CC-Pivot / pKwik performs poorly on star graphs

- Expected 1.5 \times OPT for 0/1 star
- Expected 2 \times OPT for 1/2 edge weight star

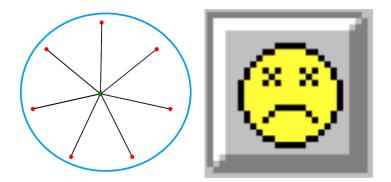




Drawbacks of CC-Pivot

CC-Pivot / pKwik performs poorly on star graphs

- Expected 1.5 \times OPT for 0/1 star
- Expected 2 \times OPT for 1/2 edge weight star



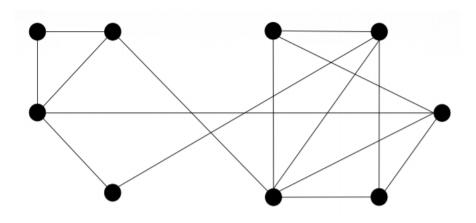
Pick unclustered nodes one at a time

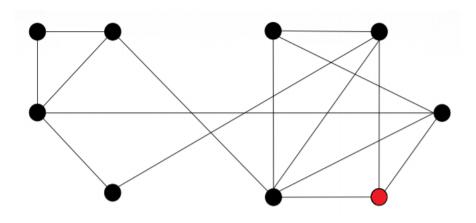
- First node creates its own cluster
- All others: add to existing cluster, or create own
- Greedily minimize growth of objective function

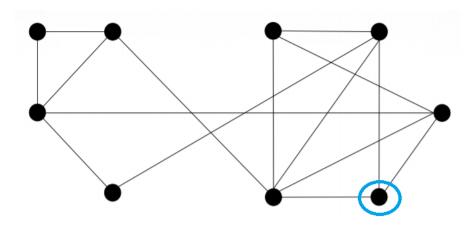
Properties:

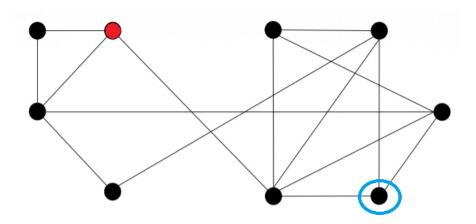
- Also linear in the number of edges
- Each cluster has average edge weight $\geq 1/2$

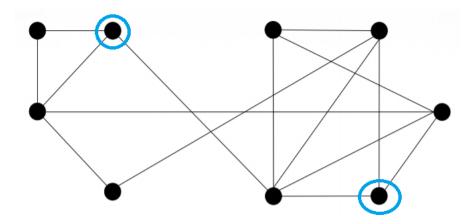
* Inspired by Node algorithm for oracle query reduction [VBD]; similar to greedy algorithm for online CC [MSS]

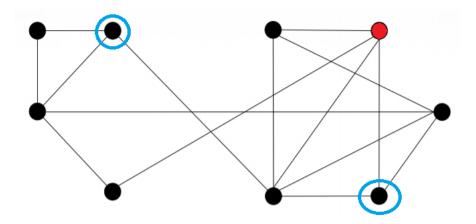


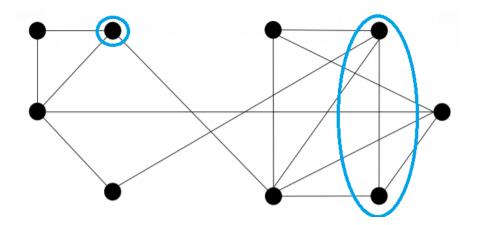


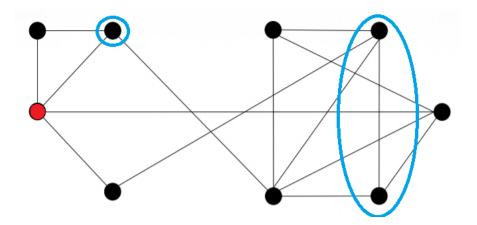


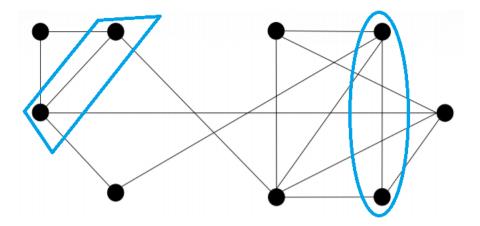


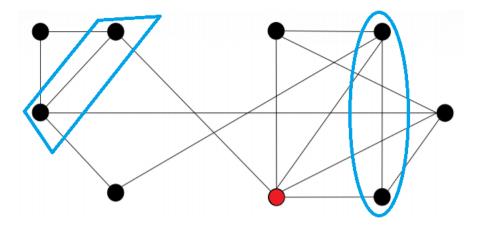


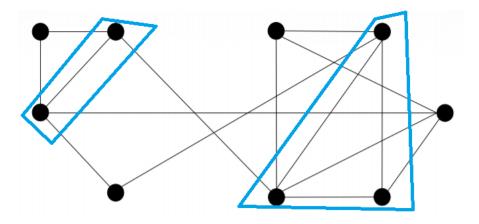


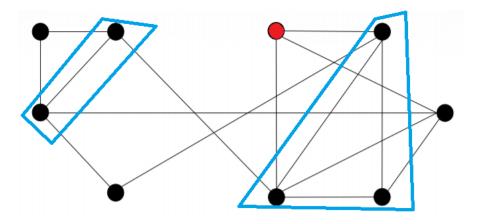


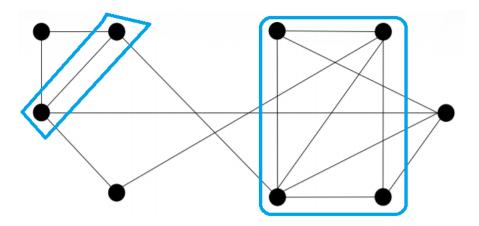


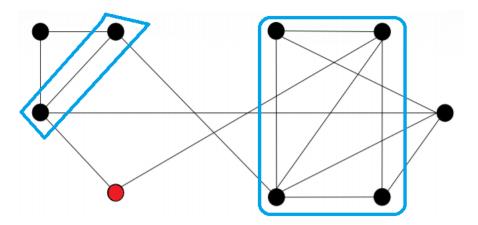


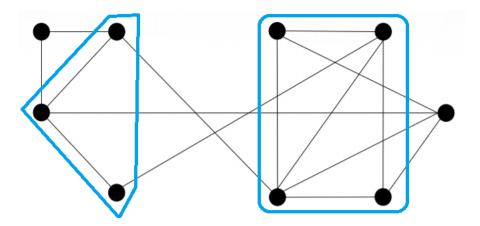


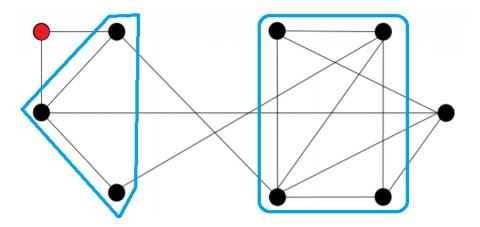


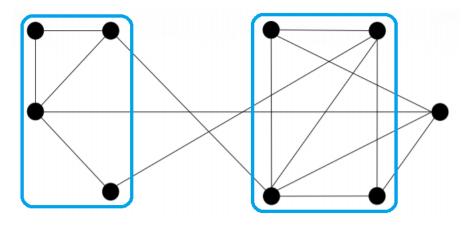


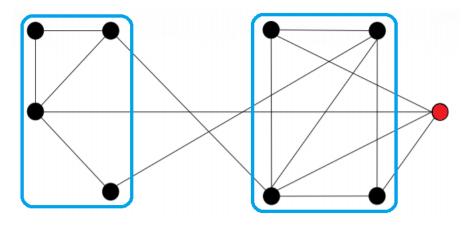


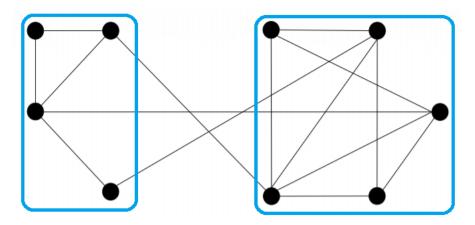




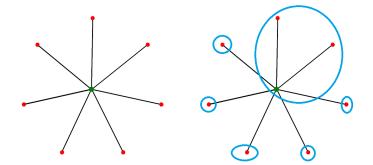








Example review: Star graphs



Any ordering produces optimal-valued clustering

Lemma: RandomNode runs in $O(|V|^2) = O(|E|)$ time

Proof: decision for each node requires O(|V|) time

- S = previously settled nodes; u = current node
- Store $\sum_{v \in C} p(u, v)$ for each current cluster C
- Cost of adding to existing cluster C:

$$\sum_{v \in C} (1 - p(u, v)) + \sum_{v \in S \backslash C} p(u, v) = |C| + \sum_{v \in S} p(u, v) - 2\sum_{v \in C} p(u, v)$$

Lemma: RandomNode clusters have avg weight $\geq 1/2$

Proof: S = settled nodes; u = current node
■ Adding u to cluster C implies:

$$\sum_{v \in C} (1 - p(u, v)) + \sum_{v \in S \setminus C} p(u, v) \le \sum_{v \in S} p(u, v)$$

• Subtract $\sum_{v \in S \setminus C} p(u, v)$:

$$\sum_{v \in C} (1 - p(u, v)) \le \sum_{v \in C} p(u, v)$$

 \blacksquare Therefore $|C| \leq 2 \sum_{v \in C} p(u,v)$ and $\frac{1}{2} \leq \frac{1}{|C|} \sum_{v \in C} p(u,v)$

Expected Cluster Size [VBD]: $ECS(u) = \sum_{v \in V \setminus \{u\}} p(u, v)$

Theorem: Ordering nodes greatest to least by ECS is the best ordering for RandomNode (in expectation)

Properties:

• Still linear in |E|

- Compute ECS for each node: $O(|V|^2)$
- Order nodes by ECS: $O(|V| \log |V|)$

 \blacksquare Edges between clusters now have avg weight $\leq 1/2$

Theorem: ECS is best expected order for RandomNode **Proof**: S_i = settled nodes; u_i = current node; n = |V|• Cost increase at iteration i is $\leq \sum_{v \in S_{i-1}} p(u_i, v)$ • Estimate using $\frac{i-1}{n-1} \sum_{v \in V \setminus \{u_i\}} p(u_i, v) = \frac{i-1}{n-1} \text{ECS}(u_i)$ • Total expected cost bounded by $\sum_{i=2}^{n} \frac{i-1}{n-1} \text{ECS}(u_i)$ • Minimized when $\text{ECS}(u_2) \geq \cdots \geq \text{ECS}(u_n)$

Best Ordering: DeterministicNode

Lemma: Edges between clusters have avg weight $\leq 1/2$ **Proof**:

• First node u_i to form a new cluster satisfies

$$\sum_{v \in C_1} p(u_i, v) < \sum_{v \in C_1} (1 - p(u_i, v)) \Rightarrow \frac{1}{|C_1|} \sum_{v \in C_1} p(u_i, v) < \frac{1}{2}$$

- Approximate value of $\frac{1}{n-1} \mathsf{ECS}(u_i) < 1/2$
- Each subsequent node u_j has ECS(u_j) ≤ ECS(u_i)
 Expected avg edge weight between clusters is

$$\frac{1}{n-1}\mathsf{ECS}(u_j) \le \frac{1}{n-1}\mathsf{ECS}(u_i) < 1/2$$

Cluster Improvement

Lemma: for any G, the cost of the DeterministicNode clustering of G is \leq the cost of G being one cluster

Proof:

$$\begin{array}{ll} A := \text{intra-cluster edges of DNode}(G) \\ B := \text{inter-cluster edges of DNode}(G) \\ p(e) := \text{weight of edge } e \\ \hline \text{DNode} \Rightarrow \sum_{e \in B} p(e) \leq |B|/2 \\ \Rightarrow 2\sum_{e \in B} p(e) \leq |B| \\ \Rightarrow \sum_{e \in B} p(e) \leq \sum_{e \in B} (1 - p(e)) \\ \hline \text{Thus} \\ \sum (1 - p(e)) + \sum p(e) \leq \sum (1 - p(e)) + \sum (1 - p(e)) \end{array}$$

 $e \in A$

 $e \in A$

 $e \in B$

 $e \in B$

Hybrid Algorithm: on graph G

- Obtain clusters C_1, \ldots, C_k from pKwik(G)
- Let G_i be the graph induced by C_i
- **Return** $\mathsf{DNode}(G_1), \ldots, \mathsf{DNode}(G_k)$

Properties:

Still linear in
$$|E|$$

•
$$\sum_{i=1}^{k} |C_i|^2 \le \left(\sum_{i=1}^{k} |C_i|\right)^2 = |V|^2$$

Improves cluster scores from pKwikCluster

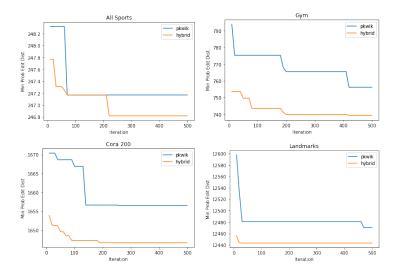
Test Data Sets [FSS, GFSS]: All Sports: 200 nodes, 19900 edges Images of athletes from 10 different sports Gym: 94 nodes, 4371 edges Images of gymnastics athletes Cora 200: 190 nodes, 17955 edges Title, author, venue, and date of scientific papers Landmarks: 266 nodes, 35245 edges Images of landmarks in Paris and Barcelona

Experiments: pKwik vs Hybrid

pKwik and Hybrid Objective Value Comparison:

- Run pKwikCluster for 500 iterations
- Improve each iteration by hybrid algorithm
- Report rolling minimum score (every 10 iters)

Experiments: pKwik vs Hybrid



Cordner (Boston University)

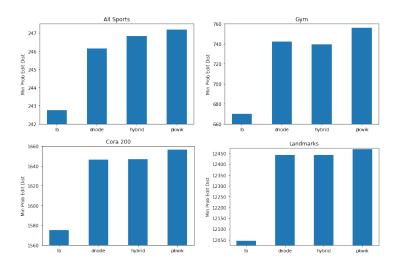
12 May 2021

Best Objective Value Comparison:

- Run DeterministicNode on each graph
- Compare with best results from pKwik and Hybrid
 Lower bound: best clusterings across sets of 3 nodes
- Lower bound: best clusterings across sets of 3 nodes

$$\mathsf{LB}(G) = \frac{1}{n-2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=j+1}^{n} \mathsf{best}(i, j, k)$$

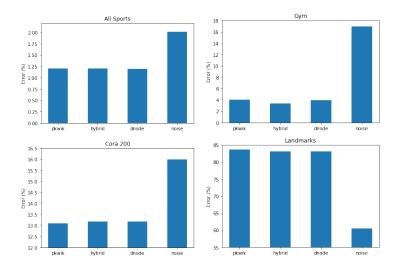
Experiments: Best Value



Check algorithm results against ground truth graph

- Edit distance: # disagreements between clusterings
- Error rate: edit distance divided by |E|
- Noise rate: obj val of ground truth divided by |E|
 - G matches ground truth = 0% noise
 - G opposite of ground truth = 100% noise

Experiments: Clustering Quality



Multi-threaded versions of CC-Pivot [PPORRJ]

- Version 1: Concurrency Control (3-approx)
 - Choose k pivots with a precedence order
 - Form k clusters on parallel threads
 - Award conflicting claims to higher precedence pivot
- Version 2: Coordination-Free $((3 + \epsilon)$ -approx)
 - Sample a small number of working pivots
 - Ignore any edges between sampled pivots
 - Create clusters for each pivot in parallel
- Both versions expected to finish in polylogarithmic number of rounds

Multi-threaded version of RandomNode

- k threads, n/k rounds
- Stage 1: parallel compute cluster costs for k nodes

• Keep k lowest cluster choices per node

- Stage 2: add nodes to clustering one at a time
 - Update cluster choices for remaining nodes in parallel

• Runtime: Stage
$$1 = O(n)$$
, Stage $2 = O(k^2)$

• Overall: $O(n^2/k + kn)$

DNode: parallel compute ECS and sort in $O(n^2/k)$ time

Parallel Cluster Improvement

- Run multi-threaded pKwikCluster on single machine
- Distribute resulting clusters to separate machines
- Improve each cluster using multi-threaded DNode
- Collect new clusters together

Constrained Cluster Sizes [PM]

Given integer $K \ge 1$, all clusters must have size $\le K$

- LP rounding alg: 6-approx
 - All probabilistic graphs
- CC-Pivot adaptation: 7-approx
 - 0/1 graphs only
 - Efficient version: 11-approx
 - Works well experimentally though

Constrained CC-Pivot: on graph G with 0/1 weights,

- "Remove" smallest number of edges from G so that every node has at most K-1 neighbors
- Run CC-Pivot on new graph and return clustering
- Probabilistic Graphs: use "majority instance"
 0/1 graph formed by rounding edge weights

Approximation Ratios: CC-Pivot α -approx for G,

- Constrained CC-Pivot: $2\alpha + 1$
- 0/1 graphs: 7-approx
- Probabilistic graphs: 11-approx

Efficiency:

- Finding smallest edge set: $O(\sqrt{K|V|}|V|^2)$ time
- Instead, let every node choose K-1 neighbors
- Approximation ratio increases to $3\alpha + 2$
- 11 for 0/1 graphs, 17 for probabilistic graphs

Tweak for Probabilistic Graphs:

- **Run pKwikCluster directly on** G
- Each node chooses top K 1 neighbors

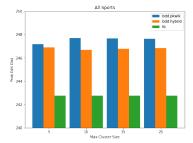
Hybrid approach for cluster improvement:

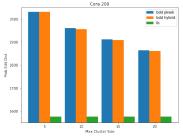
- All clusters from Bounded pKwik have size $\leq K$
- Run DNode on each cluster—sizes can only decrease
- Cluster cost still expected to improve

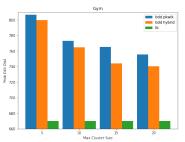
Experiments: Constrained Cluster Sizes

- Test Bounded pKwik and Hybrid on four data sets
 - Max cluster sizes K = 5, 10, 15, and 20
 - Report best result after 500 iterations
 - Compare against the (unconstrained) lower bound
 - Algs perform much better than the 17-approx ratio

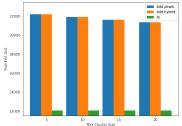
Experiments: Constrained Cluster Sizes







Landmarks



Cordner (Boston University)

12 May 2021

Apply cluster improvement to known CC-Pivot variants

- Data stream model
- Fairness constraints

Find efficient algorithms for other CC variants

- Non-uniform cluster size constraints
- Generalized weight systems
- Number of clusters constraints

References

- ACN Ailon, Charikar, and Newman. Aggregating inconsistent information: ranking and clustering. 2008
- BBC Bansal, Blum, and Chawla. Correlation clustering. 2004
- CMSY Chawla, Makarychev, Schramm, and Yaroslavtsev. Near optimal lp rounding algorithm for correlation clustering on complete and complete k-partite graphs. 2015
 - CMB Christiansen, Mobasher, and Burke. Using uncertain graphs to automatically generate event flows from news stories. 2017
 - FSS Firmani, Saha, and Srivastava. Online entity resolution using an oracle. 2016
- GFSS Galhotra, Firmani, Saha, and Srivastava. Robust entity resolution using random graphs. 2018
- HWH Halim, Waqas, and Hussain. Clustering large probabilistic graphs using multi-population evolutionary algorithm. 2015
- KPT Kollios, Potamias, and Terzi. Clustering large probabilistic graphs. 2011
- MSS Mathieu, Sankur, and Schudy. Online Correlation Clustering. 2010
- PPORRJ Pan, Papailiopoulos, Oymak, Recht, Ramchandran, and Jordan. *Parallel correlation clustering on big graphs.* 2015
 - PM Puleo and Milenkovic. Correlation clustering with constrained cluster sizes and extended weights bounds. 2015
 - VBD Vesdapunt, Bellare, and Dalvi. Crowdsourcing algorithms for entity resolution. 2014
 - ZW Zuylen and Williamson. Deterministic pivoting algorithms for constrained ranking and clustering problems. 2009