An Efficient Local Search Algorithm for
Correlation Clustering on Large Graphs

Nathan Cordner![0000-0001-6075-1621] 4] George Kollios?

! Utah Valley University, Orem, UT
ncordner@uvu.edu
2 Boston University, Boston, MA

Abstract. Correlation clustering (CC) is a widely-used clustering paradigm,
with many applications to problems such as classification, database dedu-
plication, and community detection. CC instances represent objects as
graph nodes, and clustering is performed based on relationships between
objects (positive or negative edges between pairs of nodes). The CC
objective is to obtain a graph clustering that minimizes the number of
incorrectly assigned edges (negative edges within clusters, and positive
edges between clusters).

For large CC instances, lightweight algorithms like the Pivot method
have been preferred due to their scalability. Because these algorithms do
not have state-of-the-art approximation guarantees, LocalSearch (LS)
methods have often then been applied to refine their clustering results.
Unfortunately, LS does not enjoy the same ability to scale since it is
inherently sequential and has the potential to converge slowly.

We propose a lightweight, parallelizable LS method called InnerLocalSearch
(ILS) to use in conjunction with the Pivot algorithm. We show that ILS
still provides a significant improvement to clustering quality while dra-
matically reducing the additional running time costs incurred by LS. We
demonstrate our algorithm’s effectiveness against several LS benchmarks
and other popular CC methods on real and synthetic data sets.

Keywords: data mining - correlation clustering - local search®

1 Introduction

The “min disagreement” correlation clustering (CC) problem, as originally de-
fined by Bansal et al. [6], inputs a complete graph G = (V| E)) where every pair
of nodes is assigned a positive (+) or negative (-) relationship. The objective is
to cluster together positively related nodes and separate negatively related ones,
minimizing the total number of clustering “mistakes” (negatively related pairs
within clusters, and positively related pairs separated between clusters). This
clustering paradigm has been used in many applications, such has its original
motivation of classification [6], database deduplication [20], and community de-
tection in social networks [30, 33]. This formulation of graph clustering has been

3 This preprint has not undergone peer review or any post-submission improvements or
corrections. The Version of Record of this contribution is published in Combinatorial
Optimization and Applications, and is available online at doi.org/10.1007/978-3-031-
49611-0_1

2 N. Cordner and G. Kollios

especially useful, since a specific number of clusters does not need to be specified
beforehand and the only information needed as input concerns the relationship
between objects—not about the objects themselves.

One of the most popular CC algorithms is Pivot, presented by Ailon et al. [3],
which gives an expected 3-approximation result for correlation clustering. It runs
by choosing a “pivot” node at random, adding it and all other unclustered nodes
with an edge to it into a cluster, and repeating until all nodes are clustered (think
of choosing a random person in a social media network and clustering together
all “friends” of the pivot person). Currently the best known approximation factor
is 1.994 + ¢, from a linear program rounding method due to Cohen et al. [13].
Unfortunately, linear programs for correlation clustering are quite large (the
number of constraints is at least cubic in the number of graph nodes). Some
work has been done to reduce the size of these linear programs [21], but even
algorithms based on these methods become intractable once input graphs have
millions of nodes. Instead, the Pivot algorithm has been revisited many times
[1,2,4,12,11,16, 19,22-24,26-28, 32] because of its ease of implementation and
scalability for large graphs.

A popular method of improving Pivot and other CC results is LocalSearch
(LS)* [1,10,14,15,17,18, 25,26, 29, 31] which moves nodes one at a time to im-
prove clustering costs until no more improvements can be made or a self-imposed
limit is reached. Each LS pass through the node set V examines all nodes and
all positive edges ET (yielding a time complexity of O(|V|+ |ET])), and LS has
the potential to make multiple passes while improvements slowly accrue. A LS
pass that yields only a small number of improvements can trigger another full
pass through the node and positive edge sets. For larger graphs, even running
a small number of LS rounds can be less practical. The purpose of this paper
is to develop a new LS technique that still yields significant improvement to
clusterings produced by the Pivot algorithm, without the exorbitant time cost
imposed by running a full LS algorithm.

One weakness in the design of the Pivot algorithm is that it only considers
immediate connections of chosen pivot nodes. In many real-world settings, it is
reasonable to assume that not all “friends-of-friends” edges of pivot nodes are
present. We propose a new LS method called InnerLocalSearch (ILS), which runs
LS inside clusters only. The ILS algorithm still starts out with an O(|V|+ |ET|)
pass through the node set, but now has the ability to ignore positive graph edges
that go between clusters. Convergence within clusters tends to be much quicker
since smaller sets of nodes are being compared against each other, and once
individual clusters are converged the algorithm does not need to consider the
nodes inside them in future iterations. ILS is also easily parallelizable, making
it possible to run LS within multiple clusters at the same time. And though
it necessarily will not yield the same level of clustering improvement as the
full LS algorithm, we show experimentally that ILS still lowers objective values
significantly while drastically reducing the running time needed for convergence.

4 Also called “Best One Element Move” (BOEM).

Efficient Local Search 3

We compare Pivot with ILS against Pivot, several versions of Pivot with LS,
and another popular CC algorithm called Vote [15].

1.1 Related Work

The NP-hard correlation clustering problem was introduced by Bansal et al.
[6], who also provided its first constant approximation algorithm in the min
disagreement setting. The best known approximation factor is 1.994 + €, from a
linear program rounding method due to Cohen et al. [13]. Correlation clustering
remains an active area of research, and many variations of the problem have
arisen over time; a general introduction to the correlation clustering problem
and some of its early variants is given by Bonchi et al. [8]. Recent research has
gone into developing sublinear time [5] and better parallel [7] CC algorithms.

The Pivot algorithm was first introduced by Ailon et al. [3]. Tts efficient
run time and ease of implementation have made it very popular, and it has
been applied to many variants of correlation clustering that have arisen since.
Recently, it has been used for uncertain graphs [26], query-constrained CC [16],
online CC [24], chromatic CC [22], and fair CC [1]. It has also been shown how
to run the Pivot algorithm in parallel in various settings [11,27]. Zuylen and
Williamson [32] developed a deterministic version of Pivot that picks a best
pivot at each round, though at the cost of an increased running time complexity.
The most efficient non-parallel implementation of Pivot uses a neighborhood
oracle, where a hash table stores lists of neighbors for each node [4].

Various authors have employed LocalSearch as post-processing to improve
clustering results. LS refinements and LS-based algorithms have been used in
many CC variants and applications [1,10, 14, 15,17, 18,25, 26, 29, 31]. Bonchi et
al. [9] experimented with a heuristic method for running LocalSearch in parallel,
sacrificing monotone decreasing objective values for potentially faster runtimes.
Levinkov et al. [25] studied and compared other LocalSearch-based algorithms
for correlation clustering.

2 Previous Algorithms

Let G be a complete graph on node set V= {1,...,n}. A clustering of the graph
G is a partition C of the node set V. For a given clustering C = {C1,...,Cy},
define intra-cluster edges to be edges between nodes within the same cluster;
define inter-cluster edges to be edges between nodes in distinct clusters.

For correlation clustering we assume the edge set E is partitioned into a set
of positive edges ET and negative edges E~. The objective of min disagreement
correlation clustering is to find a clustering C of V' that minimizes the number
of negative intra-cluster edges and positive inter-cluster edges. Let similarity
function s(u,v) = 1 if (u,v) € ET, and 0 otherwise. We write the cost (or
objective value) of clustering C as

Cost(C,V) = > (1 — s(u,v)) + > s(u,).

u, W€V, u#v u, €V, u#v
(u,v) is intra-cluster (u,v) is inter-cluster

4 N. Cordner and G. Kollios

Algorithm 1 Pivot Clustering

1: function PivoT(G = (V, E, s))

2 Initialize empty clustering C

3 while V # () do

4: Choose random u € V

5: Let C = {u}U{ve V| (uv) € ET} > u and its unclustered neighbors
6: Cc=Ccu{C} > Add cluster C to clustering C
7 V=V\C > Remove clustered nodes from V'
8

return the finished clustering C

For a given clustering C, we define the precision of C to be the average
number of positive edges inside clusters of C. Let Intra(C) = {(u,v) | (u,v) is
intra-cluster}. We write

1
Precision(C) = Tntra(C)] ()EIZt o s(u,v).

We also define the recall of C to be the ratio of the number of positive edges
within clusters of C to the total number of positive edges |[E1|. We write

1
Recall(C) = B Z s(u, v).
(u,v)€Intra(C)

2.1 Pivot

Ailon et al. [3] proposed the randomized Pivot algorithm (Algorithm 1) for un-
weighted correlation clustering. A cluster C' is formed by picking a pivot node
u at random from V', then adding uw and all other nodes v in V to C that are
connected by a positive edge to u (that is, (u,v) € ET). If V' \ C is not empty,
the algorithm continues on the subgraph induced by V' \ C.

The Pivot algorithm yields a 3-approximation clustering result. Following
a common implementation method [4], we assume that every node u € V has
access to a neighborhood oracle N(u) that contains all nodes v with a positive
relationship to u. We write

N(u)={veV]|(uv) € ET}.

The time complexity of Pivot is thus O(|V| + |E™|). However, Pivot often runs
much quicker than its worst-case time bound since many nodes can be removed
from V with each choice of pivot (see lines 5 - 7 of Algorithm 1).

2.2 LocalSearch

LocalSearch (Algorithm 2) has been a popular technique for improving the clus-
terings output by CC algorithms. LS takes a current CC instance G and a current

Efficient Local Search 5

Algorithm 2 Local Search Improvements

1: function LOCALSEARCH(G = (V, E,s), C, m) > 7 is a permutation of V' (line 10)
2 forie {1,...,|V|} do

3 Let u = m(z), with current cluster C

4 Let C' = arg mingr eeuqar {Cost(C”, u)}

5: if ¢’ # C then

6: c=(c\{chHu{C\ {u}} > Remove u from C
7 C=C\{C'Hu{C' u{u}} > Add u to C’
8 return the augmented clustering C

9: function LOCALSEARCHLOOP(G = (V, E, s), C)

10: Choose a random permutation 7 of V'

11: C' = LOCALSEARCH(G, C,)

12: while Cost(C’, V) < Cost(C,V) do

13: c=C

14: C' = LOCALSEARCH(G, C,)

15: return C

clustering C of the node set V. LS chooses a random permutation of nodes, and
iteratively makes improvements to the given clustering. A current node u con-
siders all current clusters C' € C, and the possibility of forming a new singleton
cluster, and chooses to move to whatever cluster minimizes its own contribution
to the overall clustering cost. When some pass through the node set yields no
new improvements, the LS algorithm halts and returns the modified clustering
C’. Limits can be imposed on LS, such as the max number of allowable iterations
through the node set or a time limit on how long LS can run before returning
its improved clustering.

For a given cluster C' C V, and current node u € V, we define the cost of
node u to be

Cost(C,u) = Z (1—s(u,v)) + Z s(u, v).

veC\{u} veV\(CU{u})

The cost of opening a new cluster is Cost(l), u) = >,y () s(u,v). The algo-
rithm greedily minimizes the cost of each node relative to the current clustering.

With a neighborhood oracle and a hash table containing the current node-
to-cluster assignment, line 4 of Algorithm 2 can be computed in O(|N(u)|) time.
We do this by iterating over N (u), tracking how many neighbors of « lie in each
cluster. We then consider only the clusters C that contain neighbors of u (as well
as the possibility of opening a new cluster), and compute Cost(C,u) = |C| —
[{neighbors of u within C'}|+(]N(u)|—|{neighbors of v within C'}|); Cost(D,u) =
| N (u)], so we can safely ignore clusters that do not contain neighbors of u since
in that case Cost(C,u) = |C| + |[N(u)] > Cost(f, u). At most |N(u)| + 1 clus-
ters are considered in this process, so finding the minimum is still O(|N(u)]).
Looping over every node in V, the time complexity of a single LS iteration is
thus O(|V|+|E™|). The overall running time of LocalSearch is O((|V |+ |E*|)I),
where [is the total number of iterations made through the node set V.

6 N. Cordner and G. Kollios

Algorithm 3 InnerLocalSearch Improvements

1: function INNERLOCALSEARCH(G = (V, E,s), C = {C4,...,Ck})

2 for each cluster C; € C do > Form subgraph induced by C;
3 Let B = {(u,v) | u,v € Cs,u # v, s(u,v) = 1}

4: for v € C; do

5: Let N;(v) = {u € C; | (u,v) € E}f} > new neighborhood oracle
6 Let G; = (Ci, E, s) be the subgraph of G induced by C;

7 Let C; = LOCALSEARCHLOOP(G;, {C;})

8 return C; U---UCy

3 InnerLocalSearch

Though LocalSearch has been used effectively in several applications, its has
a few drawbacks that make it less practical to run on larger instances. LS is
inherently sequential, since the decision of where to place a current node depends
on the the decision of the previous nodes in the ordering, making it difficult to
run in parallel (e.g. [9]). LS decisions are also slow, since comparisons are made
across the entire vertex set (or at least all the neighbors of any given node).

To make up for these shortcomings, we propose an InnerLocalSearch algo-
rithm (Algorithm 3). On a given clustering C, we run LocalSearch to convergence
inside each cluster C' € C and return the updated clustering.

We note that ILS runs LS inside each cluster, with a runtime of O((|C;| +
|E|)I;) per cluster C; (line 7 of Algorithm 3, where I; is the number of LS
iterations needed for cluster C; to converge). Forming the subgraph (lines 3 to
6) across all clusters can be done in O(|V| + |E™|) time. Thus the overall time
complexity of ILS is O(|V| + |E*T| + X5, (ICi| + | Ef|)1;), where k is the size of
the input clustering C. We note that ILS tends to converge much more quickly
than LS since it greatly reduces the number of comparisons needed between
nodes across the entire node set V. ILS cluster improvement can also be done in
parallel by running the For loop in line 2 of Algorithm 3 on multiple threads.

3.1 ImnnerLocalSearch and Pivot

Though InnerLocalSearch (and LocalSearch too) can be run on any clustering
result, we will focus on how ILS improves the Pivot algorithm. On any given
clustering round, the Pivot algorithm only checks to see if nodes have positive
edges to the chosen pivot node before deciding whether to cluster them together.
As such it is possible for many negative edges to exist within clusters formed by
the Pivot algorithm, making for a low precision clustering.

Consider Figure 1, which shows a sample cluster from the Pivot algorithm
(only positive edges are drawn between nodes). Here node A was chosen as pivot
and all 10 nodes from A to J are put into one cluster (drawn in purple). The cost
of this cluster alone is 27, whereas the optimal partition into 3 clusters (drawn
in red) reduces the cost to just 6. By putting all nodes into one cluster, the Pivot

Efficient Local Search 7

Fig. 1: Pivot Cluster Example

algorithm incurred a higher cost and ignored smaller tight-knit communities. In
the worst case a Pivot cluster C' might only contain |C| — 1 positive edges and
(|C)? = 3|C| + 2)/2 negative edges, with a ratio of (]C| —2)/2 negative edges for
every positive.

The goal of InnerLocalSearch is thus to split larger Pivot clusters containing
many negative edges into smaller clusters that contain a high number of positive
edges. In other words, InnerLocalSearch seeks to quickly boost the precision of
a Pivot clustering without greatly reducing its recall.

4 Experiments

We test the following algorithms: Pivot, Pivot with InnerLocalSearch (ILS),
Pivot with Timed LocalSearch (Timed), Pivot with full LocalSearch (Full). For
comparison, we include the Vote algorithm [15] which chooses a random node to
start a cluster and adds new nodes by greedily minimizing increase of clustering
cost. We present two implementations of ILS—sequential (clusters are improved
one at a time), and parallel (multiple clusters being improved at once). The
parallel implementation is done via Java parallel streams. For objective values,
we include one benchmark (Outer) that lists the inter-cluster cost from the
Pivot clustering; this is the maximum level of improvement that ILS can obtain if
every misclassified edge within Pivot clusters is resolved. The Timed LocalSearch
method allows full LocalSearch to run for the same amount of time used by
InnerLocalSearch. For running times we include another benchmark (Match)
that records the time full LocalSearch takes to match the same level of clustering
improvement obtained by InnerLocalSearch.

8 N. Cordner and G. Kollios

All algorithms were implemented in Java® and tested on a Linux server run-
ning Rocky Linux 8.7 with a 2.9 GHz processor and 16.2 GB of RAM. Mean
results are taken over 10 runs of each algorithm.

We test our algorithms on five real data sets® (Amazon, DBLP, Youtube,
Livejournal, and Orkut), and one synthetic data set. Brief descriptions are pro-
vided in Table 1, including the value of U (the mean largest cluster size generated
by the Pivot algorithm). Edges present in these data sets are interpreted as pos-
itive edges; all other node pairs are interpreted as negative edges. The synthetic
data was generated by randomly assigning up to 5000 positive edges per node.

Objective values, relative improvements against the Pivot algorithm, and
running times are reported in Tables 2 and 3. In Table 3 running times are
reported for both sequential ILS (SeqILS) and parallel ILS (ParILS). The average
number of clusters produced by each algorithm is provided in Table 4, and
average precision and recall percentages for each clustering is provided in Table
5. Figure 2 contains scatter plots that show the distribution of disagreements for
Pivot, ILS, Full, and Vote across the 10 runs of each algorithm.

We first note that InnerLocalSearch improves the Pivot clustering results
significantly across all data sets. The Amazon data set has the smallest objective
value decrease at just over 20% lower than Pivot, with all others decreasing over
25%. Some (Orkut and Synthetic) even decrease by at least 30% from the Pivot
baseline.

‘ % Full « \ote ILS « Pivot

DBLP

Amazon

;
§ ®
— . . ‘ —Xos |
T x . . . — 065 070 075 0.80 085 090 095 100
650000 700000 750000 800000 850000 900000 le6
Youtube Livejournal
X
' i
L T L * T —X & T T T T T O
275 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 3.0 3.2 34 36 3.8 4.0 42 4.4
le6 le7
Orkut Synthetic
X
i]
& T T . . o X . . _x X) odeex xx
11 12 13 14 15 16 18 2.0 2.2 2.4
les le8

Fig. 2: Disagreement Plots for Pivot, ILS, Full, and Vote

® Code available at github.com/cc-conf-sub/ils-improvement
5 Available at snap.stanford.edu/data/#communities

Efficient Local Search

Table 1: Data Set Descriptions

Data Set V| |ET| U Description
Amazon 334863 925872 113 joint-purchase network
DBLP 317080 1049866 149 co-author network
YouTube 1134890 2987624 500 friend network
LiveJournal |3997962 34681189 926 friend network
Orkut 3072441 117185083 1762 friend network
Synthetic 100000 165987514 4852 random edges
Table 2: Mean Objective Values
Data Set |Pivot Outer ILS Timed Full Vote
Amazon 912658 0.667 0.799 0.966 0.706 0.751
DBLP 964983 0.664 0.731 0.973 0.647 0.701
YouTube 3738286 0.7 0.739 1.0 0.722 0.728
LiveJournal | 43455676 0.666 0.721 0.984 0.664 0.694
Orkut 162654949 | 0.67 0.7 0.995 0.661 0.684
Synthetic |244469396 |0.665 0.679 0.888 0.678 0.679
Table 3: Mean Running Times (s)
Data Set |Pivot SeqlILS ParILS Match Full Vote
Amazon 0.12 0.24 0.13 1.2 14.73 0.52
DBLP 0.11 0.22 0.12 1.12 9.65 0.62
Youtube 0.73 0.3 0.32 4.92 24.8 1.92
Livejournal |2.01 6.2 3.5 47.8 1076 20.5
Orkut 1.73 14.6 7.93 134 4380 61.5
Synthetic |0.13 13.6 13.6 63.7 1370 53.4
Table 4: Mean Number of Clusters
Data Set Pivot ILS Full Vote
Amazon 143675 193028 155423 139842
DBLP 133627 158448 145191 134345
Youtube 801928 894597 827679 7851778
Livejournal 1817576 2556263 1995222 1837134
Orkut 651394 1771069 874592 818587
Synthetic 4327 37709 18669 14581
Table 5: Mean Precision / Recall (%)
Data Set Pivot ILS Full Vote
Amazon 51.4 / 34.2 88.5 /244 85.4 / 36.7 76.8 / 37.2
DBLP 55.8 / 39.0 97.0 / 33.8 95.7 / 42.5 87.2 / 41.7
Youtube 25.9 / 124 87.3 / 8.7 84.0 / 12.0 76.2 / 13.0
Livejournal 28.4 / 16.6 88.7 / 11.1 85.4 / 20.3 78.0 / 18.1
Orkut 13.3 /7.0 83.3 /3.5 81.1 / 10.7 72.7 /8.1
Synthetic 3.9/20 80.3 / 0.06 82.2 / 0.12 61.0 / 0.12

10 N. Cordner and G. Kollios

As expected, we see that in all cases Pivot with the full LS yields the lowest
objective values. On data sets where the Pivot clusterings have higher precision
(like Amazon and DBLP) the benefit of the full LocalSearch is greater. For
example, LS decreases by nearly 30% on Amazon compared with the just-over
20% decrease yielded by ILS. However, on data sets where Pivot precision is quite
low (like Orkut and Synthetic), the benefit of the full LS is negligible compared
to ILS. We also note that ILS improvements approach their theoretical maximum
(measured by Outer) on these low-precision data sets.

We see that the running times of full LocalSearch becomes a significant obsta-
cle on the largest data sets. For Livejournal, full LocalSearch takes an average
of 20 minutes to complete, and on Orkut the average is over an hour and 15
minutes. By contrast, ILS takes just under 15 seconds to finish on Orkut and
provides nearly the same level of improvement as the full LocalSearch.

The Timed LocalSearch is unable to keep up with ILS in most cases; it is
unable to improve even 5% over Pivot within the time limit across all of the real
data sets, and on Youtube it is unable to make any gains whatsoever. The Match
benchmark also slows down considerably on the larger examples. On Livejournal
sequential ILS takes about 6 seconds to finish, whereas LocalSearch takes 47.8
seconds on average to match the same level of improvement. Again on Orkut
sequential ILS takes under 15 seconds to finish, while LocalSearch takes over 2
minutes to match. Using parallel threads we see that ILS is able to halve its
sequential running time on four out of the six data sets, and produce about the
same running time as sequential ILS on the other two (Youtube and Synthetic).

As we have already noted, the Pivot algorithm has the potential to yield low-
precision clusterings. On the other hand, for all the real data sets ILS reports the
highest precision (with a close second on the synthetic data set). ILS necessarily
reduces the recall from the Pivot algorithm, but it is not significantly lower than
the recall of other clustering results across all data sets. In the worst case, ILS
recall is still under 10 points lower than the Pivot recall.

5 Conclusion

In this paper we presented the InnerLocalSearch method, a viable alternative to
running a full LocalSearch process to improve clustering results from the Pivot
algorithm. We showed experimentally that ILS requires only a fraction of the
amount of time spent by LS, while still yielding significant decreases in objective
value. In many cases ILS yields nearly the same level of improvement as LS,
especially when Pivot produces low-precision clusterings. We also showed that
ILS greatly boosts Pivot precision without too much sacrifice to its clustering
recall, and that it has the advantage of easily being run in parallel.

References

1. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In:
International Conference on Artificial Intelligence and Statistics. pp. 4195-4205.
PMLR (2020)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Efficient Local Search 11

. Ahn, K., Cormode, G., Guha, S., McGregor, A., Wirth, A.: Correlation clustering

in data streams. In: International Conference on Machine Learning. pp. 2237-2246.
PMLR (2015)

Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. Journal of the ACM (JACM) 55(5), 1-27 (2008)

Ailon, N., Liberty, E.: Correlation clustering revisited: The “true” cost of error
minimization problems. In: International Colloquium on Automata, Languages,
and Programming. pp. 24-36. Springer (2009)

Assadi, S., Wang, C.: Sublinear time and space algorithms for correlation clustering
via sparse-dense decompositions. In: 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022) (2022)

Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-
3), 89-113 (2004)

Behnezhad, S., Charikar, M., Ma, W., Tan, L.Y.: Almost 3-approximate corre-
lation clustering in constant rounds. In: 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS). pp. 720-731. IEEE (2022)

Bonchi, F., Garcia-Soriano, D., Liberty, E.: Correlation clustering: from theory to
practice. In: KDD. p. 1972 (2014)

Bonchi, F., Gionis, A., Ukkonen, A.: Overlapping correlation clustering. Knowledge
and Information Systems 35, 1-32 (2013)

Chehreghani, M.H.: Clustering by shift. In: 2017 IEEE International Conference
on Data Mining (ICDM). pp. 793-798. IEEE (2017)

Chierichetti, F., Dalvi, N., Kumar, R.: Correlation clustering in mapreduce. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 641-650 (2014)

Christiansen, L., Mobasher, B., Burke, R.: Using uncertain graphs to automatically
generate event flows from news stories. In: Proceedings of Workshop on Social
Media World Sensors at ACM Hypertext 2017 (SIDEWAYS, HT’17) (2017)
Cohen-Addad, V., Lee, E., Newman, A.: Correlation clustering with sherali-adams.
In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS). pp. 651-661. IEEE (2022)

Coleman, T., Saunderson, J., Wirth, A.: A local-search 2-approximation for
2-correlation-clustering. In: European Symposium on Algorithms. pp. 308-319.
Springer (2008)

Elsner, M., Schudy, W.: Bounding and comparing methods for correlation cluster-
ing beyond ilp. In: Proceedings of the Workshop on Integer Linear Programming
for Natural Language Processing. pp. 19-27 (2009)

Garcia-Soriano, D., Kutzkov, K., Bonchi, F., Tsourakakis, C.: Query-efficient cor-
relation clustering. In: Proceedings of The Web Conference 2020. pp. 1468-1478
(2020)

Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. Acm Transactions
on Knowledge Discovery from Data (TKDD) 1(1), 4-es (2007)

Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refine-
ment. In: 2008 Proceedings of the Tenth Workshop on Algorithm Engineering and
Experiments (ALENEX). pp. 109-117. STAM (2008)

Halim, Z., Waqas, M., Hussain, S.F.: Clustering large probabilistic graphs using
multi-population evolutionary algorithm. Information Sciences 317, 78-95 (2015)
Haruna, C.R., Hou, M., Eghan, M.J., Kpiebaareh, M.Y., Tandoh, L.: A hybrid data
deduplication approach in entity resolution using chromatic correlation clustering.
In: International Conference on Frontiers in Cyber Security. pp. 153—-167. Springer
(2018)

12

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

N. Cordner and G. Kollios

Hua, J., Yu, J., Yang, M.S.: Star-based learning correlation clustering. Pattern
Recognition 116, 107966 (2021)

Klodt, N., Seifert, L., Zahn, A., Casel, K., Issac, D., Friedrich, T.: A color-blind
3-approximation for chromatic correlation clustering and improved heuristics. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. pp. 882-891 (2021)

Kollios, G., Potamias, M., Terzi, E.: Clustering large probabilistic graphs. IEEE
Transactions on Knowledge and Data Engineering 25(2), 325-336 (2011)
Lattanzi, S., Moseley, B., Vassilvitskii, S., Wang, Y., Zhou, R.: Robust online cor-
relation clustering. Advances in Neural Information Processing Systems 34 (2021)
Levinkov, E., Kirillov, A.,; Andres, B.: A comparative study of local search algo-
rithms for correlation clustering. In: Pattern Recognition: 39th German Confer-
ence, GCPR 2017, Basel, Switzerland, September 12-15, 2017, Proceedings 39. pp.
103-114. Springer (2017)

Mandaglio, D., Tagarelli, A., Gullo, F.: In and out: Optimizing overall interaction in
probabilistic graphs under clustering constraints. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.
1371-1381 (2020)

Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchandran, K., Jordan, M.IL.:
Parallel correlation clustering on big graphs. In: Advances in Neural Information
Processing Systems. pp. 82-90 (2015)

Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes
and extended weights bounds. SIAM Journal on Optimization 25(3), 18571872
(2015)

Queiroga, E., Subramanian, A., Figueiredo, R., Frota, Y.: Integer programming
formulations and efficient local search for relaxed correlation clustering. Journal of
Global Optimization 81, 919-966 (2021)

Shi, J., Dhulipala, L., Eisenstat, D., Lacki, J., Mirrokni, V.: Scalable community
detection via parallel correlation clustering. Proceedings of the VLDB Endowment
14(11), 23052313 (2021)

Thiel, E., Chehreghani, M.H., Dubhashi, D.: A non—convex optimization approach
to correlation clustering. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 5159-5166 (2019)

Van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Research
34(3), 594-620 (2009)

Veldt, N., Gleich, D.F., Wirth, A.: A correlation clustering framework for com-
munity detection. In: Proceedings of the 2018 World Wide Web Conference. pp.
439-448 (2018)

