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Abstract

Landau-Ginzburg mirror symmetry studies isomorphisms between A- and B-models, which are

graded Frobenius algebras that are constructed using a weighted homogeneous polynomial W and

a related symmetry group G. Given two polynomials W1, W2 with the same weights and same

group G, the corresponding A-models built with (W1,G) and (W2,G) are isomorphic. Though the

same result cannot hold in full generality for B-models, which correspond to orbifolded Milnor rings,

we provide a partial analogue. In particular, we exhibit conditions where isomorphisms between

unorbifolded B-models (or Milnor rings) can extend to isomorphisms between their corresponding

orbifolded B-models (or orbifolded Milnor rings).

1 Introduction

Landau-Ginzburg mirror symmetry studies two different physical theories, known as Landau-Ginzburg

A- and B-models, which are graded Frobenius algebras that are built using a nondegenerate weighted

homogeneous polynomial W and a related group of symmetries G of W . The A-model theories (denoted

by A) have been constructed (Fan et al., 2013), and are a special case of what is known as FJRW theory.

The B-model theories (denoted by B) have also been constructed (Intriligator and Vafa, 1990; Kaufmann,

2002, 2003, 2006; Krawitz, 2010), and correspond to an orbifolded Milnor ring. In many cases, these

theories extend to whole families of Frobenius algebras, called Frobeinus manifolds.

For a large class of polynomials, Berglund and Hübsch (1993), Berglund and Henningson (1995), and

Krawitz (2010) described the construction of a dual (or transpose) polynomial WT and a dual group

GT . The Landau-Ginzburg mirror symmetry conjecture states that the A-model of a pair (W,G) should

be isomorphic to the B-model of the dual pair (WT , GT ), and is denoted as A[W,G] ∼= B[WT , GT ]. This

conjecture has been proven in many cases (Francis et al., 2012; Krawitz, 2010), although the proof of
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the full conjecture remains open. To better understand mirror symmetry, it has been fruitful to focus

on studying isomorphisms between Landau-Ginzburg models of the same type: either from A to A, or

from B to B.

The Landau-Ginzburg A-model is deformation invariant (see Tay, 2013). Given two polynomials

with the same weights, and an admissible symmetry group that fixes both polynomials, there exists a

continuous path to deform one polynomial to the next. All the corresponding A-models along such a

path are isomorphic as graded Frobenius algebras—this result is sometimes called the Group-Weights

Theorem. The same result does not hold for B-models (see Example 2.25).

The unorbifolded Landau-Ginzburg B-model, which is built using the trivial group G, corresponds

to the Milnor ring (or local algebra) of a polynomial W and is often denoted as QW . The original

construction of the vector space structure of the orbifolded Milnor ring, or orbifolded B-model, was given

by Intriligator and Vafa (1990). The product structure remained undefined for many years. Recently,

Krawitz (2010) followed ideas presented by Kaufmann (2002, 2003, 2006) to write down a multiplication

for the orbifolded Milnor ring.

Classical singularity theory has widely studied Milnor rings of polynomials and their related isomor-

phisms. In this paper, we look at providing a partial Group-Weights result for orbifolded Milnor rings.

That is, we look at extending known isomorphisms between Milnor rings to isomorphisms between orb-

ifolded Milnor rings that have the product structure defined by Krawitz (2010). We will often refer to

these orbifolded Milnor rings as Landau-Ginzburg B-models.

We approach this problem by focusing on special choices of polynomials and groups. Let W be an

admissible polynomials (see Definition 2.3), and let G be a subgroup of the maximal symmetry group of

W (see Definition 2.7). Building on ideas presented in Francis et al. (2012), we arrive at the following

conditions for a polynomial/group pair.

Definition 1.1. A pair (W,G) is well behaved if W =
∑
Wi, where each Wi is an admissible polynomial

in distinct variables, and G =
⊕
Gi, where each g ∈ Gi either fixes all or none of the variables of Wi for

each i.

As we will note later, a large class of polynomial/group pairs that satisfy this condition include

the two-variable admissible polynomials together with any of their symmetry groups. However, some

polynomials in three or more variables (such as chain polynomials) may have choices of symmetry groups

that do not form well-behaved pairs.

We note that Definition 1.1 is similar to Property (*) of Francis et al. (2012) (see also Definition 3.1),

which gives conditions that guarantee a mirror symmetry isomorphism between an A-model with (W,G)

and its dual B-model with (WT , GT ). We also require that the particular isomorphism between Milnor

rings be equivariant. That is, when applying a nontrivial group of symmetries, the isomorphism respects

the group action on the Milnor ring’s vector space basis. The following theorem is the main result of the
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paper.

Theorem 3.6. Let (W,G) and (V,G) be well behaved. If φ : QW → QV is an equivariant isomorphism

of graded Frobenius algebras, then φ extends to an isomorphism ψ : B[W,G]→ B[V,G].

It turns out that when Milnor rings are isomorphic, the corresponding polynomials will have the

same weights (up to ordering of variables, see Theorem 2.22). Therefore Theorem 3.6 is a partial Group-

Weights theorem for orbifolded Milnor rings. In Section 4 we give examples of cases where this theorem

applies.

2 Preliminaries

Here we will introduce some of the concepts needed to understand the theory of this paper.

2.1 Admissible Polynomials

Definition 2.1. For a polynomial W ∈ C[x1, . . . , xn], we say that W is nondegenerate if it has an

isolated critical point at the origin.

Definition 2.2. Let W ∈ C[x1, . . . , xn]. We say that W is quasihomogeneous if there exist positive

rational numbers q1, . . . , qn such that for any c ∈ C, W (cq1x1, . . . , c
qnxn) = cW (x1, . . . , xn).

We often refer to the qi as the quasihomogeneous weights of a polynomial W , or just simply the

weights of W , and we write the weights in vector form J = (q1, . . . , qn).

Definition 2.3. W ∈ C[x1, . . . , xn] is admissible if W is nondegenerate and quasihomogeneous with

unique weights, having no monomials of the form xixj for i 6= j, i, j ∈ {1, . . . , n}.

The condition that W have no cross-term monomials is necessary for constructing the A-model (see

Fan et al., 2013). Because the construction of A[W,G] requires an admissible polynomial, we will only

be concerned with admissible polynomials in this paper. In order for a polynomial to be admissible, it

needs to have at least as many monomials as variables. Otherwise its quasihomogeneous weights cannot

be uniquely determined. We now state the main subdivision of the admissible polynomials.

Definition 2.4. Let W be an admissible polynomial. We say that W is invertible if it has the same

number of monomials as variables. If W has more monomials than variables, then it is noninvertible.

Admissible polynomials with the same number of variables as monomials are called invertible, since

their associated exponent matrices are square and invertible.

Definition 2.5. Let W ∈ C[x1, . . . , xn]. If we write W as a sum of monomials W =
∑m
i=1 ci

∏n
j=1 x

aij
j ,

then the associated exponent matrix is defined to be A = (aij).
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We further observe that if W is invertible, we can rescale variables to force each coefficient ci to equal

one—which we will do in this paper. The invertible polynomials can also be decomposed into sums of

three types of polynomials, called the atomic types.

Theorem 2.6 (Theorem 1 of Kreuzer and Skarke (1992)). Any invertible polynomial is the decoupled

sum of polynomials in one of three atomic types:

Fermat type: W = xa,

Loop type: W = xa11 x2 + xa22 x3 + · · ·+ xann x1,

Chain type: W = xa11 x2 + xa22 x3 + · · ·+ xann .

We also assume that the ai ≥ 2 to avoid terms of the form xixj for i 6= j.

2.2 Symmetry Groups

Definition 2.7. Let W be an admissible polynomial. We define the maximal diagonal symmetry group

of W to be Gmax
W = {(ζ1, . . . , ζn) ∈ (C×)n |W (ζ1x1, . . . , ζnxn) = W (x1, . . . , xn)}.

The proofs of Lemma 2.1.8 in Fan et al. (2013) and Lemma 1 in Artebani et al. (2014) show that

Gmax
W is finite and that each coordinate of every group element is a root of unity. The group operation

in Gmax
W is coordinate-wise multiplication. But since additive notation is often more convenient, we use

the map (e2πiθ1 , . . . , e2πiθn) 7→ (θ1, . . . , θn) mod Z taking Gmax
W to (Q/Z)n. Hence we will often write

Gmax
W = {g ∈ (Q/Z)n | Ag ∈ Zm}, where A is the m×n exponent matrix of W . In this notation we have

the following

Definition 2.8. The group Gmax
W is a subgroup of (Q/Z)n with respect to coordinate-wise addition. For

g ∈ Gmax
W , we can write g uniquely as (g1, . . . , gn), where each gi is a rational number in the interval

[0,1). The gi are called the phases of g.

That being said, as a matter of convenience we will often use equivalent representatives of the gi that

lie outside the interval [0,1) to write down group elements.

2.3 Graded Frobenius Algebras

Landau-Ginzburg A- and B-models are algebraic objects that are endowed with many levels of structure.

In this paper, we will chiefly be concerned with their structure up to the level of graded Frobenius

algebras. We will only develop the theory needed for this paper. We refer the interested reader to

Fan et al. (2013) for more details on the construction of the A-model. Francis et al. (2012), Krawitz

(2010), and Tay (2013) also contain more information on constructing A- and B-models, and related

isomorphisms.
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Definition 2.9. A graded Frobenius algebra is a graded algebra A with a pairing 〈·, ·〉 : A×A→ C that

is

• Symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ A,

• Bilinear: 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y, z ∈ A and α, β ∈ C,

• Nondegenerate: for every x ∈ A there exists y ∈ A such that 〈x, y〉 6= 0.

The pairing further satisfies the Frobenius property, meaning that 〈x · y, z〉 = 〈x, y · z〉 for all x, y, z ∈ A

with x 6= 0.

2.4 Unorbifolded B-Models

Definition 2.10. For any polynomial W , the algebra QW = C[x1, . . . , xn]/(∂W∂x1
, . . . , ∂W∂xn ) is called the

Milnor ring (or local algebra) of W .

We note that QW has a vector space structure with a basis consisting of monomials.

Theorem 2.11 (Theorem 2.6 of Tay (2013)). If W is admissible, then QW is finite dimensional.

We will further think of the Milnor ring as a graded vector space over C, by defining the degree of a

monomial in QW to be deg(xa11 xa22 . . . xann ) = 2
∑n
i aiqi, where the qi are the quasihomogeneous weights

of W . We have the following well-known results about the vector space structure of the Milnor ring

(see Section 2.1 of Krawitz (2010)). First, dim(QW ) =
∏n
i=1

(
1
qi
− 1
)

. Second, the highest degree of its

graded pieces is 2
∑n
i=1 (1− 2qi). The number

∑n
i=1 (1− 2qi) is called the central charge, and is denoted

by ĉ.

To make QW into a graded Frobenius algebra, we need to define a pairing function.

Definition 2.12. Let W be an admissible polynomial W , and let m,n ∈ QW . We define the pairing

〈m,n〉 to be the complex number that satisfies

mn =
〈m,n〉
µ

Hess(W ) + terms of degree less than deg(Hess(W )),

where µ is the dimension of QW as a vector space, and Hess(W ) is the Hessian of W which is the

determinant of the matrix of second partial derivatives of W .

As noted by Krawitz (2010), we can represent Hess(W ) as a monomial in the Milnor ring. Further,

the elements of highest degree in the Milnor ring form a one-dimensional subspace that is spanned by

Hess(W ).

The Milnor ring, together with the grading of the monomial basis and this pairing function, forms a

graded Frobenius algebra (for details, reference Arnold et al.).

Definition 2.13. We define the unorbifolded B-model B[W, {0}] by B[W, {0}] =: QW .
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2.5 Orbifolded B-Models

Constructing orbifolded B-models for a general group G has historically been a hard problem. Kaufmann

did a lot of work in this area (Kaufmann, 2002, 2003, 2006), but in this paper we focus on the most

important case for Landau-Ginzburg mirror symmetry: the diagonal subgroup of SL(n,C). We follow

the construction of Krawitz (2010), built on the work of Kaufmann.

Definition 2.14. Let W ∈ C[x1, . . . , xn] be admissible. Let g ∈ Gmax
W , writing g in multiplicative

coordinates. The fixed locus of the group element g is the subspace of Cn that is fixed by g. Using

coordinate-wise multiplication, we write fix(g) = {x ∈ Cn | g(x) = x}.

The notation W |fix(g) denotes the restriction of the polynomial W to the domain fix(g). We now

define the group action of G on the Milnor ring.

Definition 2.15. Let W be an admissible polynomial, and let g ∈ Gmax
W . In multiplicative coordinates,

write g = diag[ζ1, . . . , ζn]. For a monomial m = xa11 · · · · · xann we define the map g∗ : QW → QW by

g∗(m) := det(g)m ◦ g = det(g)(ζ1x1)a1 · · · · · (ζnxn)an , and extend linearly. This is the group action on

the elements of QW , sometimes denoted as g ·m.

Definition 2.16. Let W be an admissible polynomial, and let G ≤ Gmax
W . The G-invariant subspace of

QW is defined to be QGW = {m ∈ QW | g∗(m) = m for each g ∈ G}.

To construct an orbifolded B-model, we restrict G to be a subgroup of Gmax
W ∩ SL(n,C).

Definition 2.17. Let W be an admissible polynomial, and G ≤ Gmax
W ∩SL(n,C) where n is the number

of variables of W . We define the underlying vector space of B[W,G] to be
⊕
g∈G

(
QW |fix(g)

)G
, where (·)G

denotes all the G-invariants. This is called the B-model state space.

The condition that G ≤ Gmax
W ∩ SL(n,C) is required to construct the orbifolded B-model. We will

often denote the group Gmax
W ∩ SL(n,C) as SL(W ).

Note that if we let G = {0}, then the formula yields the Milnor ring of W , as expected. We also

note that the vector space basis of B[W,G] is made up of monomials from the basis of QW |fix(g) for each

g ∈ G. We denote these basis elements bm; ge, where g is a group element and m is a monomial in(
QW |fix(g)

)G
.

To make B[W,G] into a graded Frobenius algebra, we will define the grading, the multiplication and

the pairing function. We’ll start with the vector space grading.

Definition 2.18. Let W be an admissible polynomial with weights (q1, . . . , qn). For a basis element

bm; (g1, . . . , gn)e in the vector space basis for B[W,G], we define its degree to be

2p+
∑
gi /∈Z

(1− 2qi),
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where p is the weighted degree of m. That is, if m = xa11 · · ·xann , then p =
∑n
i=1 aiqi.

The definition of B-model multiplication is due to Krawitz (2010), Kaufmann (2002, 2003, 2006), and

Intriligator and Vafa (1990).

Definition 2.19. The product of two elements bm; ge and bn;he is given by

bm; ge ? bn;he =

 bγnm; g + he if fix(g) ∪ fix(h) ∪ fix(g + h) = Cn

0 otherwise

where γ is a monomial defined as

γ =
µg∩hHess(W |fix(g+h))

µg+hHess(W |fix(g)∩fix(h))
.

Here µg∩h is the dimension of the Milnor ring of W |fix(g)∩fix(h), and µg+h is the dimension of the Milnor

ring of W |fix(g+h).

We note that Krawitz proved this multiplication to be associative in the case that W is an invertible

polynomial (see Proposition 2.1 of Krawitz (2010)). We believe this to also always be associative when

W is noninvertible polynomial, but it has never been proven in general.

Finally, we have the pairing function.

Definition 2.20. Let bm; ge and bn;he be two basis elements of B[W,G]. If g = −h, then QW |fix(g) is

canonically isomorphic to QW |fix(h) . Therefore, we can define the pairing on B[W,G] as follows:

〈bm; ge, bn;he〉 =

 〈m,n〉QW |fix(g)
if g = −h,

0 otherwise.

One can verify that the orbifolded B-model B[W,G], as it has been defined, is a graded Frobenius

algebra (see Section 2.4 of Krawitz, 2010).

2.6 Isomorphisms of Graded Frobenius Algebras

We will focus on studying isomorphisms between Landau-Ginzburg B-models. The following are some

common results about isomorphisms between unorbifolded B-models. We will refer back to these later on

in the paper. Note that we consider two polynomials to be equivalent if they define the same singularity

at the origin. That is, we say that f ∼ g if there exists a diffeomorphism h : Cn → Cn such that f = g◦h.

Theorem 2.21 (Theorem 2.2.8 of Suggs (2012)). If W1 and W2 are quasihomogeneous functions fixing

the origin, then W1 and W2 are equivalent if and only if their Milnor rings are isomorphic.
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Theorem 2.22 (Theorem 5.1.1 of Suggs (2012)). If two nondegenerate quasihomogeneous polynomials

are equivalent, they have the same unordered set of weights.

Theorem 2.23 (Webb’s Theorem, Theorem 5.1.3 of Suggs (2012)). Let W1 and W2 be nondegenerate

quasihomogeneous polynomials with the same (ordered) weights. If no elements in QW1
have weighted

degree 1, then W1 and W2 are equivalent.

These are all results about B-model isomorphisms using the trivial group {0}. The following result

includes orbifolded B-models.

Proposition 2.24 (Proposition 2.3.2 of Francis et al. (2012)). Suppose W1 and W2 are nondegenerate,

quasihomogeneous polynomials with no variables in common. If G1 ≤ SL(W1) and G2 ≤ SL(W2), then

G1 ×G2 is contained in SL(W1 +W2), G1 ×G2 fixes W1 +W2, and we have an isomorphism

B[W1, G1]⊗ B[W2, G2] ∼= B[W1 +W2, G1 ×G2].

Note that Theorem 2.23 is a type of Group-Weights result on the B-side. However, Group-Weights

does not hold in general for B-models as the next example demonstrates.

Example 2.25 (Example 5.1.4 of Suggs (2012)). Let W1 = x4 + y4 and W2 = x3y + xy3. Both

polynomials have weights
(

1
4 ,

1
4

)
. The set {1, y, y2, x, xy, xy2, x2, x2y, x2y2} is a basis for both QW1

and

QW2
. One can verify that any ring homomorphism from QW1

to QW2
will not be surjective, so we see

that B[W1, {0}] 6∼= B[W2, {0}]. But notice that x2y2 has weighted degree 1. We see that any choice of

basis for QW1
or QW2

will contain a monomial of weighted degree 1. Therefore this does not contradict

Webb’s Theorem.

This shows that Group-Weights is not sufficient for B-model isomorphisms. This also shows that

deformation invariance does not hold in general on the B-side, since there is no way to deform x4 + y4

into x3y + xy3 while maintaining isomorphic Milnor rings.

3 Isomorphism Extension Theorem

Though the Group-Weights theorem does not hold in general for B-models, we still want to find instances

where it does. So given equivalent singularities W1, W2 with a common group G ≤ SL(n,C) that fixes

them both, we want to find cases when their corresponding B-models B[W1, G] and B[W2, G] are also

isomorphic. We will need to impose a condition on our polynomials and groups, which condition in part

stems from the following definition. Note that the sector of an A- or B-model corresponding to a group

element g refers to the subset of the vector space basis containing the elements of the form bm; ge.
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Definition 3.1 (Property (*) of Francis et al. (2012)). Let W be a nondegenerate, invertible polynomial,

and let G be an admissible group of symmetries of W . The pair (W,G) has Property (*) if

1. W can be decomposed as W =
∑M
i=1Wi, where the Wi are themselves invertible polynomials

having no variables in common with any other Wj , j 6= i.

2. For any element g of G whose associated sector Ag ⊆ A[W,G] is nonempty, and for each i ∈

{1, . . . ,M} the action of g fixes either all of the variables in Wi or none of them.

3. For any element g′ of GT whose associated sector of Bg′ ⊆ B[WT , GT ] is nonempty, and for each

i ∈ {1, . . . ,M} the action of g′ fixes either all of the variables in WT
i or none of them.

Property (*) in Francis et al. (2012) is a generalization of the well behaved condition for a polyno-

mial/group pair (W,G) given in Definition 1.1. We note that for the following polynomials, any possible

choice of group (that fixes the polynomial and is contained in SL(n,C)) will form a well-behaved pair:

fermats, loops in any number of variables, and any admissible polynomial in two variables. We can

further admit arbitrary sums of fermat and loop polynomials in distinct variables, together with any of

their symmetry groups (see Remark 1.1.1 of Francis et al. (2012)).

Theorem 3.2. Let W1 and W2 be admissible polynomials with φ : QW1
→ QW2

an equivariant isomor-

phism of graded Frobenius algebras, and let G be a group that preserves both W1 and W2. If (W1, G) and

(W2, G) are well behaved, then φ extends to an isomorphism ψ : B[W1, G]→ B[W2, G].

Consider the following diagram:

B[W1, G]
ψ // B[W2, G]

B[W1, {0}]
φ //

KS

B[W2, {0}]

KS

The bottom horizontal arrow is the isomorphism we are given by hypothesis. The dashed vertical

arrows point from each unorbifolded B-model to its corresponding orbifolded B-model. In general, there

is no isomorphism going from bottom to top. The top horizontal arrow is the map that is conjectured

to exist. In essence, we want to take the map φ that we are given, and use it to create an isomorphism

of orbifolded B-models.

Proof. By hypothesis, there exists an equivariant isomorphism φ : QW1 → QW2 . Also by hypothesis, we’ll

assume that φ is equivariant with respect to G. Suppose that a monomial basis for QW1
is spanC{m1 =

1, . . . ,mk}. We obtain a basis for QW2
with spanC{φ(m1) = 1, . . . , φ(mk)}.

Suppose that (QW1)
G

= spanC{p1, . . . , pl}, where each pi = mj for some j, and l ≤ k. Since φ is

equivariant, we have that g ·φ(pi) = φ(g ·pi) = φ(pi). Therefore spanC{φ(p1), . . . , φ(pi)} ⊆ (QW2
)
G

. But
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if we take an mi not preserved under the action of G, we get g · φ(mi) = φ(g ·mi) = φ(cmi) = cφ(mi)

for some constant c 6= 1. Therefore (QW2
)
G

= spanC{φ(p1), . . . , φ(pi)}.

Notice that the same process works even if we first restrict W1 to a fixed locus of a group element.

So for
(
QW1|fix(g)

)G
, we can write it as spanC{ri} where the ri form a subset of the mi. We see that(

QW2|fix(g)

)G
= spanC{φ(ri)} as before. This gives us the following: there are (not necessarily distinct)

group elements h1, . . . , hl such that

B[W1, G] = spanC{bp1;h1e, . . . , bpl;hle},

B[W2, G] = spanC{bφ(p1);h1e, . . . , bφ(pl);hle}.

Now define the map ψ : B[W1, G] → B[W2, G] by ψ(bpi;hie) = bφ(pi);hie. Notice that ψ is a well-

defined bijection that preserves the vector space grading. Also ψ maps the identity b1; 0e to the identity

b1; 0e.

That ψ preserves the pairing is also easy to show. Let B1 = B[W1, G] and B2 = B[W2, G]. Using the

properties of pairings, we have for hi + hj = 0,

〈bpi;hie, bpj ;hje〉B1
= 〈pi, pj〉QW1

= 〈φ(pi), φ(pj)〉QW2
= 〈bφ(pi);hie, bφ(pj);hje〉B2

.

Since all other pairings are zero, this shows that ψ respects the pairing.

Now for the products. For basis elements α, β of B1, we want to show that ψ(α ? β) = ψ(α) ? ψ(β).

We’ll consider the case where fix(hi)∪fix(hj)∪fix(hi+hj) = Cn. Otherwise, both products will be zero.

First,

ψ(α ? β) = ψ(bpi;hie ? bpj ;hje) = ψ(bγ1pipj ;hi + hje) = bφ(γ1pipj);hi + hje = bφ(γ1)φ(pipj);hi + hje.

The last equality comes from considering γ1 as a monomial in QW1
. Here we have

γ1 =
µhi∩hjHess(W1|fix(hi+hj))

µhi+hjHess(W1|fix(hi)∩fix(hj))
.

Second, we have

ψ(α) ? ψ(β) = bφ(pi);hie ? bφ(pj);hje = bγ2φ(pi)φ(pj);hi + hje = bγ2φ(pipj);hi + hje.

Here we have

γ2 =
µhi∩hjHess(W2|fix(hi+hj))

µhi+hjHess(W2|fix(hi)∩fix(hj))
.
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Previously, we computed bases for the Milnor rings of W1 and W2 after restricting to fixed loci and

taking G-invariants. Since the dimension remained the same between W1 and W2 after these operations,

we see that µhi∩hj for W1 equals µhi∩hj for W2 and similarly for µhi+hj . So it just remains to check how

φ deals with the respective Hessians. That is, we will have bφ(γ1)φ(pipj);hi +hje = bγ2φ(pipj);hi +hje

if we can show φ(γ1) = γ2. We’ll consider the behavior of group elements, and break this down into

cases.

Case 1 : hi = hj = 0. Notice that Wi restricted to the fixed locus is just Wi again. So the Hessians

divide each other, which shows that γ1 = γ2. Further, µhi∩hj = µhi+hj , which shows that γ1 = γ2 = 1.

Therefore φ(γ1) = γ2.

Case 2 : one of hi, hj = 0. Without loss of generality, hi = 0. So γ1 =
µhjHess(W1|fix(hj))

µhjHess(W1|fix(hj))
= 1.

Similarly, γ2 = 1. Therefore φ(γ1) = γ2.

Case 3 : Both hi, hj are nonzero. By hypothesis on the behavior of our group elements, we will have

the fixed locus of hi and hj trivial. But hi + hj must be 0 in order to get a nonzero product. Therefore

γ1 =
Hess(W1)

µ
, γ2 =

Hess(W2)

µ
. We will have φ(γ1) = γ2 if we can show that φ(Hess(W1)) = Hess(W2).

This is taken care of by Lemma 3.3, which verifies Case 3 and finishes the proof of the theorem.

Lemma 3.3. If φ : B[W1, {0}] → B[W2, {0}] is an isomorphism of B-models, then φ(Hess(W1)) =

Hess(W2).

Proof. Let B1 = B[W1, {0}] and B2 = B[W2, {0}]. Suppose m1,m2 are monomials in the basis of B1

such that m1m2 spans the sector of highest degree in B1. Since φ is an isomorphism, we can write

B2 = spanC{φ(m) | m is a basis element of B1}. Also, we know that φ preserves pairings:

〈m1,m2〉B1
= 〈φ(m1), φ(m2)〉B2

.

Recall that m1m2 =
〈m1,m2〉B1

µ
Hess(W1), where µ = dim(B1). Since B1

∼= B2, we also have that

µ = dim(B2). Now note that Hess(W1) =
µ(m1m2)

〈m1,m2〉B1

. Apply φ:

φ(Hess(W1)) = φ

(
µ(m1m2)

〈m1,m2〉B1

)
=

µφ(m1m2)

〈m1,m2〉B1

=
µφ(m1m2)

〈φ(m1), φ(m2)〉B2

.

On the other hand, we know by the isomorphism that the element φ(m1m2) = φ(m1)φ(m2) spans the

sector of highest degree in B2. We have that φ(m1)φ(m2) =
〈φ(m1), φ(m2)〉B2

µ
Hess(W2). So then

Hess(W2) =
µφ(m1)φ(m2)

〈φ(m1), φ(m2)〉B2

=
µφ(m1m2)

〈φ(m1), φ(m2)〉B2

.

This shows that φ(Hess(W1)) = Hess(W2), as desired.
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We can now generalize the result to sums of polynomials.

Corollary 3.4. Let W = W1+W2 and V = V1+V2 be sums of admissible polynomials in distinct variables

where φi : QWi → QVi is an equivariant isomorphism of graded Frobenius algebras for each i. If (Wi, Gi)

and (Vi, Gi) form well-behaved pairs for each i, then there exists an isomorphism ψ : B[W,G]→ B[V,G]

where G = G1 ×G2.

Proof. First we’ll construct an isomorphism φ : B[W, {0}]→ B[V, {0}] using the φi.

Claim: By the tensor product structure (see Proposition 2.24), we know that any monomial mi in

the basis of QW can be written as αiβi where the αi is in the basis of QW1 and the βi is in the basis of

QW2
. We can define φ by φ : mi 7→ φ1(αi)φ2(βi) and extend linearly.

Proof of Claim: It is easy to verify that φ is a bijection, is linear, sends the identity to the identity,

and preserves degrees. To show that φ respects the pairing, we note that

〈φ(mi), φ(mj)〉QV = 〈φ1(αi)φ2(βi), φ1(αj)φ2(βj)〉QV

= 〈φ1(αi), φ1(αj)〉QV1 〈φ2(βi), φ2(βj)〉QV2

= 〈αi, αj〉QW1
〈βi, βj〉QW2

= 〈αiβi, αjβj〉QW

= 〈mi,mj〉QW .

For the products, we note that

φ(mimj) = φ(αiβiαjβj) = φ(αiαjβiβj) = φ1(αiαj)φ2(βiβj) = φ1(αi)φ1(αj)φ2(αi)φ2(αj)

= φ1(αi)φ2(βi)φ1(αj)φ2(βj) = φ(αiβi)φ(αjβj) = φ(mi)φ(mj).

Therefore φ really is an isomorphism of graded Frobenius algebras. We further check that φ is equivariant:

for g ∈ G, we have g · φ(m) = g · (φ1(α)φ2(β)) = (g · φ1(α))(g · φ2(β)), since α and β are in distinct

variables, = φ1(g · α)φ2(g · β), since φ1 and φ2 are equivariant, = φ(g ·m).

Now given our map φ, we see that W and V are equivalent singularities. Construct map ψ as before,

but with using φ as the base map. The only thing left to check is that ψ respects products for group

elements with nontrivial fixed locus. First note that with the Wi in distinct variables, the block matrix

structure of the second partial derivatives of W will give us Hess(W ) = Hess(W1)Hess(W2). It follows

that φ sends Hess(Wi) to Hess(Vi) by Lemma 3.3 and by construction. Now the group elements g, h have

to fix all the variables in either W1 or W2 by the hypothesis of the symmetry group structure. In this

way any quotient of Hessians will reduce to either Hess(W1) or Hess(W2). This shows that ψ respects

the products, and gives us the desired isomorphism.
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We now include a brief result on equivariant isomorphisms.

Lemma 3.5. Suppose (W,G) and (V,G) are well behaved. Then an isomorphism φ : QW → QV is

equivariant if and only if we have equivariant isomorphisms φi : QWi → QVi for each i.

Proof. (⇒) Suppose that φ : QW → QV is an equivariant isomorphism of graded Frobenius algebras.

We can write W = W1 + · · ·+Wn and V = V1 + · · ·+ Vn where each Wi is in the same variables as Vi

but Wi is in distinct variables from Wj for all i 6= j. We can also write G = G1 × · · · × Gn, where Gi

preserves either all or none of the variables of Wi, Vi for each i. By Proposition 2.24, we can consider

QW ∼= QW1 ⊗ · · · ⊗ QWn and QV ∼= QV1 ⊗ · · · ⊗ QVn . From the tensor product structure, we find that

there exists a basis of each QWi
that is a subset of a basis of QW . By restricting φ to the variables of

Wi, we obtain an equivariant isomorphism φi : QWi
→ QVi for each i.

(⇐) Conversely, suppose that we have equivariant isomorphisms φi : QWi → QVi for each i. The

argument in the proof of Corollary 3.4 shows how to construct an equivariant isomorphism φ : QW → QV

in the case that n = 2. Extending by induction gives us the result for all n.

We are now ready to obtain the main result of the paper.

Theorem 3.6. Let (W,G) and (V,G) be well behaved. If φ : QW → QV is an equivariant isomorphism

of graded Frobenius algebras, then φ extends to an isomorphism ψ : B[W,G]→ B[V,G].

Proof. Given φ : QW → QV an equivariant isomorphism of graded Frobenius algebras, we can apply

Lemma 3.5 to obtain φi : QWi
→ QVi that are also equivariant isomorphisms of graded Frobenius

algebras. We can then extend Corollary 3.4 by induction in the case that W = W1 + · · · + Wn and

V = V1 + · · ·+Vn are sums of admissible polynomials in distinct variables such that each Wi is singularity

equivalent to Vi, and Gi is a group that preserves both Wi and Vi for each i such that each group element

of Gi fixes either all or none of the variables of Wi and Vi.

Theorem 3.6 actually applies to a large class of isomorphisms. For example, any diagonal isomorphism

is equivariant.

Definition 3.7. Suppose φ : B1 → B2 is an isomorphism of B-models. Say that B1 has basis {a1, . . . , an}

and B2 has basis {b1, . . . , bn}. We say that φ is diagonal if we can write φ(ai) = cibi for ci ∈ C nonzero

(possibly after reordering the basis elements).

Theorem 3.8. Any diagonal isomorphism of Landau-Ginzburg B-models is equivariant.

Proof. Suppose φ : B1 → B2 is a diagonal isomorphism of B-models. Let B1 have basis {a1, . . . , an} and

B2 have basis {b1, . . . , bn}. Write φ(ai) = cibi for ci ∈ C nonzero (reordering if necessary). Now notice
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the following. For any g ∈ G,

φ(g · ai) = φ(det(g)ai ◦ g) = det(g)φ(ai ◦ g) = det(g)ci(bi ◦ g).

g · φ(ai) = g · cibi = det(g)ci(bi ◦ g).

This happens since ai ◦ g is just a constant times ai. Because φ(g · ai) = g · φ(ai) for each i, we see that

φ is equivariant.

4 Examples

In the following examples, we will demonstrate how we can apply these results.

Example 4.1 (see Theorems 6.3 and 6.6 of Cordner (2016)). We can compute for all n ≥ 2,

B[x2 + y2n, {0}] ∼ // B[x2 + xyn + y2n, {0}] B[x2 + xyn, {0}]∼oo

Each of these unorbifolded B-models has basis spanC{1, y, . . . , y2n−2}. We can define a map φ1 : B[x2 +

y2n, {0}]→ B[x2+xyn+y2n, {0}] by φ1(ya) = caya, where c is a complex number that satisfies c2n−2 = 3
4 .

We can also define a map φ2 : B[x2 + xyn, {0}]→ B[x2 + xyn + y2n, {0}] by φ2(ya) = caya, where c is a

complex number that satisfies c2n−2 = −3.

Lemma 4.2. The map φ1 is an isomorphism of graded Frobenius algebras.

Proof. Let Wα = x2 + αxyn + y2n for α ∈ C, and let Bα = B[Wα, {0}]. So B0 = C[x, y]/(2x, 2ny2n−1) =

spanC{1, y, . . . , y2n−2}, which has dimension 2n−1. We also see that Bα = C[x, y]/(2x+αyn, nαxyn−1 +

2ny2n−1) = spanC{1, y, . . . , y2n−2}, which has dimension 2n − 1. Bα has further relations x = −α2 y
n

and xyn−1 = − 2
αy

2n−1. In each case deg(ya) = a
2n . The only possible map that can work in this case is

diagonal.

Wα is nondegenerate when 2x+αyn = 0 and nαxyn−1 +2ny2n−1 = 0. Solving for x yields x = −α2 y
n.

Substituting gives −nα
2

2 y2n−1 + 2ny2n−1 = 0 which implies y2n−1(−nα
2

2 + 2n) = 0. So either y = 0, or

−nα
2

2 + 2n = 0. Thus α2 = 4, showing that Wα is degenerate only for α = ±2.

Since we are working with unorbifolded B-models, the product structure is relatively simple. We have

that ya ? yb = ya+b if a+ b ≤ 2n− 2, and is equal to 0 otherwise.

To understand the pairing structure, we’ll now compute the Hessian of Wα. We first compute
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∂2Wα

∂x2 = 2, ∂2Wα

∂x∂y = ∂2Wα

∂y∂x = nαyn−1, and ∂2Wα

∂y2 = n(n− 1)αxyn−2 + 2n(2n− 1)y2n−2. So

Hess(Wα) = 2[n(n− 1)αxyn−2 + 2n(2n− 1)y2n−2]− (nαyn−1)2

= 2[(n2 − n)α(−α
2
yn)yn−2 + (4n2 − 2n)y2n−2]− n2α2y2n−2 substituting for x,

= −α2(n2 − n)y2n−2 + (8n2 − 4n)y2n−2 − n2α2y2n−2

= [(−2α2 + 8)n2 + (α2 − 4)n]y2n−2.

Plugging in 0 for α yields Hess(W0) = (8n2 − 4n)y2n−2. On B0 and Bα we obtain a nonzero value for

the paring 〈ya, yb〉 precisely when a+ b = 2n− 2. For nonzero B0 pairings, we obtain

y2n−2 =
〈ya, yb〉
2n− 1

(8n2 − 4n)y2n−2 ⇒ 2n− 1

8n2 − 4n
= 〈ya, yb〉 ⇒ 1

4n
= 〈ya, yb〉.

For nonzero Bα pairings, we obtain

y2n−2 =
〈ya, yb〉
2n− 1

[(−2α2 + 8) + (α2 − 4)n]y2n−2 ⇒ 〈ya, yb〉 =
2n− 1

(−2α2 + 8)n2 + (α2 − 4)n
.

We’ll now construct a map φ : B0 → Bα, defined by φ = diag[1, c, c2, . . . , c2n−2]. We’ll state what

value c should be in just a moment. First we’ll check that φ preserves the product structure.

φ(ya ? yb) = φ(ya+b) = ca+bya+b

φ(ya ? yb) = φ(ya) ? φ(yb) = caya ? cbyb = ca+bya+b.

For φ to preserve pairings, we require (assuming a+ b = 2n− 2):

1

4n
= 〈ya, yb〉B0

= 〈φ(ya), φ(yb)〉Bα

= 〈caya, cbyb〉Bα = c2n−2〈ya, yb〉Bα = c2n−2

(
2n− 1

(−2α2 + 8)n2 + (α2 − 4)n

)
.

Therefore c is any complex number satisfying c2n−2 = (−2α2+8)n2+(α2−4)n
4n(2n−1) = (−2α2+8)n+(α2−4)

4(2n−1) =

−2(α2−4)n+(α2−4)
4(2n−1) = −(2n−1)(α2−4)

4(2n−1) = −α
2−4
4 . This gives us an isomorphism of graded Frobenius al-

gebras. We obtain φ1 by setting α = 1.

Lemma 4.3. The map φ2 is an isomorphism of graded Frobenius algebras.

Proof. Let Wα = x2 + xyn + αy2n for α ∈ C, and let Bα = B[Wα, {0}]. Then B0 = C[x, y]/(2x +

yn, nxyn−1) = spanC{1, y, . . . , y2n−2} with relation x = − 1
2y
n. Also, Bα = C[x, y]/(2x + yn, nxyn−1 +

2nαy2n−1) = spanC{1, y, . . . , y2n−2} with relations x = − 1
2y
n and xyn−1 = −2αy2n−1.

To find when Wα is nondegenerate, we solve the equations 2x+ yn = 0, nxyn−1 + 2nαy2n−1 = 0. We
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see that x = − 1
2y
n. Substituting yields n(− 1

2y
n)yn−1 + 2nαy2n−1 = 0, so (−n2 + 2nα)y2n−1 = 0. Hence

−n2 + 2nα = 0, which yields α = 1
4 . This is our only point of nondegeneracy.

The product structure behaves the same as the example in Lemma 4.2. So we proceed to compute

∂2Wα

∂x2 = 2, ∂2Wα

∂x∂y = ∂2Wα

∂y∂x = nyn−1, and ∂2Wα

∂y2 = n(n− 1)xyn−2 + 2n(2n− 1)αy2n−2. Therefore

Hess(Wα) = 2[n(n− 1)xyn−2 + 2n(2n− 1)αy2n−2]− (nyn−1)2

= 2[−1

2
n(n− 1)y2n−2 + 2n(2n− 1)αy2n−2]− n2y2n−2

= [−n(n− 1) + 4n(2n− 1)α− n2]y2n−2

= [(8α− 2)n2 + (−4α+ 1)n]y2n−2.

For B0 pairings, we find that

y2n−2 =
〈ya, yb〉
2n− 1

(−2n2 + n)y2n−2 ⇒ 〈ya, yb〉 =
2n− 1

−2n2 + n
= − 1

n
.

For Bα pairings, we find that

y2n−2 =
〈ya, yb〉
2n− 1

((8α− 2)n2 + (−4α+ 1)n)y2n−2 ⇒ 〈ya, yb〉 =
2n− 1

(8α− 2)n2 + (−4α+ 1)n
.

(Noting, of course, that we use a + b = 2n − 2). To define φ : B0 → Bα that preserves the pairing

structure, we’ll need

− 1

n
= 〈ya, yb〉B0

= 〈caya, cbyb〉Bα

= c2n−2

(
2n− 1

(8α− 2)n2 + (−4α+ 1)n

)
⇒ c2n−2 = − (8α− 2)n2 + (−4α+ 1)n

n(2n− 1)
.

Hence c2n−2 = − (8α−2)n+(−4α+1)
2n−1 = − (2n−1)(4α−1)

2n−1 = −4α + 1. The map φ = diag[1, c, c2, . . . , c2n−2],

which we checked before, gives us an isomorphism of graded Frobenius algebras. We obtain φ2 by setting

α = 1.

Since the maps φ1, φ2 are diagonal, they are equivariant. If n is odd, then G =
〈(

1
2 ,

1
2

)〉
fixes each

polynomial. By Theorem 3.2, for all odd n > 2 we obtain extension isomorphisms ψ1 for φ1 and ψ2 for

φ2.

B[x2 + y2n, G]
ψ1 //

KS
B[x2 + xyn + y2n, G]

KS
B[x2 + xyn, G]

KS
ψ2oo

B[x2 + y2n, {0}]
φ1 // B[x2 + xyn + y2n, {0}] B[x2 + xyn, {0}]

φ2oo

Applying mirror symmetry to B-models built with invertible polynomials, we get the following mirror
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diagram.

A[x2 + y2n, 〈( 1
2 , 0), (0, 1

2n )〉] ∼ //

��

A[x2y + yn, 〈(− 1
2n ,

1
n )〉]

��
A[x2 + y2n, 〈( 1

2 ,
1

2n )〉] ∼ // A[x2y + yn, 〈(n−1
2n ,

1
n )〉]

Here the unorbifolded B-models in the previous diagram correspond to the top row of A-models in

the above diagram. The orbifolded B-models of the previous diagram correspond to the A-models

on the bottom row in the above diagram. Notice that the isomorphism A[x2 + y2n, 〈( 1
2 ,

1
2n )〉] ∼=

A[x2y+yn, 〈(n−1
2n ,

1
n )〉] is the result of the B-model isomorphisms we just computed together with mirror

symmetry. Further note that the groups used for these A-models are distinct. Therefore, this is a new

isomorphism of A-models that does not stem from the Group-Weights theorem. Hence Theorem 3.2 tells

us not only about isomorphisms of B-models, but can also be used to find new isomorphisms between

A-models.

Example 4.4. In singularity theory, it is known that adding quadratic forms in distinct variables to

polynomials will do nothing to affect the type of singularity defined. Such stabilization of singularities

and their related Landau-Ginzburg A-model structure has been studied by Francis (2012). For Landau-

Ginzburg B-models, it is not immediately clear how the orbifolded Milnor ring structure of such an

augmented polynomial will be affected.

Building off of Example 4.1, for each odd integer n > 2 let W
(1)
n = x2 + y2n, W

(2)
n = x2 + xyn + y2n,

and W
(3)
n = x2 + xyn. Consider also the polynomial V = z2 +w2. We already know that Q

W
(1)
n

, Q
W

(2)
n

,

and Q
W

(3)
n

are isomorphic to each other under equivariant maps. We also immediately see that QV is

isomorphic to QV under the identity map, which is equivariant.

The group G = 〈( 1
2 ,

1
2 )〉 preserves each of W

(1)
n , W

(2)
n , W

(3)
n , and V . Note also that the pair (V,G) is

well behaved. Let G1 = {(0, 0, 0, 0)}, G2 = G×{(0, 0)} = 〈( 1
2 ,

1
2 , 0, 0)〉, G3 = {(0, 0)}×G = 〈(0, 0, 1

2 ,
1
2 )〉,

and G4 = G×G = 〈( 1
2 ,

1
2 , 0, 0), (0, 0, 1

2 ,
1
2 )〉. By Corollary 3.4, we have following B-model isomorphisms:

B[W (1)
n + V,G1] ∼= B[W (2)

n + V,G1] ∼= B[W (3)
n + V,G1],

B[W (1)
n + V,G2] ∼= B[W (2)

n + V,G2] ∼= B[W (3)
n + V,G2],

B[W (1)
n + V,G3] ∼= B[W (2)

n + V,G3] ∼= B[W (3)
n + V,G3],

B[W (1)
n + V,G4] ∼= B[W (2)

n + V,G4] ∼= B[W (3)
n + V,G4].

We see that in these cases, equivalent singularities still yield the same orbifolded Milnor ring structure.

We can take this one step further. If (W,G) and (V,G) are any well-behaved pairs where W is singularity

equivalent to V , and (U,H) is a well-behaved pair where U is a quadratic form in distinct variables from

W , V and H is some orbifold group for U , we can apply Corollary 3.4 to find that B[W + U,G×H] ∼=
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B[V + U,G×H].
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