Scalable Algorithms for Correlation Clustering on Large Graphs

Nathan Cordner

Boston University

26 May 2022

Correlation Clustering and the Pivot Algorithm Previous Work

- Scalable Cluster Improvement
- Scalable Consensus Clustering

Proposed Work

- Scalable Algorithms for
 - Constrained Cluster Sizes
 - Constrained Number of Clusters
- Proportional Fairness for Scalable Algorithms

Correlation Clustering [BBC04]

Given a complete graph G = (V, E) $E = E^+ \cup E^-$

Want to cluster + edges and separate - edges

- Maximize Agreements
- Minimize Disagreements
- Some Applications
 - Classification
 - Entity Resolution
 - Friend Groups in Social Networks

The Pivot Algorithm [ACN08]

 $\mathsf{Pivot}(V, E = E^+ \cup E^-):$

- Pick random pivot node $u \in V$
- Set $C = \{u\}$

For all
$$v \in V \setminus \{u\}$$
:

If
$$\{u, v\} \in E^+$$
: Add v to C

- Repeat on $V = V \setminus C$ until empty
- Return completed clustering

Runs in O(|V| + |E|) time

Randomized expected 3-approximation

Efficient Implementation of Pivot [AL09]

Neighborhood Oracle $N(u) = \{v \in V \mid \{u, v\} \in E^+\}$

$$\mathsf{Pivot}(V, E = E^+ \cup E^-):$$

 \blacksquare Pick random pivot node $u \in V$

• Set
$$C = \{u\}$$

For all $v \in N(u)$:

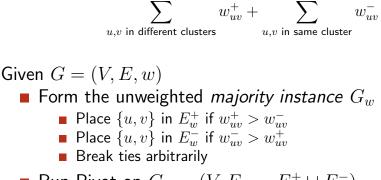
If $v \in V$: Add v to C

- Repeat on $V = V \setminus C$ until empty
- Return completed clustering

Runs in $O(|V| + |E|^+)$ time

Weighted CC [BBC04, ACN08]

Every pair of nodes u, v has weights $w_{uv}^+, w_{uv}^- \ge 0$ Clustering Cost:



Run Pivot on $G_w = (V, E_w = E_w^+ \cup E_w^-)$

Weighted CC [ACN08, KPT11]

Probability Constraints: $w_{uv}^+ + w_{uv}^- = 1$ Notation: $p(u, v) = w_{uv}^+$, $1 - p(u, v) = w_{uv}^-$

Relation to original CC problem

$$\{u,v\} \in E^+ \Leftrightarrow p(u,v) = 1$$
$$\{u,v\} \in E^- \Leftrightarrow p(u,v) = 0$$

Pivot Approximation Results

- **5**-approx with probability constraints
- 2-approx with PC and the triangle inequality

- LP rounding methods
 - 2.5-approx for probability weights [ACN08]
 - 2.06-approx for 0/1 weights [CMSY15]
 - Run time dominated by LP solver
 - Some optimizations exist though (e.g. [HYY21])

Pivot still most efficient for large graphs

One Algorithm to Rule Them All?

Pivot has been successfully used to cluster

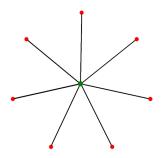
- Social network graphs [KPT11]
- Protein-protein interaction graphs [KPT11; HWH15]

Event graphs generated from news stories [CMB17] Pivot has been adapted for

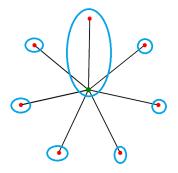
- Probabilistic graphs [KPT11; MTG20]
- Chromatic correlation clustering [KSZC21]
- Fair correlation clustering [AEKM20]
- Data streaming and online settings [ACGM15; LMVW21]
- Query constraints [GKBT20]
- Cluster size constraints [PM15]

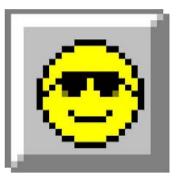
Deterministic and parallel versions [ZW09; CDK14; PORJ15]

Pivot performs poorly on star graphs



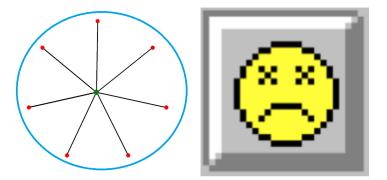
Pivot performs poorly on star graphs





Drawbacks of Pivot

Pivot performs poorly on star graphs



Can we do better and still maintain scalability?

Pick unclustered nodes one at a time

- First node creates its own cluster
- All others: add to existing cluster, or create own
- Greedily minimize increase in clustering cost

Previous Results

- Experimentally better than Pivot (e.g. [ES09])
- Much slower though

* Inspired by Node algorithm for reducing oracle queries in entity resolution [VBD14]; also known as the Vote algorithm [ES09]

The RandomNode Algorithm

Running Time [GMT07]

- $\blacksquare S = {\rm previously \ settled \ nodes;} \ u = {\rm current \ node}$
- Cost of creating new cluster: $\sum_{v \in S} p(u, v)$
- Cost of adding to existing cluster C:

$$\sum_{v \in C} (1 - p(u, v)) + \sum_{v \in S \backslash C} p(u, v) = |C| + \sum_{v \in S} p(u, v) - 2\sum_{v \in C} p(u, v)$$

• $\Theta(|V|^2) = \Theta(|V| + |E|)$ for weighted graphs

Neighborhood Oracle

Only consider clusters with positive edges from u
 Reduces to Θ(|V| + |E|⁺) time for 0/1 graphs

The RandomNode Algorithm

Node-at-a-Time Pivot [BGK13]

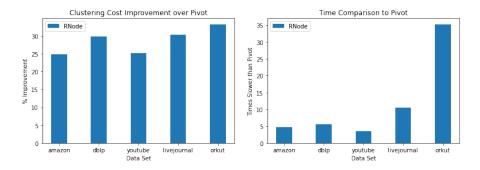
- \blacksquare Initialize list P and pick nodes in random order
- Join cluster of first pivot in P with positive edge
- \blacksquare Otherwise start new cluster and add self to end of P

Clustering Cost: RandomNode "stays ahead" of Pivot

- On same node order, expected cost of each RandomNode decision ≤ expected cost of Pivot
- RandomNode inherits same guarantees as Pivot
- Justifies using 0/1 graphs for weighted instances

The RandomNode Algorithm

Example: RandomNode gives better results, but Pivot runs significantly faster on large instances



snap.stanford.edu/data/#communities

Local Search: given a clustering,

- Each node decides whether to stay or move clusters
- Iterate until improvements stop
- Slow (each iteration is like RandomNode)
- Somewhat popular though [MTG20; AEKM20]

New Idea: Use RandomNode inside Pivot clusters

- Method 1: use node ordering given by Pivot
- Method 2: "Deterministic" ordering [VBD14]
 - Maximizes expected cost improvement inside clusters

Expected Cluster Size [VBD14]: $ECS(u) = \sum_{v \in V \setminus \{u\}} p(u, v)$

O(|V|²) time to compute for weighted graphs
Equals |N(u)| for 0/1 graphs; O(|V|) time

DeterministicNode

- \blacksquare Order nodes by ECS: $O(|V|\log |V|)$ time
- Follow RandomNode with ECS node order

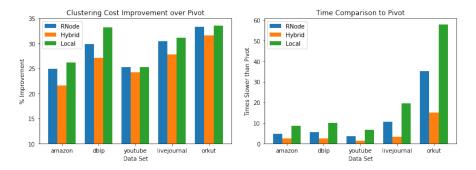
Hybrid Algorithm: on graph G

- Obtain clusters C_1, \ldots, C_k from $\mathsf{Pivot}(G)$
- Let G_i be the graph induced by C_i
- **Return** $\mathsf{DNode}(G_1), \ldots, \mathsf{DNode}(G_k)$

Properties

- Nearly linear running time: $O(|V| \log d + |E|^+)$
 - *d* is size of largest Pivot cluster
- Easily run in parallel
- Improves cluster costs from Pivot
- Approximation Bound: stay tuned!

Example: Hybrid gives nearly the same improvement as RandomNode, but in about half the extra time over Pivot



snap.stanford.edu/data/#communities

Theoretical Improvements

"Bad Triangles": i, j, k unclustered

■ Two edges are + but one is -

Lemma [ACN08]: Approx bound of Pivot \leq worst cost ratio for bad triangles

- Triangle completely inside cluster when i is chosen as pivot (1/3 chance)
- Claim: Hybrid reduces average cost of bad triangles inside Pivot clusters
- Hybrid approximation bound:

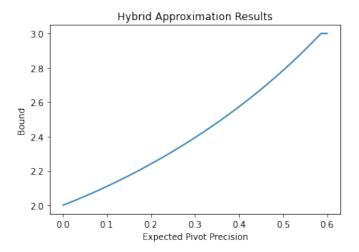
```
3((1/3)(\text{hybrid triangle cost}) + 2/3)
```

Given Pivot cluster C with m = |C|(|C| - 1)/2 edges

- Expected number of + edges in C: m/2
- Expected Pivot cluster cost: m/2
- DeterministicNode: order nodes by degree (ECS)
 - $\blacksquare \ m/4$ edges used to cluster first half of nodes
 - $\blacksquare \ 3m/4$ edges used to cluster second half of nodes
 - DNode cost ≤ putting first half of nodes into one cluster and separating all remaining nodes
 - DNode cost $\leq (2/28 + 9/28)m = 11m/28$
 - Cost ratio: 11/14; Bound: $39/14 \approx 2.786$

Given Pivot cluster C with m = |C|(|C| - 1)/2 edges Expected number of + edges in C: pm Expected Pivot cluster cost: (1-p)mDeterministicNode: order nodes by degree (ECS) \square p^2m edges used to cluster first *pn* nodes $(1-p^2)m$ edges used to cluster remaining nodes **D**Node cost < putting first *pn* nodes into one cluster and separating all remaining nodes • DNode cost $\leq \left[p + \frac{p^2}{2} \left(\frac{1-2p+p^2/2}{1-p^2/2} - 1 \right) \right] m$ • Ratio < 1 when $p < 2 - \sqrt{2} \approx 0.586$

Precision: ratio of positive edges inside clusters to total number of edges inside clusters



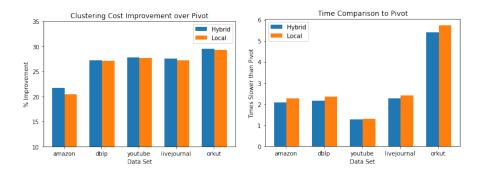
Cordner (Boston University)

Example Revisited:

Data Set	Pivot Precision (%)	Hybrid Bound
DBLP	55.53	2.92
Amazon	50.93	2.807
LiveJournal	28.69	2.373
YouTube	24.39	2.305
Orkut	13.42	2.152

Alternative Approach: run Local Search once inside each cluster using *reverse* ECS order

Has the same guarantees as Hybrid



Given clusterings $\mathcal{C}_1 \dots, \mathcal{C}_k$ of node set V

Find clustering C minimizing $\sum_{i=1}^{k} \text{Disagree}(C, C_i)$

■ Disagree(C, C_i) = number of node pairs (u, v) clustered together in only one input clustering

Relation to Correlation Clustering

- p(u,v) = number of input clusterings where u, v are clustered together divided by k
- Edge weights satisfy the triangle inequality

Previous Pivot Problems [ACN08; GF08]

- Time inefficiency: $O(k|V|^2)$ to compute all edges
- Space inefficiency: $O(|V|^2)$ to store all edges

Improvement # 1: only compute edges as needed■ Precompute cluster labels for each node

Improvement # 2: reduce number of input clusterings

- Picking one input clustering at random: 2-approx
- Pivot on full set of inputs: 1.57-approx [ACN08]
- What about in between?

Improvement 1 Example: Mushrooms

- 23 input clusterings, 8124 nodes
- Edges: 71.6 s; average Pivot run: 0.0091 s
- Labels: 0.03 s; average Pivot run: 0.04s

archive.ics.uci.edu/ml/datasets/mushroom

Sampling input clusterings

- Assume k large and sample R < k input clusterings
- p = true probability u, v are clustered together (assume p < 1/2)
- Let *X* = number of sampled clusters where *u*, *v* are clustered together
- \blacksquare Model X as a Binomial rv with R trials and success probability p
- Pivot algorithm "makes a mistake" when X > R/2

What is $\mathbb{P}(X > R/2)$? Normalize: $Z = (X - pR)/\sqrt{Rp(1-p)}$ Estimate $\mathbb{P}(X > R/2)$ using

$$\mathbb{P}\left(Z > \frac{R/2 - pR}{\sqrt{Rp(1-p)}}\right) = \mathbb{P}\left(Z > \frac{\sqrt{R}(1/2 - p)}{\sqrt{p(1-p)}}\right)$$

Let $f(R,p) = \sqrt{R}(1/2 - p)/\sqrt{p(1-p)}$ Find $\mathbb{P}(Z > f(R,p))$ by evaluating

$$\operatorname{Err}(R,p) := 1 - \Phi(f(R,p)),$$

where Φ is the standard normal CDF

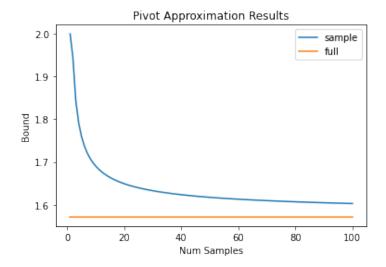
Lemma: the expected cost multiple of edge (u, v) due to error in a Pivot clustering is

$$p \cdot (1 - \mathsf{Err}(R, p)) + (1 - p) \cdot \mathsf{Err}(R, p)$$

Cost multiple upper bound:

$$g(R) = \max_{p \in [0, 1/2]} \{ [p \cdot (1 - \mathsf{Err}(R, p)) + (1 - p) \cdot \mathsf{Err}(R, p)] / p \}$$

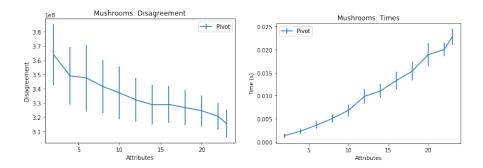
Theorem: Pivot is a (6g(R) + 5)/7)-approx algorithm



Cordner (Boston University)

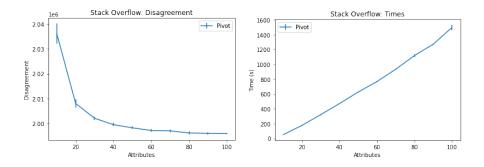
Improvements 1 and 2 Example: Mushrooms

- 23 input clusterings, 8124 nodes
- Largest disagreement is 1.153 times smallest



Improvements 1 and 2 Example: Stack Overflow

- 100 input clusterings, 14284 nodes
- Largest disagreement is 1.02 times smallest



ics.uci.edu/~duboisc/stackoverflow/

Correlation Clustering and the Pivot Algorithm

Previous Work

- Scalable Cluster Improvement
- Scalable Consensus Clustering

Proposed Work

- Scalable Algorithms for
 - Constrained Cluster Sizes
 - Constrained Number of Clusters
- Proportional Fairness for Scalable Algorithms

Uniform: given $K \ge 1$, all clusters must have size $\le K$

- LP rounding algorithms
 - 6-approx [PM15]
 - 5.37-approx [JCTZ21]
- Pivot adaptations [PM15]
 - 7-approx by removing a smallest set of + edges
 - 11-approx for random removal (Constrained Pivot)

Non-Uniform: size limit defined for every node [JXLW20]

• LP 2U-approximation where $U = \max$ node limit

Proposed Work

- New analysis for Constrained Pivot
 - Based on new proof technique [KSZC21]
 - **Claim**: 3-approx for both uniform and non-uniform cases
- Hybrid analysis for constrained cluster sizes
- Compare to Constrained RandomNode

Given k, find clustering with at most k clusters $\mathbf{k} = 2$:

- Pivot-like 3-approximation [BBC04]
- Local search 2-approximation [CSW08]
- Neither generalizes well for k > 2
- General case: $(1 + \epsilon)$ PTAS [GG06]
 - Extremely inefficient: $|V|^{O(9^k/\epsilon^2)} \log |V|$ running time
 - Still used from time to time [ACGM15; BEK21]

Proposed work

- k-RandomNode
 - **Claim**: 7-approximation algorithm
- k-Hybrid: form k Pivot clusters, finish with k-RNode
- Compare with new Pivot-like algorithms for *k*-CC

"Balanced" Fairness

- Colors assigned to every node; proportion of colors inside clusters must match overall proportion
- Algorithms using fairlet decomposition [AEKM20]
- LP improvements for some cases [FM21]

Other fairness definitions have yet to be considered for correlation clustering

Proposed work: Proportionally Fair CC

- k-(means, medians, centers): no set of ≥ |V|/k nodes prefers to be clustered together [CFLM19]
- Extend proportional fairness to correlation clustering
- Analyze fairness in Pivot and other unconstrained CC algorithms
- Analyze fairness in *k*-CC algorithms

References

AEKM20 Ahmadian, Epasto, Kumar, and Mahdian. Fair correlation clustering. 2020

- ACGM15 Ahn, Cormode, Guha, McGregor, and Wirth. *Correlation clustering in data streams*. 2015
 - ACN08 Ailon, Charikar, and Newman. Aggregating inconsistent information: ranking and clustering. 2008
 - AL09 Ailon and Liberty. Correlation clustering revisited: the "true" cost of error minimization problems. 2009
 - BBC04 Bansal, Blum, and Chawla. Correlation clustering. 2004
 - BGK13 Bonchi, García-Soriano, and Kutzkov. Local correlation clustering. 2013
 - BEK21 Bun, Elias, and Kulkarni. Differentially private correlation clustering. 2021
- CMSY15 Chawla, Makarychev, Schramm, and Yaroslavtsev. Near optimal lp rounding algorithm for correlation clustering on complete and complete k-partite graphs. 2015
- CFLM19 Chen, Fain, Lyu and Munagala. Proportionally fair clustering. 2019
- CDK14 Chierichetti, Dalvi, and Kumar. Correlation clustering in mapreduce. 2014
- CMB17 Christiansen, Mobasher, and Burke. Using uncertain graphs to automatically generate event flows from news stories. 2017

References

- CSW08 Coleman, Saunderson, and Wirth. A local-search 2-approximation for 2-correlation-clustering. 2008
 - ES09 Elsner and Schudy. Bounding and comparing methods for correlation clustering beyond ILP. 2009
 - FM21 Friggstad and Mousavi. Fair correlation clustering with global and local guarantees. 2021
- GKBT20 García-Soriano, Kutzkov, Bonchi, and Tsourakakis. *Query-efficient correlation clustering*. 2020
 - GMT07 Gionis, Mannila, and Tsaparas. Clustering aggregation. 2007
 - GG06 Giotis and Guruswami. Correlation clustering with a fixed number of clusters. 2006
 - GF08 Goder and Filkov. Consensus clustering algorithms: comparison and refinement. 2008
- HWH15 Halim, Waqas, and Hussain. Clustering large probabilistic graphs using multi-population evolutionary algorithm. 2015
- HYY21 Hua, Yu, and Yang. Star-based learning correlation clustering. 2021
- JCTZ21 Ji, Cheng, Tan, and Zhao. An improved approximation algorithm for capacitated correlation clustering problem. 2021

References

- JXLW20 Ji, Xu, Li, and Wang. Approximation algorithms for two variants of correlation clustering problem. 2020
- KSZC21 Klodt, Seifert, Zahn, Casel, Issac, and Friedrich. A color-blind 3-approximation for chromatic correlation clustering and improved heuristics. 2021
- KPT11 Kollios, Potamias, and Terzi. Clustering large probabilistic graphs. 2011
- LMVW21 Lattanzi, Moseley, Vassilvitskii, Wang, and Zhou. *Robust online correlation clustering*. 2021
 - MTG20 Mandaglio, Tagarelli, and Gullo. *In and out: optimizing overall interaction in probabilistic graphs under clustering constraints.* 2020
 - MSS10 Mathieu, Sankur, and Schudy. Online correlation clustering. 2010
 - PORJ15 Pan, Papailiopoulos, Oymak, Recht, Ramchandran, and Jordan. *Parallel correlation clustering on big graphs.* 2015
 - PM15 Puleo and Milenkovic. Correlation clustering with constrained cluster sizes and extended weights bounds. 2015
 - VBD14 Vesdapunt, Bellare, and Dalvi. Crowdsourcing algorithms for entity resolution. 2014
 - ZW09 Zuylen and Williamson. Deterministic pivoting algorithms for constrained ranking and clustering problems. 2009