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Correlation Clustering [BBC04]

Given a complete graph G = (V,E)

E = E+ ∪ E−

Want to cluster + edges and separate − edges

Maximize Agreements

Minimize Disagreements

Some Applications

Classification

Entity Resolution

Friend Groups in Social Networks
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The Pivot Algorithm [ACN08]

Pivot(V,E = E+ ∪ E−):

Pick random pivot node u ∈ V

Set C = {u}
For all v ∈ V \ {u}:

If {u, v} ∈ E+: Add v to C

Repeat on V = V \ C until empty

Return completed clustering

Runs in O(|V |+ |E|) time

Randomized expected 3-approximation
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Efficient Implementation of Pivot [AL09]

Neighborhood Oracle N(u) = {v ∈ V | {u, v} ∈ E+}
Pivot(V,E = E+ ∪ E−):

Pick random pivot node u ∈ V

Set C = {u}
For all v ∈ N(u):

If v ∈ V : Add v to C

Repeat on V = V \ C until empty

Return completed clustering

Runs in O(|V |+ |E|+) time
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Weighted CC [BBC04, ACN08]

Every pair of nodes u, v has weights w+
uv, w

−
uv ≥ 0

Clustering Cost:∑
u,v in different clusters

w+
uv +

∑
u,v in same cluster

w−
uv

Given G = (V,E,w)
Form the unweighted majority instance Gw

Place {u, v} in E+
w if w+

uv > w−
uv

Place {u, v} in E−
w if w−

uv > w+
uv

Break ties arbitrarily

Run Pivot on Gw = (V,Ew = E+
w ∪ E−

w )
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Weighted CC [ACN08, KPT11]

Probability Constraints: w+
uv + w−

uv = 1

Notation: p(u, v) = w+
uv, 1− p(u, v) = w−

uv

Relation to original CC problem

{u, v} ∈ E+ ⇔ p(u, v) = 1

{u, v} ∈ E− ⇔ p(u, v) = 0

Pivot Approximation Results

5-approx with probability constraints

2-approx with PC and the triangle inequality
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Other Algorithms for CC

LP rounding methods

2.5-approx for probability weights [ACN08]

2.06-approx for 0/1 weights [CMSY15]

Run time dominated by LP solver

Some optimizations exist though (e.g. [HYY21])

Pivot still most efficient for large graphs
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One Algorithm to Rule Them All?

Pivot has been successfully used to cluster

Social network graphs [KPT11]

Protein-protein interaction graphs [KPT11; HWH15]

Event graphs generated from news stories [CMB17]

Pivot has been adapted for

Probabilistic graphs [KPT11; MTG20]

Chromatic correlation clustering [KSZC21]

Fair correlation clustering [AEKM20]

Data streaming and online settings [ACGM15; LMVW21]

Query constraints [GKBT20]

Cluster size constraints [PM15]

Deterministic and parallel versions [ZW09; CDK14; PORJ15]
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Drawbacks of Pivot

Pivot performs poorly on star graphs
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Drawbacks of Pivot

Pivot performs poorly on star graphs

Can we do better and still maintain scalability?
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The RandomNode Algorithm*

Pick unclustered nodes one at a time

First node creates its own cluster

All others: add to existing cluster, or create own

Greedily minimize increase in clustering cost

Previous Results

Experimentally better than Pivot (e.g. [ES09])

Much slower though

* Inspired by Node algorithm for reducing oracle queries in entity
resolution [VBD14]; also known as the Vote algorithm [ES09]
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The RandomNode Algorithm

Running Time [GMT07]

S = previously settled nodes; u = current node

Cost of creating new cluster:
∑

v∈S p(u, v)

Cost of adding to existing cluster C:∑
v∈C

(1−p(u, v))+
∑

v∈S\C

p(u, v) = |C|+
∑
v∈S

p(u, v)−2
∑
v∈C

p(u, v)

Θ(|V |2) = Θ(|V |+ |E|) for weighted graphs

Neighborhood Oracle

Only consider clusters with positive edges from u

Reduces to Θ(|V |+ |E|+) time for 0/1 graphs
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The RandomNode Algorithm

Node-at-a-Time Pivot [BGK13]

Initialize list P and pick nodes in random order

Join cluster of first pivot in P with positive edge

Otherwise start new cluster and add self to end of P

Clustering Cost: RandomNode “stays ahead” of Pivot

On same node order, expected cost of each
RandomNode decision ≤ expected cost of Pivot

RandomNode inherits same guarantees as Pivot

Justifies using 0/1 graphs for weighted instances
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The RandomNode Algorithm

Example: RandomNode gives better results, but Pivot
runs significantly faster on large instances

snap.stanford.edu/data/#communities
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Cluster Improvement

Local Search: given a clustering,

Each node decides whether to stay or move clusters

Iterate until improvements stop

Slow (each iteration is like RandomNode)

Somewhat popular though [MTG20; AEKM20]

New Idea: Use RandomNode inside Pivot clusters

Method 1: use node ordering given by Pivot
Method 2: “Deterministic” ordering [VBD14]

Maximizes expected cost improvement inside clusters
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Cluster Improvement

Expected Cluster Size [VBD14]: ECS(u) =
∑

v∈V \{u}
p(u, v)

O(|V |2) time to compute for weighted graphs

Equals |N(u)| for 0/1 graphs; O(|V |) time

DeterministicNode

Order nodes by ECS: O(|V | log |V |) time

Follow RandomNode with ECS node order
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The Hybrid Algorithm

Hybrid Algorithm: on graph G

Obtain clusters C1, . . . , Ck from Pivot(G)

Let Gi be the graph induced by Ci

Return DNode(G1), . . . ,DNode(Gk)

Properties
Nearly linear running time: O(|V | log d+ |E|+)

d is size of largest Pivot cluster

Easily run in parallel

Improves cluster costs from Pivot

Approximation Bound: stay tuned!
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The Hybrid Algorithm

Example: Hybrid gives nearly the same improvement as
RandomNode, but in about half the extra time over Pivot

snap.stanford.edu/data/#communities
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The Hybrid Algorithm

Theoretical Improvements

“Bad Triangles”: i, j, k unclustered
Two edges are + but one is −

Lemma [ACN08]: Approx bound of Pivot ≤ worst cost
ratio for bad triangles

Triangle completely inside cluster when i is chosen
as pivot (1/3 chance)
Claim: Hybrid reduces average cost of bad triangles
inside Pivot clusters
Hybrid approximation bound:

3((1/3)(hybrid triangle cost) + 2/3)
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The Hybrid Algorithm

Given Pivot cluster C with m = |C|(|C| − 1)/2 edges

Expected number of + edges in C: m/2

Expected Pivot cluster cost: m/2

DeterministicNode: order nodes by degree (ECS)

m/4 edges used to cluster first half of nodes

3m/4 edges used to cluster second half of nodes

DNode cost ≤ putting first half of nodes into one
cluster and separating all remaining nodes

DNode cost ≤ (2/28 + 9/28)m = 11m/28

Cost ratio: 11/14; Bound: 39/14 ≈ 2.786
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The Hybrid Algorithm

Given Pivot cluster C with m = |C|(|C| − 1)/2 edges

Expected number of + edges in C: pm

Expected Pivot cluster cost: (1− p)m

DeterministicNode: order nodes by degree (ECS)

p2m edges used to cluster first pn nodes

(1− p2)m edges used to cluster remaining nodes

DNode cost ≤ putting first pn nodes into one
cluster and separating all remaining nodes

DNode cost ≤
[
p+ p2

2

(
1−2p+p2/2
1−p2/2 − 1

)]
m

Ratio < 1 when p < 2−
√
2 ≈ 0.586
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The Hybrid Algorithm

Precision: ratio of positive edges inside clusters to total
number of edges inside clusters
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The Hybrid Algorithm

Example Revisited:

Data Set Pivot Precision (%) Hybrid Bound
DBLP 55.53 2.92
Amazon 50.93 2.807
LiveJournal 28.69 2.373
YouTube 24.39 2.305
Orkut 13.42 2.152
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The Hybrid Algorithm

Alternative Approach: run Local Search once inside
each cluster using reverse ECS order

Has the same guarantees as Hybrid
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Consensus Clustering

Given clusterings C1 . . . , Ck of node set V

Find clustering C minimizing
∑k

i=1Disagree(C, Ci)
Disagree(C, Ci) = number of node pairs (u, v)
clustered together in only one input clustering

Relation to Correlation Clustering

p(u, v) = number of input clusterings where u, v are
clustered together divided by k

Edge weights satisfy the triangle inequality
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Consensus Clustering

Previous Pivot Problems [ACN08; GF08]

Time inefficiency: O(k|V |2) to compute all edges

Space inefficiency: O(|V |2) to store all edges

Improvement # 1: only compute edges as needed

Precompute cluster labels for each node

Improvement # 2: reduce number of input clusterings

Picking one input clustering at random: 2-approx

Pivot on full set of inputs: 1.57-approx [ACN08]

What about in between?
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Consensus Clustering

Improvement 1 Example: Mushrooms

23 input clusterings, 8124 nodes

Edges: 71.6 s; average Pivot run: 0.0091 s

Labels: 0.03 s; average Pivot run: 0.04s

archive.ics.uci.edu/ml/datasets/mushroom
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Consensus Clustering

Sampling input clusterings

Assume k large and sample R < k input clusterings

p = true probability u, v are clustered together
(assume p < 1/2)

Let X = number of sampled clusters where u, v are
clustered together

Model X as a Binomial rv with R trials and success
probability p

Pivot algorithm “makes a mistake” when X > R/2
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Consensus Clustering

What is P(X > R/2)?

Normalize: Z = (X − pR)/
√

Rp(1− p)

Estimate P(X > R/2) using

P

(
Z >

R/2− pR√
Rp(1− p)

)
= P

(
Z >

√
R(1/2− p)√
p(1− p)

)

Let f(R, p) =
√
R(1/2− p)/

√
p(1− p)

Find P(Z > f(R, p)) by evaluating

Err(R, p) := 1− Φ(f(R, p)),

where Φ is the standard normal CDF
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Consensus Clustering

Lemma: the expected cost multiple of edge (u, v) due
to error in a Pivot clustering is

p · (1− Err(R, p)) + (1− p) · Err(R, p)

Cost multiple upper bound:

g(R) = max
p∈[0,1/2]

{[p ·(1−Err(R, p))+(1−p) ·Err(R, p)]/p}
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Consensus Clustering

Theorem: Pivot is a (6g(R) + 5)/7)-approx algorithm
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Consensus Clustering

Improvements 1 and 2 Example: Mushrooms

23 input clusterings, 8124 nodes

Largest disagreement is 1.153 times smallest
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Consensus Clustering

Improvements 1 and 2 Example: Stack Overflow

100 input clusterings, 14284 nodes

Largest disagreement is 1.02 times smallest

ics.uci.edu/∼duboisc/stackoverflow/
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Constrained Cluster Sizes

Uniform: given K ≥ 1, all clusters must have size ≤ K
LP rounding algorithms

6-approx [PM15]
5.37-approx [JCTZ21]

Pivot adaptations [PM15]
7-approx by removing a smallest set of + edges
11-approx for random removal (Constrained Pivot)

Non-Uniform: size limit defined for every node [JXLW20]

LP 2U -approximation where U = max node limit
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Constrained Number of Clusters

Proposed Work
New analysis for Constrained Pivot

Based on new proof technique [KSZC21]
Claim: 3-approx for both uniform and non-uniform cases

Hybrid analysis for constrained cluster sizes

Compare to Constrained RandomNode
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Constrained Number of Clusters

Given k, find clustering with at most k clusters
k = 2:

Pivot-like 3-approximation [BBC04]
Local search 2-approximation [CSW08]
Neither generalizes well for k > 2

General case: (1 + ϵ) PTAS [GG06]
Extremely inefficient: |V |O(9k/ϵ2) log |V | running time
Still used from time to time [ACGM15; BEK21]
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Constrained Number of Clusters

Proposed work
k-RandomNode

Claim: 7-approximation algorithm

k-Hybrid: form k Pivot clusters, finish with k-RNode

Compare with new Pivot-like algorithms for k-CC
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Fair Correlation Clustering

“Balanced” Fairness

Colors assigned to every node; proportion of colors
inside clusters must match overall proportion

Algorithms using fairlet decomposition [AEKM20]

LP improvements for some cases [FM21]

Other fairness definitions have yet to be considered for
correlation clustering

Cordner (Boston University) 26 May 2022 Scalable CC Algs



Fair Correlation Clustering

Proposed work: Proportionally Fair CC

k-(means, medians, centers): no set of ≥ |V |/k
nodes prefers to be clustered together [CFLM19]

Extend proportional fairness to correlation clustering

Analyze fairness in Pivot and other unconstrained
CC algorithms

Analyze fairness in k-CC algorithms
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