CS 235: Algebraic Algorithms, Spring 2021

Discussion 1
Date: Tuesday, February 02, 2021.
Problem 1. For all integers $a, b, c>0$. Show that:
(a) $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$ and $\operatorname{lcm}(c a, c b)=c \operatorname{lcm}(a, b)$
(b) $d=\operatorname{gcd}(a, b) \neq 0$ if and only if $\operatorname{gcd}(a / d, b / d)=1$

Hint: recall from the lecture, if $d=\operatorname{gcd}(a, b)$ then we can express d as a linear combination of a, b, namely, $a x+b y=d$ for some $x, y \in \mathbb{Z}$
part $a: \operatorname{lcm}(c a, c b)=c \operatorname{lcm}(a, b)$, let $d=\operatorname{Icm}(c a, c b)$ and $e=c \operatorname{lcm}(a, b)$ to show: $d=<e(1), e=<d$ implies $d=e(2)$
(1) On the one hand, $\operatorname{Icm}(a, b)=a x=b y$ for some integers x, y $c \operatorname{lcm}(a, b)=c a x=c b y=e-->e$ is a common multiple of both ca and cb since $d=1 c m(c a, c b)$, therefore, $d=<e$
(2) On the other hand, $\operatorname{lcm}(c a, c b)=c a x=c b y=d$ for some integers x, y
$d=c a x=c b y=>d / c=a x=b y$ which implies that d / c is a common multiple of both $a \& b$
$\operatorname{Icm}(a, b)=<d / c=>c \operatorname{lcm}(a, b)=<d=>e=<d$
Hence, e = d ./.
first part: $d=\operatorname{gcd}(c a, c b)$ and $e=c \operatorname{gcd}(a, b)$, strategy: $d>=e ; e>=d-->d=e$
part b: "=>" given: $d=\operatorname{gcd}(a, b)$, to show $\operatorname{gcd}(a / d, b / d)=1$
express d as: $a x+b y=d$ for some integers x, y
--> $a / d x+b / d y=1$--> $\operatorname{gcd}(a / d, b / d)=1$
"<=" given $\operatorname{gcd}(a / d, b / d)=1$, to show $d=\operatorname{gcd}(a, b)$
$\operatorname{gcd}(a / d, b / d)=1-->a / d x+b / d y=1$
---> ax + by = d
suppose, for the sake of contradiction, we a common multiple c $>\mathrm{d}$ $(a x) / c+(b y) / c=d / c$ (contradiction because d / c is not an integer)

Problem 2. Let $a, b, n \in \mathbb{Z}$ with $n>0$ and $a \equiv b(\bmod n)$ Show that $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.

Problem 3. Let $a \in \mathbb{Z}$, show that: $a^{2} \not \equiv 2(\bmod 4)$ or $a^{2} \not \equiv 3(\bmod 4)$
Hint: consider we have $a \equiv n(\bmod 4)$, then what are the possible values for n ? Then, for each n, how can we express a in terms of some $x \in \mathbb{Z}$? At this point, what is special about a^{2} in terms of x ?

