CS 235: Algebraic Algorithms, Spring 2021

Discussion 4

Date: Tuesday, March 02, 2021.

Problem 1. Recall that the implementation of the RSA cryptosystem heavily relies on modular arithmetic, Euler's totient (phi) function, and Euler's Theorem.

The process of generating the public-private key pair is as follows:

- (1) First, the receiver chooses two (large) prime numbers p and q. The product n=pq is half of the public key. **Q** (p)
- (2) The receiver calculates $\varphi(n) = (p-1)(q-1)$ and chooses an integer e that is relatively prime to $\varphi(n)$. This integer is the other half of the public key, and with that being said, the public key is usually represented as the pair (n, e).
- (3) The receiver calculates the modular inverse d of e modulo $\varphi(n)$. In other words, the receiver solves the following linear congruence $de \equiv 1 \pmod{\varphi(n)}$. The calculation can be done efficiently using Extended Euclidean Algorithm and the integer d is the private key (or the pair (n, d) as illustrated in the textbook).
- (4) The receiver distributes the public key (n, e) to the sender and keeps (n, d) to themselves.

The process of transmitting some message m is as follows:

- (1) The sender converts their message m into a number (using ASCII or Unicode table).
- (2) The sender, upon receiving the public key (n, e) from the receiver, calculates $c \equiv m^e \pmod{n}$ where c is the encrypted message (or sometimes called cyphertext). This is the only information (along with the public key) that the attacker can have.
- (3) The receiver computes $c^d \equiv m \pmod{n}$ thus retrieving the original integer value m of the message and convert it into the corresponding character.

Why this works: the most basic goal is to be able to "decrypt" the encrypted message, in other words, for $m \in \mathbb{Z}_n$, we want $c^d = (m^e)^d = m$. The main idea for the proof is to use Euler's Theorem. Broadly speaking, if $m \in \mathbb{Z}_n^*$, then it trivially follows from Euler's Theorem that $m^{ed} \equiv m \pmod{n}$. Now assume we have an arbitrary $m \in \mathbb{Z}_n$. We first use Euler's Theorem to prove that $m^{ed} \equiv m \pmod{p}$. Then, apply the same idea to show that $m^{ed} \equiv m \pmod{q}$ which, taken together with the previous congruence, implies $m^{ed} \equiv m \pmod{pq}$ and the proof is complete (see page 100 in the textbook for the full proof).

n, n' s.t qcd(n, n') = 1 $a^2 = a (mod n)^{\frac{1}{md}} a^2 = a (mod n')$ $a^2 = a (mod nn') (ex d.6)$

Demo: Generate the public and private key with primes p=11 and q=17 and the assumption that the receiver chooses an integer e=3 which is relatively prime to n=pq=187. Then, simulate the process of transmitting a message whose integer value m=87.

Clansrating todays: n = pq = 10.17 = 187 U(n) = (p-1)(q-1) = 160Cohoose e = 3 = > (n, e) = (187, 3) $3d = 1 \pmod{160}$, Q(n) = 160 (4) = > d = 107 = > (n, d) = (187, 107)Sending message: m = 87 $m^2 = 87^3 = > c = 87^3 \mod{187} = 183$ Decrypt: $(d = 183^{107} = 87 \pmod{187})$ = > 0 Decrypt: $(d = 183^{107} = 87 \pmod{187})$ **Problem 2.** Find the multiplicative inverse of 11 modulo 26. (Hint: apply Extended Euclidean Algorithm on inputs a = 26 and b = 11)