Problem 1. Let R be a non-trivial ring. Show that for some $a, b \in R$ such that $a b=1$, if either a or b is a Zero Divisor then $b a=1$.
Def 7.1; the set of numbers R is a ring:
(i) R forms a group under $t-q, O_{R}$
(ii) $(a b) c=a(b c)$ for $a, b, c \in R$
(iii) $a(b+c)=a b+a c$
(iv) $\exists 1_{R} \therefore 1 \cdot a=a \cdot 1=a$, for $a \in R$
(v) $a b=b a$, for $a, b \in R$
$a, b \neq 0 \in R$ st $a b=0 \Rightarrow$ a \& b are
Ex: $3,5 \in \mathbb{Z}_{15}, 36 \equiv 0(\operatorname{mad} 15)$ zero divishs \mathbb{Z}_{p} doesn't have were divisors
pl: Suppare a is net a Cere divisor
\therefore if $a \cdot x=0$, then $x=0$
Consider $x=(b a-1)$

$$
\begin{aligned}
& \Rightarrow a(\underbrace{b-1}_{x})=a b a-a(7.1 \text { iii) } \\
& \Rightarrow x=1 \cdot a-a=0 \\
& \Rightarrow b-1={ }^{1} 0 \Rightarrow b a=1
\end{aligned}
$$

Similarly, consider $(b a-1) b \Rightarrow b a-1=0$

Problem 2. Let S and T be subrings of ring R. Show that $S \cap T$ is also a subring of R.
S is (an additive) bulling of R
(i) S is ar additive sub gran \& R
i.1) $a+b \in S$, for $a, b \in S$
i.2) - a $\in S$, for $a \in S$.
(ii) $a b \in S$ for $a, b \in S$
(iii) $1_{R} \in S$

If: Let $a, b \in S \wedge T \Rightarrow a, b \in S ; a, b \in T$
Since S, T are subtrings of R, we have

$$
\left\{\begin{array} { l }
{ a + b \in S } \\
{ a b \in S }
\end{array} \quad \left\{\begin{array}{l}
a+b \in T \\
a b \in T
\end{array}\right.\right.
$$

$\Rightarrow a+b \in S \cap T \& a b \in S \cap T$
Let $x \in \operatorname{Sn} T \Rightarrow x \in S \& x \in T$
Since S, T are subrings, we have:
$-x \in T \&-x \in S \Rightarrow-x \in S \wedge T$
\Rightarrow every element in $S \cap T$ has additive in verse
Similary, $1_{R} \in S \cap T$
Hence $S \cap T$ is a subbing What about SUT? Not quite SUT is a subring $\Leftrightarrow\left[\begin{array}{l}S \subset T \\ T \subset T\end{array}\right.$

Problem 3. Show that if F is a field, the units in $F[X]$ are exactly nonzero elements of F.
F is a field $\therefore F$ is a sung and every element in F has a mult-imoerse
iCe $\quad a \in \mathcal{F} ; \exists r=a^{-1}, a r=1$
\bar{S} is the unit
Ring /geld F has elements which ore numbers $F[x]$ has

$$
\text { (egg. } \left.\left.x^{2}-2 x+1\right)=f(x)\right)
$$

ff: Let $f(x) \in F[x]$ of Legree n Then $f(x)$ is a unit if $\exists g(x)$ of de gree m sit. $f(x) \cdot g(x)=1$

$$
\begin{aligned}
& \operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)=n+m \\
& \operatorname{deg}(1)=0 \Rightarrow n+m=0 \\
& \text { Since, }, m>0 \Rightarrow n=m=0
\end{aligned}
$$ $\Rightarrow f^{\prime}(\alpha)$ and $g(\alpha)$ are constant functions $\Rightarrow f \cdot g=1 \Leftrightarrow f \& g$ are units of F

$$
(F \subset F[x])
$$

