CS 235: Algebraic Algorithms, Spring 2021 Discussion 0

Date: Tuesday, January 26, 2021.
Problem 1. Let $a, b, d \in \mathbb{Z}$ with $d \neq 0$. Show that $a \mid b$ if and only if $d a \mid d b$.

Problem 2. Let I be a non-empty set of integers that is closed under addition (i.e. $a+b \in$ $I \forall a, b \in I$). Show that I is an ideal if and only if $-a \in I \forall a \in I$. (See page 5 of textbook for the definition of an ideal)

Problem 3. Let p be a prime number. Show that $p!$ is not a perfect square.
Reminder: $n!=n \cdot(n-1) \cdot(n-2) \ldots 2$; Perfect square is a number made by squaring a whole number, ex: $4=2^{2}, 9=3^{2}, \ldots$ are perfect squares.

Hint: how would you write down the prime factorisation of a perfect square number n ? Then, can you do the same for the number $p!$?

