CS 235: Algebraic Algorithms, Spring 2021

Discussion 0

Date: Tuesday, January 26, 2021.

Problem 1. Let $a, b, d \in \mathbb{Z}$ with $d \neq 0$. Show that a|b if and only if da|db.

Problem 2. Let *I* be a non-empty set of integers that is closed under addition (i.e. $a + b \in I \quad \forall a, b \in I$). Show that *I* is an ideal if and only if $-a \in I \quad \forall a \in I$. (See page 5 of textbook for the definition of an ideal)

Problem 3. Let p be a prime number. Show that p! is not a perfect square.

Reminder: $n! = n \cdot (n-1) \cdot (n-2) \dots 2$; Perfect square is a number made by squaring a whole number, ex: $4 = 2^2, 9 = 3^2, \dots$ are perfect squares.

Hint: how would you write down the prime factorisation of a perfect square number n? Then, can you do the same for the number p?