CS 235: Algebraic Algorithms, Spring 2021

Discussion 1 Date: Tuesday, February 02, 2021.

Problem 1. For all integers a, b, c > 0. Show that:

- (a) gcd(ca, cb) = c gcd(a, b) and lcm(ca, cb) = c lcm(a, b)
- (b) $d = \gcd(a, b) \neq 0$ if and only if $\gcd(a/d, b/d) = 1$

Hint: recall from the lecture, if d = gcd(a, b) then we can express d as a linear combination of a, b, namely, ax + by = d for some $x, y \in \mathbb{Z}$

Problem 2. Let $a, b, n \in \mathbb{Z}$ with n > 0 and $a \equiv b \pmod{n}$ Show that gcd(a, n) = gcd(b, n).

Problem 3. Let $a \in \mathbb{Z}$, show that: $a^2 \not\equiv 2 \pmod{4}$ or $a^2 \not\equiv 3 \pmod{4}$

Hint: consider we have $a \equiv n \pmod{4}$, then what are the possible values for n? Then, for each n, how can we express a in terms of some $x \in \mathbb{Z}$? At this point, what is special about a^2 in terms of x?