# CS 235: Algebraic Algorithms, Spring 2021 <br> Discussion 1 

Date: Tuesday, February 02, 2021.

Problem 1. For all integers $a, b, c>0$. Show that:
(a) $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$ and $\operatorname{lcm}(c a, c b)=c \operatorname{lcm}(a, b)$
(b) $d=\operatorname{gcd}(a, b) \neq 0$ if and only if $\operatorname{gcd}(a / d, b / d)=1$

Hint: recall from the lecture, if $d=\operatorname{gcd}(a, b)$ then we can express $d$ as a linear combination of $a, b$, namely, $a x+b y=d$ for some $x, y \in \mathbb{Z}$

Problem 2. Let $a, b, n \in \mathbb{Z}$ with $n>0$ and $a \equiv b(\bmod n)$ Show that $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.

Problem 3. Let $a \in \mathbb{Z}$, show that: $a^{2} \not \equiv 2(\bmod 4)$ or $a^{2} \not \equiv 3(\bmod 4)$
Hint: consider we have $a \equiv n(\bmod 4)$, then what are the possible values for $n$ ? Then, for each $n$, how can we express $a$ in terms of some $x \in \mathbb{Z}$ ? At this point, what is special about $a^{2}$ in terms of $x$ ?

