CS 235: Algebraic Algorithms, Spring 2021
 Discussion 2

Date: Tuesday, February 09, 2021.

Problem 1. Modular Inverses
(a) Find the modular inverses of 4,5 , and 7 in \mathbb{Z}_{11} and \mathbb{Z}_{17}.
(b) Determine whether the following congruence has solution(s) or not (and how many). If the congruence has a unique solution, try to solve it using modular inverses.
(i) $66 x \equiv 100(\bmod 121)$
(ii) $21 x \equiv 14(\bmod 91)$
(iii) $3 x \equiv 5(\bmod 17)$
(iv) $10 x \equiv 3(\bmod 11)$

Problem 2. More congruence drilling...
(a) Prove that the equation $x^{2}-7 y^{3}=3$ has no solution for any $x, y \in \mathbb{Z}$. (Hint: consider $\bmod 7$ arithmetic)
(b) Prove the Cancellation Law, namely, if $a c \equiv b c(\bmod n)$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b(\bmod n)$.

Problem 3. Let p be an odd prime. Show that $\Sigma_{\alpha \in \mathbb{Z}_{p}^{*}} \alpha^{-1}=\Sigma_{\alpha \in \mathbb{Z}_{p}^{*}} \alpha=0$.

