CS 235: Algebraic Algorithms, Spring 2021

Discussion 2

Date: Tuesday, February 09, 2021.

Problem 1. Modular Inverses

- (a) Find the modular inverses of 4, 5, and 7 in \mathbb{Z}_{11} and \mathbb{Z}_{17} .
- (b) Determine whether the following congruence has solution(s) or not (and how many). If the congruence has a unique solution, try to solve it using modular inverses.
 - (i) $66x \equiv 100 \pmod{121}$
 - (ii) $21x \equiv 14 \pmod{91}$
 - (iii) $3x \equiv 5 \pmod{17}$
 - (iv) $10x \equiv 3 \pmod{11}$

Problem 2. More congruence drilling...

- (a) Prove that the equation $x^2 7y^3 = 3$ has no solution for any $x, y \in \mathbb{Z}$. (Hint: consider mod 7 arithmetic)
- (b) Prove the **Cancellation Law**, namely, if $ac \equiv bc \pmod{n}$ and gcd(c,n) = 1, then $a \equiv b \pmod{n}$.

Problem 3. Let p be an odd prime. Show that $\Sigma_{\alpha \in \mathbb{Z}_p^*} \alpha^{-1} = \Sigma_{\alpha \in \mathbb{Z}_p^*} \alpha = 0.$