
CS 235: Algebraic Algorithms, Spring 2021

Practice Problems for Final Exam
Exam Date: 6:00PM, Tuesday, May 05th, 2021.

Problem 1. Merten’s Theorem. For each positive integer k, let Pk denote the product
of the first k primes. Show that ϕ(Pk) = Θ(Pk/ log logPk).

Solution. Let {pi}ki=1 denotes the set of first k primes which gives Pk = Πk
i=1pi. Then, by

Theorem 2.11, we have

ϕ(Pk) = Pk · Πk
i=1(1− 1/pi) = Pk · Πpi≤pk(1− 1/p)

Note that for pi ≥ 2, (1− 1/pi) < 1 and Pk > logPk. Thus, we obtain the following

ϕ(Pk) = Pk · Πpi≤pk(1− 1/pi) ≤ Pk · Πpi≤log pk(1− 1/pi)

By Theorem 5.13, we have Pk ·Πpi≤log pk(1− 1/pi) = Θ(Pk/ log logPk) which implies that
ϕ(Pk) = Θ(Pk/ log logPk)
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Problem 2. Group Theory.

1. List the cosets of 〈7〉 in Z∗16. Is the quotient group Z∗16/〈7〉 cyclic?

Solution. We have 〈7〉 = {1, 7} and Z∗16 = {1, 3, 5, 7, 9, 11, 13, 15}. Thus, the cosets
are 〈7〉 = {1, 7}, 3〈7〉 = {3, 5}, 9〈7〉 = {9, 15}, and 11〈7〉 = {11, 13}.
Note that |Z∗16/〈7〉| = 4 and order(3〈7〉) = 4 which implies that Z∗16/〈7〉 is a cyclic
group.

2. Are the groups Z2 × Z12 × Z36 and Z4 × Z4 × Z6 × Z9 isomorphic?

Solution. We know that if two integers n,m are relatively primes, we have Zmn
∼=

Zn × Zm. This also applies for more than two integers as long as they are relatively
primes. Notice that 12 = 3 · 4 and 36 = 4 · 9, then we can “decompose” the group as
direct product of cyclic groups, namely, Z2 × Z12 × Z36

∼= Z2 × Z3 × Z4 × Z4 × Z9.
Similarly, Z4 × Z4 × Z6 × Z9

∼= Z4 × Z4 × Z2 × Z3 × Z9. Finally, we can see that both
groups have the same order of 864 which implies that Z2×Z12×Z36

∼= Z4×Z4×Z6×Z9.
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Problem 3. Ring Theory.

1. Let F be a field and let f(x) be a non-zero polynomial in F [x]. Show that f(x) is a
unit in F [x] if and only if deg(f(x)) = 0.

Solution. “ =⇒ :” Assume deg(f(x)) = 0, then let f(x) = c 6= 0F , some constant,
which is a nonzero element of the field F . Since F is a field and c 6= 0F , its inverse c−1

exists which implies that f(x) = c is a unit in F [x].

“ ⇐= :” Given that f(x) is a unit, then it is easy to see that f(x) 6= 0F [x]. Suppose,
for the sake of contradiction, that deg(f(x)) > 0, then let deg(f(x)) ≥ 1. Since F
is a field, F [x] is also a field, which implies that there exists some g(x) such that
f(x)g(x) = 1F [X] = 1F . Also, observe that deg(1F ) = deg(1F [x]) = deg(f(x)g(x)) =
deg(f(x)) + deg(g(x)) = 0. Since we assume that deg(f(x)) ≥ 1, it must be the case
that deg(g(x)) ≤ −1 which is a contradiction since a degree of a polynomial cannot be
negative. Thus, our assumption is wrong which means deg(f(x)) = 0.

2. Which of the following are subrings of the field R of real numbers.

a. A = {m+ n
√

2 | m,n ∈ Z , and n is even}
b. B = {m+ n

√
2 | m,n ∈ Z , and n is odd}

Solution. A is a subring of the field R. Let a = m + n
√

2 and b = r + s
√

2, where
m,n, s, t are some integers n, s are even, and a, b ∈ A. Then, a+b = (m+r)+(n+s)

√
2

which implies that a + b ∈ A because (n + s) must be an even number. Similarly,
ab = (mr + 2ns) + (ms + nr)

√
2 ∈ A because (ms + nr) must be even as well. We

have −a = −m + (−n)
√

2 ∈ A since −n is obviously even based on our assumption.
Finally, 1R = 1 + 0

√
2 which implies that 1R ∈ A. Thus, A satisfies all condition of a

subring of the field R.

B is not a subring of the field R because it violates the closure of addition. Namely,
consider b =

√
2 = 0 + 1

√
2 which implies that b ∈ B. But b + b = 0 + 2

√
2 which

implies that b+ b 6∈ B because 2 is an even number.

3. Prove the following ring isomorphism: Z[X]/(n,X) ∼= Zn, where (n,X) is the principal
ideal of Z[X] generated by n and X, for n ≥ 2.

Solution. Consider the following mapping function ρ : Z[X] → Zn. Note that ring
isomorphism is an equivalence relation (see Exercise 7.48, the proof should be similar to
that of Exercise 6.22 about group isomorphism, which was introduced in Discussion 7)
which implies transitivity. Thus, we can “decompose” ρ as follows: ρ1 : Z[X]→ Z and
ρ2 : Z → Zn. Specifically, ρ1(f(X)) = f(0) = p where f(X) ∈ Z[X] and p ∈ Z, and
ρ2(n) = q where q ∈ Zn. It is easy to see that ρ1 is homomorphic (proof ideas are very
simple and similar to those introduced in Discussion 9), and ρ2 simply does the modulo
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n arithmetic which is homomorphic by default. Thus, ρ has to be homomorphic as
well.

For some integers q ∈ Zn, we have some f(X) ∈ Z[X] such that ρ(f(X)) = q ∈ Z and
observe that Z ⊂ Z[X] because we can treat Z as the set of constant functions. This
means that ρ is surjective which implies that the image of ρ, Im(ρ) = Zn (i.e. the
surjective relation guarantees that all elements in Zn can be mapped to).

By definition of kernel of ρ, Ker(ρ) = {f(X) ∈ Z[X] | ρ(f(X)) = 0 ∈ Zn}. This means
that ρ1 maps f(X) to some integer p ∈ Z which is a multiple of n, namely p = na for
some integer a, which is congruent to 0 ∈ Zn.

By definition of principal ideal of Z[X], (n,X) = {nf(X) + Xf(X) | f(X) ∈ Z[X]}.
Notice that ρ1 does the mapping by substituting X = 0 which gives nf(0) +Xf(0) =
nf(0) ∈ Z, a multiple of n. Then, ρ2 obviously maps such nf(0) ∈ Z to 0Zn because
it does modulo n arithmetic. Therefore, we can easily see that Ker(ρ) = (n,X).

By Theorem 7.27 (First isomorphic theorem), we have Z[X]/Ker(ρ) ∼= Im(ρ) which
completes the proof of Z[X]/(n,X) ∼= Zn.
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Problem 4. Topics at Midterm.

1. Is there a number x which is congruent to 1, 2, 2, 1 under modulo 2, 3, 4, 5 respectively?

Solution. Assume there exists such x, we have the following system of congruences.

x ≡ 1 mod 2

x ≡ 2 mod 3

x ≡ 2 mod 4

x ≡ 1 mod 5

Note that we cannot apply the Chinese Remaindering Theorem (CRT) here because
the gcd(2, 4) = 2, in other words, the modulos are not relatively prime.

From the first congruence in the system, we have x = 2n + 1 which implies that x is
an odd number. However, from the third congruence, we have x = 4n′ + 2 = 2(n′ + 1)
which implies that x is an even number. Thus, we obtain a contradiction as a number
cannot be both even and odd, which implies that our assumption is wrong.

2. Find an integer n where n > 4 · ϕ(n)

Solution. Recall from Theorem 2.11, we have ϕ(n) = n · Πr
i=1(1 − 1/pi) if we have

the following prime factorization of n = Πr
i=1p

ei
i .

We want to find a number such that n > 4 · n · Πr
i=1(1 − 1/pi), or equivalently, we

find pi’s such that 1/4 > ·Πr
i=1(1− 1/pi) (as it is easy to see that the cancellation law

applies in this case). Note that Πr
i=1(1− 1/pi) gets smaller as we have larger values of

pi, so we make the following observation

r = 1 =⇒ (1− 1/2) = 1/2 > 1/4

r = 2 =⇒ (1− 1/2)(1− 1/3) = 1/2 · 1/3 > 1/4

r = 3 =⇒ (1− 1/2)(1− 1/3)(1− 1/5) = 1/2 · 1/3 · 4/5 > 1/4

r = 4 =⇒ (1− 1/2)(1− 1/3)(1− 1/5)(1− 1/7) = 1/2 · 1/3 · 4/5 · 6/7 < 1/4

Thus, if we choose r = 4, {pi}4i=1 to be the first four primes and and {ei}4i=1 to be all
1’s, then n = 2 · 3 · 5 · 7 = 210 and ϕ(n) = ϕ(210) = 210 · 1/2 · 1/3 · 4/5 · 6/7 = 48,
which satisfies n > 4 · ϕ(n) as 210 > 4 · 48 = 192.
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3. Find integers x and y such that 1064s+ 856t = gcd(1064, 856)

Solution. Use Extended Euclidean Algorithm (EEA), try to enumerate the steps
yourself. One possible answer is s = −37, t = 46, and gcd(1064, 856) = 8. Note that
your pair of s, t is not unique, using EEA in the textbook gives you one possibility.
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