CS 235: Algebraic Algorithms, Spring 2021

Practice Problems for Final Exam
Exam Date: 6:00PM, Tuesday, May 05, 2021.

Problem 1. Merten’s Theorem. For each positive integer k, let P, denote the product
of the first k primes. Show that ¢(Py) = ©(F;/ loglog Py).

Solution. Let {p;}¥_, denotes the set of first k primes which gives P, = I1¥_,p;,. Then, by
Theorem 2.11, we have

p(By) = Py - T, (1= 1/p;) = Py - T, (1 = 1/p)
Note that for p; > 2, (1 —1/p;) < 1 and Py > log P;,. Thus, we obtain the following
@(Pk’) =bB- Hpiﬁpk(l - 1/pi) <P HpiSIngk(l - 1/pi)

By Theorem 5.13, we have P - 1L, <j0gp, (1 — 1/p;) = ©(P;/ loglog Py;) which implies that
©(Py) = O(Py/ loglog Py)



Problem 2. Group Theory.

1. List the cosets of (7) in Z34. Is the quotient group Zis/(7) cyclic?

Solution. We have (7) = {1,7} and Zj; = {1,3,5,7,9,11,13,15}. Thus, the cosets
are (7) = {1,7}, 3(7) = {3,5}, 9(7) = {9, 15}, and 11(7) = {11, 13}.

Note that |Zi4/(7)| = 4 and order(3(7)) = 4 which implies that Zj;/(7) is a cyclic
group.

2. Are the groups Zo X Z1o X Zzs and Zy X Zy X Zg X Zg isomorphic?

Solution. We know that if two integers n, m are relatively primes, we have Z,,, =
Ly X Zon. This also applies for more than two integers as long as they are relatively
primes. Notice that 12 =3 -4 and 36 =4 -9, then we can “decompose” the group as
direct product of cyclic groups, namely, Zo X Zig X Zsg = Zo X Ly X Ly X Ly X ZLg.
Similarly, Z4 X Zy X Zig X Lig = Ly X Ly X Lo X L3 X Zg. Finally, we can see that both
groups have the same order of 864 which implies that Zg X Zyo X Zisg = 7oy X Loy X Lig X Zig.



Problem 3. Ring Theory.

1. Let F be a field and let f(z) be a non-zero polynomial in F[z|. Show that f(z) is a
unit in F[z] if and only if deg(f(x)) = 0.

Solution. “ = :" Assume deg(f(z)) = 0, then let f(z) = ¢ # Op, some constant,
which is a nonzero element of the field F'. Since F is a field and ¢ # O, its inverse ¢!
exists which implies that f(z) = ¢ is a unit in Flz].

“ <= " Given that f(x) is a unit, then it is easy to see that f(x) # Opp,). Suppose,
for the sake of contradiction, that deg(f(z)) > 0, then let deg(f(z)) > 1. Since F
is a field, F[x] is also a field, which implies that there exists some g(x) such that
f(x)g(x) = 1px) = 1p. Also, observe that deg(1p) = deg(lpp)) = deg(f(x)g(x)) =
deg(f(x)) + deg(g(x)) = 0. Since we assume that deg(f(x)) > 1, it must be the case
that deg(g(z)) < —1 which is a contradiction since a degree of a polynomial cannot be
negative. Thus, our assumption is wrong which means deg(f(x)) = 0.

2. Which of the following are subrings of the field R of real numbers.

a. A={m+nv2|m,n€7Z,and nis even}
b. B={m+nv2|m,n€Z,andn is odd}

Solution. A is a subring of the field R. Let a = m + nv2 and b = r + S\/ﬁ, where
m,n, s,t are some integers n, s are even, and a,b € A. Then, a+b = (m—i—r)—l—(n—i—s)\/ﬁ
which implies that a + b € A because (n + s) must be an even number. Similarly,
ab = (mr + 2ns) + (ms + nr)v/2 € A because (ms + nr) must be even as well. We
have —a = —m + (—n)v/2 € A since —n is obviously even based on our assumption.
Finally, 1z = 1 + 0v/2 which implies that 1z € A. Thus, A satisfies all condition of a
subring of the field R.

B is not a subring of the field R because it violates the closure of addition. Namely,
consider b = v/2 = 0 + 1v/2 which implies that b € B. But b+b = 0+ 24/2 which
implies that b 4+ b ¢ B because 2 is an even number.

3. Prove the following ring isomorphism: Z[X|/(n, X) = Z,, where (n, X) is the principal
ideal of Z[X] generated by n and X, for n > 2.

Solution. Consider the following mapping function p : Z[X| — Z,. Note that ring
isomorphism is an equivalence relation (see Exercise 7.48; the proof should be similar to
that of Exercise 6.22 about group isomorphism, which was introduced in Discussion 7)
which implies transitivity. Thus, we can “decompose” p as follows: p; : Z[X| — Z and
p2 L — L. Specifically, p1(f(X)) = f(0) = p where f(X) € Z[X] and p € Z, and
p2(n) = q where q € Z,,. 1t is easy to see that p; is homomorphic (proof ideas are very
simple and similar to those introduced in Discussion 9), and ps simply does the modulo
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n arithmetic which is homomorphic by default. Thus, p has to be homomorphic as
well.

For some integers ¢ € Z,,, we have some f(X) € Z[X] such that p(f(X)) =¢ € Z and
observe that Z C Z[X] because we can treat Z as the set of constant functions. This
means that p is surjective which implies that the image of p, Im(p) = Z, (i.e. the
surjective relation guarantees that all elements in Z, can be mapped to).

By definition of kernel of p, Ker(p) = {f(X) € Z[X] | p(f(X)) =0 € Z,}. This means
that p; maps f(X) to some integer p € Z which is a multiple of n, namely p = na for
some integer a, which is congruent to 0 € Z,.

By definition of principal ideal of Z[X], (n, X) = {nf(X) + X f(X) | f(X) € Z[X]}.
Notice that p; does the mapping by substituting X = 0 which gives nf(0) + X f(0) =
nf(0) € Z, a multiple of n. Then, py obviously maps such nf(0) € Z to 0Z,, because
it does modulo n arithmetic. Therefore, we can easily see that Ker(p) = (n, X).

By Theorem 7.27 (First isomorphic theorem), we have Z[X]/Ker(p) = Im(p) which
completes the proof of Z[X|/(n, X) = Z,.



Problem 4. Topics at Midterm.

1. Is there a number x which is congruent to 1, 2,2, 1 under modulo 2, 3,4, 5 respectively?

Solution. Assume there exists such x, we have the following system of congruences.

xr =1 mod 2
x =2 mod 3
x =2 mod 4
x=1mod 5

Note that we cannot apply the Chinese Remaindering Theorem (CRT) here because
the ged(2,4) = 2, in other words, the modulos are not relatively prime.

From the first congruence in the system, we have x = 2n + 1 which implies that x is
an odd number. However, from the third congruence, we have x = 4n’ +2 = 2(n’ + 1)
which implies that x is an even number. Thus, we obtain a contradiction as a number
cannot be both even and odd, which implies that our assumption is wrong.

2. Find an integer n where n > 4 - ¢(n)

Solution. Recall from Theorem 2.11, we have ¢(n) = n - II}_; (1 — 1/p;) if we have
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the following prime factorization of n = II/_, ps".

We want to find a number such that n > 4 -n - IIl_,(1 — 1/p;), or equivalently, we
find p;’s such that 1/4 > -II_, (1 — 1/p;) (as it is easy to see that the cancellation law
applies in this case). Note that IT7_, (1 — 1/p;) gets smaller as we have larger values of
pi, so we make the following observation

r=1= (1-1/2)=1/2>1/4
r=2 = (1-1/2)(1-1/3)=1/2-1/3>1/4
r=3 = (1-1/2)(1—-1/3)(1—-1/5)=1/2-1/3-4/5> 1/4
r=4 = (1-1/2)(1-1/3)1—1/5)(1—=1/7) =1/2-1/3-4/5-6/7 < 1/4
Thus, if we choose r = 4, {p;}}_, to be the first four primes and and {e;}}_, to be all

I’s,thenn =2-3-5-7 =210 and p(n) = ¢(210) =210-1/2-1/3-4/5-6/7 = 48,
which satisfies n > 4 - ¢(n) as 210 > 4 - 48 = 192.



3. Find integers x and y such that 1064s + 856t = ged(1064, 856)

Solution. Use Extended Euclidean Algorithm (EEA), try to enumerate the steps
yourself. One possible answer is s = —37,¢ = 46, and ged(1064, 856) = 8. Note that
your pair of s,t is not unique, using EEA in the textbook gives you one possibility.



