CS 235: Algebraic Algorithms, Spring 2021

 Practice Problems for Final Exam

 Practice Problems for Final Exam}

Exam Date: 6:00PM, Tuesday, May $05^{\text {th }}, 2021$.
Problem 1. Merten's Theorem. For each positive integer k, let P_{k} denote the product of the first k primes. Show that $\varphi\left(P_{k}\right)=\Theta\left(P_{k} / \log \log P_{k}\right)$.

Problem 2. Group Theory.

1. List the cosets of $\langle 7\rangle$ in \mathbb{Z}_{16}^{*}. Is the quotient group $\mathbb{Z}_{16}^{*} /\langle 7\rangle$ cyclic?
2. Are the groups $\mathbb{Z}_{2} \times \mathbb{Z}_{12} \times \mathbb{Z}_{36}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6} \times \mathbb{Z}_{9}$ isomorphic?

Problem 3. Ring Theory.

1. Let F be a field and let $f(x)$ be a non-zero polynomial in $F[x]$. Show that $f(x)$ is a unit in $F[x]$ if and only if $\operatorname{deg}(f(x))=0$.

2 . Which of the following are subrings of the field \mathbb{R} of real numbers.
a. $A=\{m+n \sqrt{2} \mid m, n \in \mathbb{Z}$, and n is even $\}$
b. $B=\{m+n \sqrt{2} \mid m, n \in \mathbb{Z}$, and n is odd $\}$
3. Prove the following ring isomorphism: $\mathbb{Z}[X] /(n, X) \cong \mathbb{Z}_{n}$, where (n, X) is the principal ideal of $\mathbb{Z}[X]$ generated by n and X, for $n \geq 2$.

Problem 4. Topics at Midterm.

1. Is there a number x which is congruent to $1,2,2,1$ under modulo $2,3,4,5$ respectively?
2. Find an integer n where $n>4 \cdot \varphi(n)$
3. Find integers x and y such that $1064 s+856 t=\operatorname{gcd}(1064,856)$
