CS 235: Algebraic Algorithms, Spring 2021 Practice Exercises Before Midterm

Exam Date: Wednesday, March $10^{\text {th }}, 2021$.

Problem 1. Prove that $\operatorname{gcd}(n,(n-1)!)=1$ if and only if n is prime.

Solution. " \Longrightarrow ": Since $\operatorname{gcd}(n,(n-1)!)=1$, and $(n-1)!=1 \cdot 2 \cdot 3 \ldots(n-1), n$ has no common divisor with any number below it which implies that n is prime by the definition of a prime number. Otherwise, $\operatorname{gcd}(n,(n-1)!)>1$ which contradicts the assumption.
$" \Longleftarrow "$: Since n is prime, $(n-1)!=1 \cdot 2 \cdot 3 \ldots(n-1)$ has no factor in common with $n=1 \cdot n$ (besides 1) and in fact they are all smaller. This means that n and $(n-1)!$ has no common divisors. Thus, $\operatorname{gcd}(n,(n-1)!)=1$.

Problem 2. This question has two sub-problems
(i) Find the additive inverse and multiplicative inverse of 11 in \mathbb{Z}_{19}. Is 11 a perfect square in \mathbb{Z}_{19} (i.e. is there a value of $x \in \mathbb{Z}_{19}$ such that $\left.x^{2} \equiv 11(\bmod 19)\right)$?

Solution. Additive inverse $=8$. Reason: $8+11=19 \equiv 0(\bmod 19)$.
Multiplicative inverse $=7$. Reason: $7 \cdot 11=77 \equiv 1(\bmod 19)$.
Perfect square $=\{7,12\}$. Reason: $7^{2}=49 \equiv 11(\bmod 19)$ and $12^{2}=144 \equiv$ $11(\bmod 19)$.
(ii) Show that $\varphi\left(12^{k}\right)=\varphi(12) \cdot 12^{k-1}$ where φ is the Euler's totient function.

Solution. We have: $\varphi(12)=\varphi\left(2^{2} \cdot 3\right)=\varphi\left(2^{2}\right) \cdot \varphi(3)=2^{1}(2-1) \cdot 3^{0}(3-1)=2 \cdot 2=4$ (by Theorem 2.10 and Theorem 2.11).
By a similar argument, we have: $\varphi\left(12^{k}\right)=\varphi\left(2^{2 k} \cdot 3^{k}\right)=\varphi\left(2^{2 k}\right) \cdot \varphi\left(3^{k}\right)=2^{2 k-1}(2-1)$. $3^{k-1}(3-1)=2^{2 k} \cdot 3^{k-1}=4^{k} \cdot 3^{k-1}=4 \cdot 4^{k-1} \cdot 3^{k-1}=4 \cdot 12^{k-1}$.
Hence, $\varphi\left(12^{k}\right)=\varphi(12) \cdot 12^{k-1}$

Problem 3. Let $a, b, n, n^{\prime} \in \mathbb{Z}$ with $n>0, n^{\prime}>0$, and $\operatorname{gcd}\left(n, n^{\prime}\right)=1$. Show that if $a \equiv b(\bmod n)$ and $a \equiv b\left(\bmod n^{\prime}\right)$, then $a \equiv b\left(\bmod n n^{\prime}\right)$.

Then, use the statement above to show that $\left(x^{\varphi(y)}+y^{\varphi(x)}\right) \equiv 1(\bmod x y)$, where x, y are distinct primes, and φ is the Euler's totient function.

Solution. Let $a \equiv b(\bmod n)$ and $a \equiv b\left(\bmod n^{\prime}\right)$ for some $a, b, n n n^{\prime} \in \mathbb{Z}$, then $n \mid(a-b)$ and $n^{\prime} \mid(a-b)$ by the definition of congruence. This implies that $(a-b)$ is a common multiple of n and n^{\prime} and therefore, $\operatorname{lcm}\left(n n^{\prime}\right) \mid(a-b)$ or equivalently, $a \equiv b\left(\bmod \operatorname{lcm}\left(n n^{\prime}\right)\right)$. Furthermore, we have $n n^{\prime}=\operatorname{gcd}\left(n n^{\prime}\right) \cdot \operatorname{lcm}\left(n n^{\prime}\right)$ (proved in Exercise 1.21a, Homework 1), which implies $n n^{\prime}=1 \cdot \operatorname{lcm}\left(n n^{\prime}\right)=\operatorname{lcm}\left(n n^{\prime}\right)$. Hence, $a \equiv b\left(\bmod n n^{\prime}\right)$.

We have $x^{\varphi(y)} \equiv 1(\bmod y)$ by Euler's Theorem and $x^{\varphi(y)} \equiv 0(\bmod x)$. Thus, by Theorem 2.3, we have $\left(x^{\varphi(y)}+y^{\varphi(x)}\right) \equiv 1+0=1(\bmod y)$. By the same argument, we obtain $\left(x^{\varphi(y)}+y^{\varphi(x)}\right) \equiv 1(\bmod x)$. Previously, we have shown that $a \equiv b\left(\bmod n n^{\prime}\right)$. Thus, letting $a=\left(x^{\varphi(y)}+y^{\varphi(x)}\right), b=1, n n^{\prime}=x y$, we obtain $\left(x^{\varphi(y)}+y^{\varphi(x)}\right) \equiv 1(\bmod x y)$.

Problem 4. Consider the system of congruences

$$
\begin{aligned}
x & \equiv 6(\bmod 7) \\
x & \equiv 6(\bmod 11) \\
x & \equiv 3(\bmod 13)
\end{aligned}
$$

Find one solution to the above system. Then, describe all integer solutions to the system.

Solution. Observe that the first two congruences have solution $x=6$ and the Chinese Remainder Theorem (CRT) tells us that this solution is unique modulo $7 \cdot 11=77$ because $\operatorname{gcd}(7,11)=1$. Thus, we can "group" the first two congruences in the system into one, that is, $x \equiv 6(\bmod 77)$, and we obtain the new system:

$$
\begin{aligned}
& x \equiv 6(\bmod 77) \\
& x \equiv 3(\bmod 13)
\end{aligned}
$$

By the definition of congruence and for some integers a and b, we rewrite the system as follow:

$$
\begin{aligned}
& x=6+77 a \\
& x=3+13 b
\end{aligned}
$$

In other words, $6+77 a=3+13 b \Longleftrightarrow 77 a-13 b=-3$. Clearly, this equation has a solution because $\operatorname{gcd}(77,13)=1$ (by Theorem 2.5) and now, we want to find integers a and b that satisfy this linear combination.

To this end, we will first find integers a^{\prime} and b^{\prime} that satisfy $77 a^{\prime}+13 b^{\prime}=1$, and clearly this equation has a solution because of the same reason above. We can then obtain $a=$ $(-3) a^{\prime}$ and $b=3 b^{\prime}$ by multiplying both sides of the previous equation by -3 , namely, $77\left(-3 a^{\prime}\right)-13\left(3 b^{\prime}\right)=-3$.

We run Extended Euclidean Algorithm (EEA) on input $(77,13)$ and obtain $a^{\prime}=-1$ and $b^{\prime}=6$. Sanity check: $77 \cdot(-1)+13 \cdot 6=-77+78=1$. (I did not include my calculation here for simplicity but you have to show the steps of EEA in your paper). Therefore, we obtain $a=(-3) a^{\prime}=3$ and $b=3 b^{\prime}=18$ which satisfy $77 a-13 b=77 \cdot 3-13 \cdot 18=231-234=-3$.

Substitute $a=3$ to $x=6+77 a$ we obtain $x=237$ which is one solution to the given system. Since 7, 11, and 13 are pairwise relatively prime, the solution of the given system is unique modulo $7 \cdot 11 \cdot 13=1001$ by CRT. We have shown that $x=237$ is one solution, and therefore; we can describe all solutions as $x \equiv 237(\bmod 1001)$.

