Problem 1. Prove that $\gcd(n, (n-1)!) = 1$ if and only if n is prime.

Solution. \(\implies \) Since $\gcd(n, (n-1)!) = 1$, and $(n-1)! = 1 \cdot 2 \cdot 3 \ldots (n-1)$, n has no common divisor with any number below it which implies that n is prime by the definition of a prime number. Otherwise, $\gcd(n, (n-1)!)>1$ which contradicts the assumption.

\(\impliedby \) Since n is prime, $(n-1)! = 1 \cdot 2 \cdot 3 \ldots (n-1)$ has no factor in common with $n = 1 \cdot n$ (besides 1) and in fact they are all smaller. This means that n and $(n-1)!$ has no common divisors. Thus, $\gcd(n, (n-1)!)=1$.
Problem 2. This question has two sub-problems

(i) Find the additive inverse and multiplicative inverse of 11 in \(\mathbb{Z}_{19} \). Is 11 a perfect square in \(\mathbb{Z}_{19} \) (i.e. is there a value of \(x \in \mathbb{Z}_{19} \) such that \(x^2 \equiv 11 \pmod{19} \))?

Solution. Additive inverse = 8. Reason: \(8 + 11 = 19 \equiv 0 \pmod{19} \).

Multiplicative inverse = 7. Reason: \(7 \cdot 11 = 77 \equiv 1 \pmod{19} \).

Perfect square = \{7, 12\}. Reason: \(7^2 = 49 \equiv 11 \pmod{19} \) and \(12^2 = 144 \equiv 11 \pmod{19} \).

(ii) Show that \(\varphi(12^k) = \varphi(12) \cdot 12^{k-1} \) where \(\varphi \) is the Euler’s totient function.

Solution. We have: \(\varphi(12) = \varphi(2^2 \cdot 3) = \varphi(2^2) \cdot \varphi(3) = 2^1(2 - 1) \cdot 3^0(3 - 1) = 2 \cdot 2 = 4 \) (by Theorem 2.10 and Theorem 2.11).

By a similar argument, we have: \(\varphi(12^k) = \varphi(2^{2k} \cdot 3^k) = \varphi(2^{2k}) \cdot \varphi(3^k) = 2^{2k-1}(2 - 1) \cdot 3^{k-1}(3 - 1) = 2^{2k} \cdot 3^{k-1} = 4k \cdot 3^{k-1} = 4 \cdot 4^{k-1} \cdot 3^{k-1} = 4 \cdot 12^{k-1} \).

Hence, \(\varphi(12^k) = \varphi(12) \cdot 12^{k-1} \).
Problem 3. Let $a, b, n, n' \in \mathbb{Z}$ with $n > 0$, $n' > 0$, and $\gcd(n, n') = 1$. Show that if $a \equiv b \pmod{n}$ and $a \equiv b \pmod{n'}$, then $a \equiv b \pmod{nn'}$.

Then, use the statement above to show that $(x^{\varphi(y)} + y^{\varphi(x)}) \equiv 1 \pmod{xy}$, where x, y are distinct primes, and φ is the Euler’s totient function.

Solution. Let $a \equiv b \pmod{n}$ and $a \equiv b \pmod{n'}$ for some $a, b, nnn' \in \mathbb{Z}$, then $n \mid (a - b)$ and $n' \mid (a - b)$ by the definition of congruence. This implies that $(a - b)$ is a common multiple of n and n' and therefore, $\text{lcm}(nn') \mid (a - b)$ or equivalently, $a \equiv b \pmod{\text{lcm}(nn')}$. Furthermore, we have $nn' = \gcd(nn') \cdot \text{lcm}(nn')$ (proved in Exercise 1.21a, Homework 1), which implies $nn' = 1 \cdot \text{lcm}(nn') = \text{lcm}(nn')$. Hence, $a \equiv b \pmod{nn'}$.

We have $x^{\varphi(y)} \equiv 1 \pmod{y}$ by Euler’s Theorem and $x^{\varphi(y)} \equiv 0 \pmod{x}$. Thus, by Theorem 2.3, we have $(x^{\varphi(y)} + y^{\varphi(x)}) \equiv 1 + 0 = 1 \pmod{y}$. By the same argument, we obtain $(x^{\varphi(y)} + y^{\varphi(x)}) \equiv 1 \pmod{x}$. Previously, we have shown that $a \equiv b \pmod{nn'}$. Thus, letting $a = (x^{\varphi(y)} + y^{\varphi(x)}), b = 1, nn' = xy$, we obtain $(x^{\varphi(y)} + y^{\varphi(x)}) \equiv 1 \pmod{xy}$.
Problem 4. Consider the system of congruences

\[
\begin{align*}
 x &\equiv 6 \pmod{7} \\
 x &\equiv 6 \pmod{11} \\
 x &\equiv 3 \pmod{13}
\end{align*}
\]

Find one solution to the above system. Then, describe all integer solutions to the system.

Solution. Observe that the first two congruences have solution \(x = 6 \) and the Chinese Remainder Theorem (CRT) tells us that this solution is unique modulo \(7 \cdot 11 = 77 \) because \(\gcd(7, 11) = 1 \). Thus, we can "group" the first two congruences in the system into one, that is, \(x \equiv 6 \pmod{77} \), and we obtain the new system:

\[
\begin{align*}
 x &\equiv 6 \pmod{77} \\
 x &\equiv 3 \pmod{13}
\end{align*}
\]

By the definition of congruence and for some integers \(a \) and \(b \), we rewrite the system as follow:

\[
\begin{align*}
 x &= 6 + 77a \\
 x &= 3 + 13b
\end{align*}
\]

In other words, \(6 + 77a = 3 + 13b \) \(\iff \) \(77a - 13b = -3 \). Clearly, this equation has a solution because \(\gcd(77, 13) = 1 \) (by Theorem 2.5) and now, we want to find integers \(a \) and \(b \) that satisfy this linear combination.

To this end, we will first find integers \(a' \) and \(b' \) that satisfy \(77a' + 13b' = 1 \), and clearly this equation has a solution because of the same reason above. We can then obtain \(a = (-3)a' \) and \(b = 3b' \) by multiplying both sides of the previous equation by \(-3\), namely, \(77(-3a') - 13(3b') = -3 \).

We run Extended Euclidean Algorithm (EEA) on input \((77, 13) \) and obtain \(a' = -1 \) and \(b' = 6 \). Sanity check: \(77 \cdot (-1) + 13 \cdot 6 = -77 + 78 = 1 \). (I did not include my calculation here for simplicity but you have to show the steps of EEA in your paper). Therefore, we obtain \(a = (-3)a' = 3 \) and \(b = 3b' = 18 \) which satisfy \(77a - 13b = 77 \cdot 3 - 13 \cdot 18 = 231 - 234 = -3 \).

Substitute \(a = 3 \) to \(x = 6 + 77a \) we obtain \(x = 237 \) which is one solution to the given system. Since 7, 11, and 13 are pairwise relatively prime, the solution of the given system is unique modulo \(7 \cdot 11 \cdot 13 = 1001 \) by CRT. We have shown that \(x = 237 \) is one solution, and therefore; we can describe all solutions as \(x \equiv 237 \pmod{1001} \).