
CS 235: Algebraic Algorithms, Spring 2021

Practice Exercises Before Midterm
Exam Date: Wednesday, March 10th, 2021.

Problem 1. Prove that gcd(n, (n− 1)!) = 1 if and only if n is prime.

Solution. “=⇒”: Since gcd(n, (n − 1)!) = 1, and (n − 1)! = 1 · 2 · 3 . . . (n − 1), n has no
common divisor with any number below it which implies that n is prime by the definition of
a prime number. Otherwise, gcd(n, (n− 1)!) > 1 which contradicts the assumption.

”⇐=”: Since n is prime, (n − 1)! = 1 · 2 · 3 . . . (n − 1) has no factor in common with
n = 1 · n (besides 1) and in fact they are all smaller. This means that n and (n− 1)! has no
common divisors. Thus, gcd(n, (n− 1)!) = 1.
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Problem 2. This question has two sub-problems

(i) Find the additive inverse and multiplicative inverse of 11 in Z19. Is 11 a perfect square
in Z19 (i.e. is there a value of x ∈ Z19 such that x2 ≡ 11 (mod 19))?

Solution. Additive inverse = 8. Reason: 8 + 11 = 19 ≡ 0 (mod 19).

Multiplicative inverse = 7. Reason: 7 · 11 = 77 ≡ 1 (mod 19).

Perfect square = {7, 12}. Reason: 72 = 49 ≡ 11 (mod 19) and 122 = 144 ≡
11 (mod 19).

(ii) Show that ϕ(12k) = ϕ(12) · 12k−1 where ϕ is the Euler’s totient function.

Solution. We have: ϕ(12) = ϕ(22 ·3) = ϕ(22) ·ϕ(3) = 21(2−1) ·30(3−1) = 2 ·2 = 4
(by Theorem 2.10 and Theorem 2.11).

By a similar argument, we have: ϕ(12k) = ϕ(22k · 3k) = ϕ(22k) · ϕ(3k) = 22k−1(2− 1) ·
3k−1(3− 1) = 22k · 3k−1 = 4k · 3k−1 = 4 · 4k−1 · 3k−1 = 4 · 12k−1.

Hence, ϕ(12k) = ϕ(12) · 12k−1
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Problem 3. Let a, b, n, n′ ∈ Z with n > 0, n′ > 0, and gcd(n, n′) = 1. Show that if
a ≡ b (mod n) and a ≡ b (mod n′), then a ≡ b (mod nn′).

Then, use the statement above to show that (xϕ(y) + yϕ(x)) ≡ 1 (mod xy), where x, y are
distinct primes, and ϕ is the Euler’s totient function.

Solution. Let a ≡ b (mod n) and a ≡ b (mod n′) for some a, b, nnn′ ∈ Z, then n | (a− b)
and n′ | (a − b) by the definition of congruence. This implies that (a − b) is a common
multiple of n and n′ and therefore, lcm(nn′) | (a− b) or equivalently, a ≡ b (mod lcm(nn′)).
Furthermore, we have nn′ = gcd(nn′) · lcm(nn′) (proved in Exercise 1.21a, Homework 1),
which implies nn′ = 1 · lcm(nn′) = lcm(nn′). Hence, a ≡ b (mod nn′).

We have xϕ(y) ≡ 1 (mod y) by Euler’s Theorem and xϕ(y) ≡ 0 (mod x). Thus, by
Theorem 2.3, we have (xϕ(y) +yϕ(x)) ≡ 1 + 0 = 1 (mod y). By the same argument, we obtain
(xϕ(y) + yϕ(x)) ≡ 1 (mod x). Previously, we have shown that a ≡ b (mod nn′). Thus, letting
a = (xϕ(y) + yϕ(x)), b = 1, nn′ = xy, we obtain (xϕ(y) + yϕ(x)) ≡ 1 (mod xy).
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Problem 4. Consider the system of congruences

x ≡ 6 (mod 7)

x ≡ 6 (mod 11)

x ≡ 3 (mod 13)

Find one solution to the above system. Then, describe all integer solutions to the system.

Solution. Observe that the first two congruences have solution x = 6 and the Chinese
Remainder Theorem (CRT) tells us that this solution is unique modulo 7 · 11 = 77 because
gcd(7, 11) = 1. Thus, we can ”group” the first two congruences in the system into one, that
is, x ≡ 6 (mod 77), and we obtain the new system:

x ≡ 6 (mod 77)

x ≡ 3 (mod 13)

By the definition of congruence and for some integers a and b, we rewrite the system as
follow:

x = 6 + 77a

x = 3 + 13b

In other words, 6 + 77a = 3 + 13b ⇐⇒ 77a − 13b = −3. Clearly, this equation has a
solution because gcd(77, 13) = 1 (by Theorem 2.5) and now, we want to find integers a and
b that satisfy this linear combination.

To this end, we will first find integers a′ and b′ that satisfy 77a′ + 13b′ = 1, and clearly
this equation has a solution because of the same reason above. We can then obtain a =
(−3)a′ and b = 3b′ by multiplying both sides of the previous equation by −3, namely,
77(−3a′)− 13(3b′) = −3.

We run Extended Euclidean Algorithm (EEA) on input (77, 13) and obtain a′ = −1 and
b′ = 6. Sanity check: 77 · (−1)+13 ·6 = −77+78 = 1. (I did not include my calculation here
for simplicity but you have to show the steps of EEA in your paper). Therefore, we obtain
a = (−3)a′ = 3 and b = 3b′ = 18 which satisfy 77a− 13b = 77 · 3− 13 · 18 = 231− 234 = −3.

Substitute a = 3 to x = 6 + 77a we obtain x = 237 which is one solution to the given
system. Since 7, 11, and 13 are pairwise relatively prime, the solution of the given system is
unique modulo 7 · 11 · 13 = 1001 by CRT. We have shown that x = 237 is one solution, and
therefore; we can describe all solutions as x ≡ 237 (mod 1001).
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