CS 235: Algebraic Algorithms, Spring 2021
 Practice Exercises Before Midterm

Exam Date: Wednesday, March $10^{\text {th }}, 2021$.

Problem 1. Prove that $\operatorname{gcd}(n,(n-1)!)=1$ if and only if n is prime.

Problem 2. This question has two sub-problems
(i) Find the additive inverse and multiplicative inverse of 11 in \mathbb{Z}_{19}. Is 11 a perfect square in \mathbb{Z}_{19} (i.e. is there a value of $x \in \mathbb{Z}_{19}$ such that $\left.x^{2} \equiv 11(\bmod 19)\right)$?
(ii) Show that $\varphi\left(12^{k}\right)=\varphi(12) \cdot 12^{k-1}$ where φ is the Euler's totient function.

Problem 3. Let $a, b, n, n^{\prime} \in \mathbb{Z}$ with $n>0, n^{\prime}>0$, and $\operatorname{gcd}\left(n, n^{\prime}\right)=1$. Show that if $a \equiv b(\bmod n)$ and $a \equiv b\left(\bmod n^{\prime}\right)$, then $a \equiv b\left(\bmod n n^{\prime}\right)$.

Then, use the statement above to show that $\left(x^{\varphi(y)}+y^{\varphi(x)}\right) \equiv 1(\bmod x y)$ where x, y are distinct primes, and φ is the Euler's totient function.

Problem 4. Consider the system of congruences

$$
\begin{aligned}
x & \equiv 6(\bmod 7) \\
x & \equiv 6(\bmod 11) \\
x & \equiv 3(\bmod 13)
\end{aligned}
$$

Find one solution to the above system. Then, describe all integer solutions to the system.

