CS 235: Algebraic Algorithms, Spring 2021
 Midterm Exam

Date: Wednesday, March 10, 2021.

Problem 1. Find integers $a, b, c>1$ satisfying the system of equations: $a \cdot c=647701, b \cdot c=$ 690497. Describe the method used.

Solution. We have: $a \cdot c=647701, b \cdot c=690497$, then c is a common divisor of 647701 and 690497, so let it be the greatest common divisor.

To find $\operatorname{gcd}(647701,690497)$, we run the Euclidean Algorithm on input $a=690497$ and $b=647701$. The steps are as follows:

$$
\begin{gathered}
690497=647701 \cdot 1+42796 \longrightarrow q_{1}=1, r_{1}=42796 \\
647701=42796 \cdot 15+5761 \longrightarrow q_{2}=15, r_{2}=5761 \\
42796=5761 \cdot 7+2469 \longrightarrow q_{3}=7, r_{3}=2469 \\
5761=2469 \cdot 2+823 \longrightarrow q_{4}=2, r_{4}=823 \\
2469=823 \cdot 3+0 \longrightarrow q_{5}=3, r_{5}=0
\end{gathered}
$$

Since $r_{5}=0, \operatorname{gcd}(690497,647701)=r_{4}=823$. Hence, $c=\operatorname{gcd}(690497,647701)=823$, $a=647701 / 823=787$ and $b=690497 / 823=839$

Problem 2. The Extended Euclidean Algorithm expresses $\operatorname{gcd}(a, b)$ as $d=a s-b t$. Can these s, t be both odd? Both even? Explain.

Solution. s and t can be both odd. Proof of existence: $\operatorname{gcd}(3,2)=1$ and running EEA on inputs $a=3$ and $b=2$ gives the linear combination $3 \cdot 1-2 \cdot 1=1$ where $s=1$ and $t=1$ which are both odd.

However, s and t cannot be both even. Assume, for the sake of contradiction, that s and t are even, then we can express $s=2 s^{\prime}$ and $t=2 t^{\prime}$ for some integers s^{\prime}, t^{\prime}. This means that $\operatorname{gcd}(s, t)>1$ as it is at least 2 , which contradicts Theorem 4.3 (iii) which says $\operatorname{gcd}(s, t)=1$.

Problem 3. Is the pair of congruences $x \equiv a(\bmod 30), x \equiv b(\bmod 35)$ solvable for every a, b ? Explain.

Solution. Observe that the prime factorisation of 30 is $2 \cdot 3 \cdot 5=30$. Therefore, by CRT, the congruence $x \equiv a(\bmod 30)$ can be expressed as the following system:

$$
\begin{aligned}
& x \equiv a(\bmod 2) \\
& x \equiv a(\bmod 3) \\
& x \equiv a(\bmod 5)
\end{aligned}
$$

Similarly, we can express $b \equiv a(\bmod 35)$ as:

$$
\begin{aligned}
& x \equiv b(\bmod 5) \\
& x \equiv b(\bmod 7)
\end{aligned}
$$

This means that if the given system is solvable, then it must be the case that $a \equiv b(\bmod 5)$ (by CRT), or simply $5 \mid(a-b)$.

Hence, the system is not solvable for every arbitrary a and b, unless $5 \mid(a-b)$.

Problem 4. Describe a polynomial time algorithm to decide for prime p and integers $a \in$ $[0, p)$ if the equation $\left(x^{2} \bmod p\right)=a$ has solution. Explain fully.

Solution. Observe that asking whether the equation $\left(x^{2} \bmod p\right)=a$ has a solution is equivalent to asking whether $a \in\left(\mathbb{Z}_{p}^{*}\right)^{2}$. By Euler's Criterion, if $a \in\left(\mathbb{Z}_{p}^{*}\right)^{2}$, then $a^{(p-1) / 2}=1$ and if $a \notin\left(\mathbb{Z}_{p}^{*}\right)^{2}$, then $a^{(p-1) / 2}=-1$.

Thus, we can design an algorithm as follow: calculate $a^{(p-1) / 2}$ in \mathbb{Z}_{p} then check if the result equals to -1 ; if not, return a yes answer; else, return a no answer. By section 3.4, evaluating some a^{e} in \mathbb{Z}_{n} for any integer n takes time $O\left(\|e\| \cdot\|n\|^{2}\right)$. In our case, evaluating $a^{(p-1) / 2}$ in \mathbb{Z}_{p} takes time $O\left(\|(p-1) / 2\| \cdot\|p\|^{2}\right) \sim O\left(\|p\|^{2}\right)$ which is polynomial time.

