Problem 1. Find integers $a, b, c > 1$ satisfying the system of equations: $a \cdot c = 647701$, $b \cdot c = 690497$. Describe the method used.

Solution. We have: $a \cdot c = 647701$, $b \cdot c = 690497$, then c is a common divisor of 647701 and 690497, so let it be the greatest common divisor.

To find $\text{gcd}(647701, 690497)$, we run the Euclidean Algorithm on input $a = 690497$ and $b = 647701$. The steps are as follows:

\[
\begin{align*}
690497 &= 647701 \cdot 1 + 42796 \quad \rightarrow q_1 = 1, \quad r_1 = 42796 \\
647701 &= 42796 \cdot 15 + 5761 \quad \rightarrow q_2 = 15, \quad r_2 = 5761 \\
42796 &= 5761 \cdot 7 + 2469 \quad \rightarrow q_3 = 7, \quad r_3 = 2469 \\
5761 &= 2469 \cdot 2 + 823 \quad \rightarrow q_4 = 2, \quad r_4 = 823 \\
2469 &= 823 \cdot 3 + 0 \quad \rightarrow q_5 = 3, \quad r_5 = 0
\end{align*}
\]

Since $r_5 = 0$, $\text{gcd}(690497, 647701) = r_4 = 823$. Hence, $c = \text{gcd}(690497, 647701) = 823$, $a = 647701/823 = 787$ and $b = 690497/823 = 839$
Problem 2. The Extended Euclidean Algorithm expresses \(\gcd(a,b) \) as \(d = as - bt \). Can these \(s, t \) be both odd? Both even? Explain.

Solution. \(s \) and \(t \) can be both odd. Proof of existence: \(\gcd(3,2) = 1 \) and running EEA on inputs \(a = 3 \) and \(b = 2 \) gives the linear combination \(3 \cdot 1 - 2 \cdot 1 = 1 \) where \(s = 1 \) and \(t = 1 \) which are both odd.

However, \(s \) and \(t \) cannot be both even. Assume, for the sake of contradiction, that \(s \) and \(t \) are even, then we can express \(s = 2s' \) and \(t = 2t' \) for some integers \(s', t' \). This means that \(\gcd(s, t) > 1 \) as it is at least 2, which contradicts Theorem 4.3 (iii) which says \(\gcd(s, t) = 1 \).
Problem 3. Is the pair of congruences $x \equiv a \pmod{30}, \ x \equiv b \pmod{35}$ solvable for every a, b? Explain.

Solution. Observe that the prime factorisation of 30 is $2 \cdot 3 \cdot 5 = 30$. Therefore, by CRT, the congruence $x \equiv a \pmod{30}$ can be expressed as the following system:

$$
\begin{align*}
x & \equiv a \pmod{2} \\
x & \equiv a \pmod{3} \\
x & \equiv a \pmod{5}
\end{align*}
$$

Similarly, we can express $b \equiv a \pmod{35}$ as:

$$
\begin{align*}
x & \equiv b \pmod{5} \\
x & \equiv b \pmod{7}
\end{align*}
$$

This means that if the given system is solvable, then it must be the case that $a \equiv b \pmod{5}$ (by CRT), or simply $5 | (a - b)$.

Hence, the system is **not** solvable for every arbitrary a and b, **unless** $5 | (a - b)$.
Problem 4. Describe a polynomial time algorithm to decide for prime p and integers $a \in [0,p)$ if the equation $(x^2 \pmod{p}) = a$ has solution. Explain fully.

Solution. Observe that asking whether the equation $(x^2 \pmod{p}) = a$ has a solution is equivalent to asking whether $a \in (\mathbb{Z}_p^*)^2$. By Euler’s Criterion, if $a \in (\mathbb{Z}_p^*)^2$, then $a^{(p-1)/2} = 1$ and if $a \notin (\mathbb{Z}_p^*)^2$, then $a^{(p-1)/2} = -1$.

Thus, we can design an algorithm as follow: calculate $a^{(p-1)/2}$ in \mathbb{Z}_p then check if the result equals to -1; if not, return a yes answer; else, return a no answer. By section 3.4, evaluating some a^e in \mathbb{Z}_n for any integer n takes time $O(||e|| \cdot ||n||^2)$. In our case, evaluating $a^{(p-1)/2}$ in \mathbb{Z}_p takes time $O(||(p-1)/2|| \cdot ||p||^2) \sim O(||p||^2)$ which is polynomial time.