CS 235: Algebraic Algorithms, Spring 2021
 Homework 3

(Solutions for selected problems)

Problem 1. Exercise 26: Find all elements of \mathbb{Z}_{19}^{*} of multiplicative order of 18.

Solution. Notice that 2 is a primitive root modulo 19 which means that $2^{18} \equiv 1(\bmod 19)$. Obviously, $2 \in \mathbb{Z}_{19}^{*}$ which is the first element that we are looking for.
(If the above fact was not obvious to you, then another way to do it is checking each 2^{i} for $i=1,2,3,6,9,18$ and you can verify that only 2^{18} is congruence to $1 \bmod 19$. The reason is by Theorem 2.13, the multiplicative order of $2 \in \mathbb{Z}_{19}^{*}$ must divide $\varphi(19)=18$ and such possible values are $1,2,3,6,9,18$.)

Then by Theorem 2.15, as $2 \in \mathbb{Z}_{19}^{*}$ has multiplicative order $18,2^{m}$ has multiplicative order of $18 / \operatorname{gcd}(m, 18)$, for every $m \in \mathbb{Z}$.

Since we want to find other elements having multiplicative order of $18, \operatorname{gcd}(m, 18)=1$ meaning that we are only interested in values of m that are relatively prime with 18 , namely $m=\{1,5,7,11,13,17\}$. In other words, $2^{1}, 2^{5}, 2^{7}, 2^{11}, 2^{13}, 2^{17}$ are the elements that we are looking for, but since we are in \mathbb{Z}_{19}, we have to apply mod 19 on all of them as the last step.

$$
\begin{aligned}
2^{1} \equiv 2(\bmod 19), & 2^{5} \equiv 13(\bmod 19) \\
2^{7} \equiv 14(\bmod 19), & 2^{11} \equiv 15(\bmod 19) \\
2^{13} \equiv 3(\bmod 19), & 2^{17} \equiv 10(\bmod 19)
\end{aligned}
$$

Hence, the set of elements is $\{2,3,10,13,14,15\}$.

Problem 2. Exercise 40: Show that if p is an odd prime, with $p \equiv 3(\bmod 4)$, then $\left(\mathbb{Z}_{p}^{*}\right)^{4}=\left(\mathbb{Z}_{p}^{*}\right)^{2}$. More generally, show that if n is an odd positive integer, when $p \equiv 3(\bmod 4)$ for each prime $p \mid n$, then $\left(\mathbb{Z}_{n}^{*}\right)^{4}=\left(\mathbb{Z}_{n}^{*}\right)^{2}$

Solution. This question has 2 parts.

Part 1: Show that if p is an odd prime, with $p \equiv 3(\bmod 4)$, then $\left(\mathbb{Z}_{p}^{*}\right)^{4}=\left(\mathbb{Z}_{p}^{*}\right)^{2}$.
The equivalence of proving that $\left(\mathbb{Z}_{p}^{*}\right)^{4}=\left(\mathbb{Z}_{p}^{*}\right)^{2}$ is to show $\left(\mathbb{Z}_{p}^{*}\right)^{4} \subseteq\left(\mathbb{Z}_{p}^{*}\right)^{2}$ and $\left(\mathbb{Z}_{p}^{*}\right)^{2} \subseteq\left(\mathbb{Z}_{p}^{*}\right)^{4}$.
" $\left(\mathbb{Z}_{p}^{*}\right)^{2} \subseteq\left(\mathbb{Z}_{p}^{*}\right)^{4}$:" assuming that we have some arbitrary $\alpha \in\left(\mathbb{Z}_{p}^{*}\right)^{2}$, then by definition, $\beta^{2} \equiv \alpha(\bmod p)$, for some $\beta \in \mathbb{Z}_{p}$. We want to show that this also implies $\gamma^{4} \equiv \alpha(\bmod p)$, for some $\gamma \in \mathbb{Z}_{p}$.

To this end, we make the following observation: $\beta^{2} \equiv \alpha(\bmod p) \Longrightarrow 1 \cdot \beta^{2} \equiv$ $\alpha(\bmod p) \Longrightarrow \beta^{p-1} \cdot \beta^{2} \equiv \alpha(\bmod p)$, since $\varphi(p)=p-1$ and by Euler's Theorem, $\beta^{\varphi(p)}=\beta^{p-1} \equiv 1(\bmod p)$.

Also, $p \equiv 3(\bmod 4)$ implies $p=4 x+3$ for some $x \in \mathbb{Z}$. Thus, by substituting $4 x+3$ to p in the congruence above, we obtain the following: $\beta^{4 x+2} \cdot \beta^{2} \equiv \alpha(\bmod p) \Longrightarrow \alpha \equiv$ $\beta^{4 x+4}(\bmod p) \Longrightarrow \beta^{4(x+1)} \equiv \alpha(\bmod p) \Longrightarrow \beta^{4(x+1)}=\left(\beta^{x+1}\right)^{4} \equiv \alpha(\bmod p) \Longrightarrow \gamma^{4} \equiv$ $\alpha(\bmod p)$ for some $\gamma=\beta^{(x+1)}$, and we can easily see that with such choice, γ is in \mathbb{Z}_{p}. Thus, $\left(\mathbb{Z}_{p}^{*}\right)^{2} \subseteq\left(\mathbb{Z}_{p}^{*}\right)^{4}$.
" $\left(\mathbb{Z}_{p}^{*}\right)^{4} \subseteq\left(\mathbb{Z}_{p}^{*}\right)^{2}$:" this direction is trivial, since we can define $\left(\mathbb{Z}_{p}^{*}\right)^{4}$ based on $\left(\mathbb{Z}_{p}^{*}\right)^{2}$ as follow $\left(\mathbb{Z}_{p}^{*}\right)^{4}=\left\{\beta=\alpha^{2} \mid \alpha \in\left(\mathbb{Z}_{p}^{*}\right)^{2}\right\}$. In other words, if we have some $\beta \in\left(\mathbb{Z}_{p}^{*}\right)^{4}$, then it must be the case that β is the square of some number, namely, $\beta=\alpha^{2}$ for some $\alpha \in\left(Z_{p}^{*}\right)^{2}$. Thus, it's also true that $\beta \in\left(\mathbb{Z}_{p}^{*}\right)^{2}$ which implies $\left(\mathbb{Z}_{p}^{*}\right)^{4} \subseteq\left(\mathbb{Z}_{p}^{*}\right)^{2}$. (You can apply the same argument as above for this case if you want, but I guess it's not necessary)

Part 2: More generally, show that if n is an odd positive integer, when $p \equiv 3(\bmod 4)$ for each prime $p \mid n$, then $\left(\mathbb{Z}_{n}^{*}\right)^{4}=\left(\mathbb{Z}_{n}^{*}\right)^{2}$.

In this part, instead of considering an odd prime p and $Z *_{p}$, we will consider an arbitrary odd integer n and show that it also holds that $\left(\mathbb{Z}_{n}^{*}\right)^{4}=\left(\mathbb{Z}_{n}^{*}\right)^{2}$.

We can factorize an arbitrary integer n as follows: $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$. For simplicity, let us consider the case where n is only the power of one odd prime, namely, $n=p^{e}$.
" $\left(\mathbb{Z}_{n}^{*}\right)^{2} \subseteq\left(\mathbb{Z}_{n}^{*}\right)^{4}$:" assuming that we have some arbitrary $\alpha \in\left(\mathbb{Z}_{n}^{*}\right)^{2}$, then by definition, $\beta^{2} \equiv \alpha(\bmod n)$, for some $\beta \in \mathbb{Z}_{p}$. We want to show that this also implies $\gamma^{4} \equiv \alpha(\bmod n)$, for some $\gamma \in \mathbb{Z}_{n}$.

To this end, we make the following observation: $\beta^{2} \equiv \alpha(\bmod n) \Longrightarrow 1 \cdot \beta^{2} \equiv$ $\alpha(\bmod n) \Longrightarrow \beta^{p^{e-1}(p-1)} \cdot \beta^{2} \equiv \alpha(\bmod n)$, since $\varphi\left(n=p^{e}\right)=p^{e-1}(p-1)$ and by Euler's Theorem, $\beta^{\varphi(n)} \equiv 1(\bmod n)$.

Also, $p \equiv 3(\bmod 4)$ implies $p=4 x+3$ for some $x \in \mathbb{Z}$. Thus, by substituting $4 x+3$ to p in the congruence above, we obtain the following: $\beta^{(4 x+3)^{e-1}(4 x+2)} \cdot \beta^{2} \equiv \alpha(\bmod n) \Longrightarrow$ $\alpha \equiv \beta^{4 x(4 x+3)^{e-1}+2(4 x+3)^{e-1}+2}(\bmod n) \Longrightarrow \beta^{4\left(x(4 x+3)^{e-1}+1 / 2\left((4 x+3)^{e-1}+1\right)\right)} \equiv \alpha(\bmod n)$.

Observe that $1 / 2\left((4 x+3)^{e-1}+1\right)$ is an integer because $(4 x+3)^{e-1}$ is an odd number which makes $(4 x+3)^{e-1}+1$ an even number. This implies $\gamma^{4} \equiv \alpha(\bmod n)$ for some $\gamma=\beta^{x(4 x+3)^{e-1}+1 / 2\left((4 x+3)^{e-1}+1\right)}$. Thus, $\left(\mathbb{Z}_{n}^{*}\right)^{2} \subseteq\left(\mathbb{Z}_{n}^{*}\right)^{4}$.
" $\left(\mathbb{Z}_{n}^{*}\right)^{4} \subseteq\left(\mathbb{Z}_{n}^{*}\right)^{2}$:" this direction is trivial (see part 1).
Therefore, $\left(\mathbb{Z}_{n}^{*}\right)^{4}=\left(\mathbb{Z}_{n}^{*}\right)^{2}$ for $n=p^{e}$. The argument also works for any value of p and any exponent e which implies that the statement holds for any arbitrary $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$.
(Some clarification: previously, I wrote $\alpha \equiv \beta^{2}(\bmod n)$ in my other notes instead of $\beta^{2} \equiv \alpha(\bmod n)$ and all that during my OH. They are both correct, in theory, because $\cdot \equiv \cdot(\bmod n)$ is an equivalence relation so it is transitive. But after staring at the proof a while, I decided to switch since it makes more sense to me...)

