
CS 235: Algebraic Algorithms, Spring 2021

Homework 3
(Solutions for selected problems)

Problem 1. Exercise 26: Find all elements of Z∗
19 of multiplicative order of 18.

Solution. Notice that 2 is a primitive root modulo 19 which means that 218 ≡ 1 (mod 19).
Obviously, 2 ∈ Z∗

19 which is the first element that we are looking for.

(If the above fact was not obvious to you, then another way to do it is checking each 2i

for i = 1, 2, 3, 6, 9, 18 and you can verify that only 218 is congruence to 1 mod 19. The reason
is by Theorem 2.13, the multiplicative order of 2 ∈ Z∗

19 must divide ϕ(19) = 18 and such
possible values are 1, 2, 3, 6, 9, 18.)

Then by Theorem 2.15, as 2 ∈ Z∗
19 has multiplicative order 18, 2m has multiplicative

order of 18 / gcd(m, 18), for every m ∈ Z.
Since we want to find other elements having multiplicative order of 18, gcd(m, 18) = 1

meaning that we are only interested in values of m that are relatively prime with 18, namely
m = {1, 5, 7, 11, 13, 17}. In other words, 21, 25, 27, 211, 213, 217 are the elements that we are
looking for, but since we are in Z19, we have to apply mod 19 on all of them as the last step.

21 ≡ 2 (mod 19), 25 ≡ 13 (mod 19)

27 ≡ 14 (mod 19), 211 ≡ 15 (mod 19)

213 ≡ 3 (mod 19), 217 ≡ 10 (mod 19)

Hence, the set of elements is {2, 3, 10, 13, 14, 15}.
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Problem 2. Exercise 40: Show that if p is an odd prime, with p ≡ 3 (mod 4), then
(Z∗

p)
4 = (Z∗

p)
2. More generally, show that if n is an odd positive integer, when p ≡ 3 (mod 4)

for each prime p|n, then (Z∗
n)4 = (Z∗

n)2

Solution. This question has 2 parts.

Part 1: Show that if p is an odd prime, with p ≡ 3 (mod 4), then (Z∗
p)

4 = (Z∗
p)

2.

The equivalence of proving that (Z∗
p)

4 = (Z∗
p)

2 is to show (Z∗
p)

4 ⊆ (Z∗
p)

2 and (Z∗
p)

2 ⊆ (Z∗
p)

4.

“(Z∗
p)

2 ⊆ (Z∗
p)

4:” assuming that we have some arbitrary α ∈ (Z∗
p)

2, then by definition,
β2 ≡ α (mod p), for some β ∈ Zp. We want to show that this also implies γ4 ≡ α (mod p),
for some γ ∈ Zp.

To this end, we make the following observation: β2 ≡ α (mod p) =⇒ 1 · β2 ≡
α (mod p) =⇒ βp−1 · β2 ≡ α (mod p), since ϕ(p) = p − 1 and by Euler’s Theorem,
βϕ(p) = βp−1 ≡ 1 (mod p).

Also, p ≡ 3 (mod 4) implies p = 4x + 3 for some x ∈ Z. Thus, by substituting 4x + 3
to p in the congruence above, we obtain the following: β4x+2 · β2 ≡ α (mod p) =⇒ α ≡
β4x+4 (mod p) =⇒ β4(x+1) ≡ α (mod p) =⇒ β4(x+1) = (βx+1)4 ≡ α (mod p) =⇒ γ4 ≡
α (mod p) for some γ = β(x+1), and we can easily see that with such choice, γ is in Zp. Thus,
(Z∗

p)
2 ⊆ (Z∗

p)
4.

“(Z∗
p)

4 ⊆ (Z∗
p)

2:” this direction is trivial, since we can define (Z∗
p)

4 based on (Z∗
p)

2 as
follow (Z∗

p)
4 = {β = α2 | α ∈ (Z∗

p)
2}. In other words, if we have some β ∈ (Z∗

p)
4, then it

must be the case that β is the square of some number, namely, β = α2 for some α ∈ (Z∗
p)2.

Thus, it’s also true that β ∈ (Z∗
p)

2 which implies (Z∗
p)

4 ⊆ (Z∗
p)

2. (You can apply the same
argument as above for this case if you want, but I guess it’s not necessary)

Part 2: More generally, show that if n is an odd positive integer, when p ≡ 3 (mod 4)
for each prime p|n, then (Z∗

n)4 = (Z∗
n)2.

In this part, instead of considering an odd prime p and Z∗p, we will consider an arbitrary
odd integer n and show that it also holds that (Z∗

n)4 = (Z∗
n)2.

We can factorize an arbitrary integer n as follows: n = pe11 p
e2
2 . . . pekk . For simplicity, let

us consider the case where n is only the power of one odd prime, namely, n = pe.

“(Z∗
n)2 ⊆ (Z∗

n)4:” assuming that we have some arbitrary α ∈ (Z∗
n)2, then by definition,

β2 ≡ α (mod n), for some β ∈ Zp. We want to show that this also implies γ4 ≡ α (mod n),
for some γ ∈ Zn.

To this end, we make the following observation: β2 ≡ α (mod n) =⇒ 1 · β2 ≡
α (mod n) =⇒ βpe−1(p−1) · β2 ≡ α (mod n), since ϕ(n = pe) = pe−1(p − 1) and by Euler’s
Theorem, βϕ(n) ≡ 1 (mod n).

Also, p ≡ 3 (mod 4) implies p = 4x+ 3 for some x ∈ Z. Thus, by substituting 4x+ 3 to
p in the congruence above, we obtain the following: β(4x+3)e−1(4x+2) · β2 ≡ α (mod n) =⇒
α ≡ β4x(4x+3)e−1+2(4x+3)e−1+2 (mod n) =⇒ β4(x(4x+3)e−1+1/2((4x+3)e−1+1)) ≡ α (mod n).
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Observe that 1/2((4x + 3)e−1 + 1) is an integer because (4x + 3)e−1 is an odd number
which makes (4x + 3)e−1 + 1 an even number. This implies γ4 ≡ α (mod n) for some
γ = βx(4x+3)e−1+1/2((4x+3)e−1+1). Thus, (Z∗

n)2 ⊆ (Z∗
n)4.

“(Z∗
n)4 ⊆ (Z∗

n)2:” this direction is trivial (see part 1).

Therefore, (Z∗
n)4 = (Z∗

n)2 for n = pe. The argument also works for any value of p and
any exponent e which implies that the statement holds for any arbitrary n = pe11 p

e2
2 . . . pekk .

(Some clarification: previously, I wrote α ≡ β2 (mod n) in my other notes instead of
β2 ≡ α (mod n) and all that during my OH. They are both correct, in theory, because
· ≡ · (mod n) is an equivalence relation so it is transitive. But after staring at the proof a
while, I decided to switch since it makes more sense to me...)
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