Erasure-Resilience vs. Tolerance to Errors

Sofya Raskhodnikova, Nithin Varma
Boston University
Goal: study of sublinear algorithms resilient to adversarial corruptions in the input

Focus: Property Testing Model

[Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]
A Sublinear-Time Algorithm

randomized algorithm

approximate answer

Quality of approximation

Resources
- number of queries
- running time
Algorithms Resilient to Erasures (or Errors)

- ≤ α fraction of the input is erased (or modified) adversarially before algorithm runs
- Algorithm does not know in advance what’s erased (or modified)

sublinear algorithm
Property Testing

Property Tester [Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]

Two objects are at distance $\varepsilon = \text{they differ in an } \varepsilon \text{ fraction of places}$
Property Testing with Erasures

Property Tester [Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]

- **YES**
- **far from YES**
- \(\varepsilon \)

Accept with probability \(\geq 2/3 \)

Don’t care

Reject with probability \(\geq 2/3 \)

Erasure-Resilient Property Tester [Dixit Raskhodnikova Thakurta Varma 16]

- Can be completed to **YES**
- Every completion is far from **YES**
- \(\varepsilon \)

Accept with probability \(\geq 2/3 \)

Don’t care

Reject with probability \(\geq 2/3 \)

\(\leq \alpha \) fraction of the input is erased adversarially

Two objects are at distance \(\varepsilon = \) they differ in an \(\varepsilon \) fraction of places
Property Testing with Errors

Property Tester [Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]

- Two objects are at distance ε = they differ in an ε fraction of places
- Don’t care Accept with probability $\geq 2/3$
- Reject with probability $\geq 2/3$

Tolerant Property Tester [Parnas Ron Rubinfeld 06]

- $\leq \alpha$ fraction of the input is wrong
- Don’t care Accept with probability $\geq 2/3$
- Reject with probability $\geq 2/3$

Two objects are at distance ε = they differ in an ε fraction of places
Relationships Between Models

Containments are strict:

- [Fischer Fortnow 05]: standard vs. error-tolerant
- [Dixit Raskhodnikova Thakurta Varma 16]: standard vs. erasure-resilient
- new: erasure-resilient vs. error-tolerant
Main Tool: Locally List Erasure-Decodable Codes

• Locally list decodable codes have been extensively studied
 [Goldreich Levin 89, Sudan Trevisan Vadhan 01, Gutfreund Rothblum 08, Gopalan Klivans Zuckerman 08, Ben-Aroya Efremenko Ta-Shma 10, Kopparty Saraf 13, Kopparty 15, Hemenway Ron-Zewi Wootters 17, Goi Kopparty Oliveira Ron-Zewi Saraf 17, Kopparty Ron-Zewi Saraf Wootters 18]

• Only errors, not erasures were previously considered
 – Not the case without the locality restriction
 [Guruswami 03, Guruswami Indyk 05]

• Can locally list decodable codes perform better with erasures than with errors?
A Locally List Erasure-Decodable Code

- An error-correcting code $C_n : \Sigma^n \rightarrow \Sigma^N$
- Parameters: α fraction of erasures, list size ℓ and q queries.

- w.p. $\geq 2/3$, for every $x \in \Sigma^n$ with encoding $C_n(x)$ that agrees with w on all non-erased bits, one of the algorithms A_j, given oracle access to w, implicitly computes x (that is, $A_j(i) = x_i$);

- each algorithm A_j makes at most q queries to w.

\begin{align*}
\text{Output} & \quad A_1 \quad A_2 \quad \ldots \quad A_\ell \\
\text{(\(\alpha, \ell, q\))-local list erasure-decoder} & \\
\end{align*}
Hadamard Code

Hadamard: \(\{0,1\}^k \rightarrow \{0,1\}^{2^k} \); Hadamard(\(x\)) = \((\langle x, y \rangle)_{y \in \{0,1\}^k}\)

<table>
<thead>
<tr>
<th>Type of Corruptions</th>
<th>Corruption Tolerance (\alpha)</th>
<th>Number of Queries</th>
<th>List Size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors</td>
<td>(0 \leq \alpha < 1/2)</td>
<td>(O\left(\frac{1}{(1/2 - \alpha)^2}\right))</td>
<td>(O\left(\frac{1}{(1/2 - \alpha)^2}\right))</td>
<td>[Goldreich Levin 89]</td>
</tr>
<tr>
<td>Erasures*</td>
<td>(0 \leq \alpha < 1)</td>
<td>(O\left(\frac{1}{1 - \alpha}\right))</td>
<td>(O\left(\frac{1}{1 - \alpha}\right))</td>
<td>[new]</td>
</tr>
</tbody>
</table>

If fraction of errors is \(\geq 1/2\), impossible to decode Hadamard codes.

An improvement in dependence on \(\alpha\) was suggested by Venkat Guruswami
How does separating erasures from errors in local list decoding help with separating them in property testing?
3CNF Properties: Hard to Test, Easy to Decide

• Formula ϕ_n : 3CNF formula on n variables, $\theta(n)$ clauses
• Property $P_{\phi_n} \subseteq \{0,1\}^n$: set of satisfying assignments to ϕ_n

Theorem [Ben-Sasson Harsha Raskhodnikova 05]

For sufficiently small ϵ,
ϵ-testing P_{ϕ_n} requires $\Omega(n)$ queries.

• P_{ϕ_n} decidable by a $O(n)$-size circuit.
Testing with Advice: PCPs of Proximity (PCPPs)

[Ben-Sasson Goldreich Harsha Sudan Vadhan 06, Dinur Reingold 06]

- If x has the property, then $\exists \pi(x)$ for which verifier accepts.
- If x is ε-far, then $\forall \pi(x)$ verifier rejects with probability $\geq 2/3$.

Theorem

Every property decidable with a circuit of size m has PCPP with proof length $\tilde{O}(m)$ and constant query complexity.

3CNF properties have efficient PCPPs
Separating Property

- x satisfies the hard 3CNF property
- r is the number of repetitions (to balance the lengths of 2 parts)
- $\pi(x)$ is the proof on which the PCPP verifier accepts x
- **Idea:** Even if a 3/4 fraction of the encoding is erased, we can still locally list erasure-decode and test with constant query complexity.
- If 1/2 fraction of encoding has errors, cannot decode the proof.
- Need $\Omega(|x|) = \tilde{\Omega}(\log N)$ queries to tolerantly test.

\[x^r \quad \text{Hadamard}(x \circ \pi(x)) \]

\[n \cdot r \quad 2^{\tilde{\Theta}(n)} \]

\[N = n \cdot r + 2^{\tilde{\Theta}(n)} \]
Bottom Line

The separating property is

• erasure-resiliently testable with a constant number of queries,
• but requires $\tilde{\Omega}(\log N)$ queries to tolerantly test.

Error-tolerant testing is harder than erasure-resilient testing in general.
Open Questions and Directions

• Constant-query, constant list size, local list erasure-decodable codes with better rate?
 – Will imply better separation.

• Erasure-resilient testers for specific properties: linearity, dictatorship, linear threshold functions...

• Erasure-resilience for other models of sublinear algorithms.

Thank you!
Separating Property: Erasure-Resilient Testing

| x^r | Hadamard($x \circ \pi(x)$) |

Idea: If a constant fraction (say, 1/4) of the encoding is preserved, we can locally list erasure-decode.

Erasure-Resilient Tester

1. Locally list erasure-decode Hadamard to get a list of algorithms.
2. For each algorithm, check if:
 - the plain part is x^r by comparing u.r. bits with the corresponding bits of the decoding of x
 - PCPP verifier accepts $x \circ \pi(x)$
3. Accept if, for some algorithm on the list, both checks pass.

Constant query complexity.
Separating Property: Hardness of Tolerant Testing

Idea: Reduce standard testing of 3CNF property to tolerant testing of the separating property.

- Given a string \(x \), we can simulate access to

\[
\begin{array}{c|c}
\chi^r & \text{Hadamard}(x \circ \pi(x)) \\
\end{array}
\]

- All-zero string is \(\text{Hadamard}(x \circ \pi(x)) \) with 1/2 of the encoding bits are erroneous!

- Testing 3CNF property requires \(\Omega(n) \) queries, where \(n = |x| \).

The input length for separating property is \(N \approx 2^{cn} \).

\[\Omega(n) \approx \Omega(\log N) \text{ queries are needed.} \]