CS 591 O1: Iterative Methods for Graph Algorithms and Network Analysis Spring 2015

Lecture 12: Accelerated Gradient Descent and Chebyshev’s Polynomial

Instructor: Lorenzo Orecchia Scribe: Sridevi Suresh

1 Outline

We have previously discussed iterative algorithms where, given a function f which is o-strongly convex
and L-smooth, we observed that after 7 = O(log2 — (£ + 1)) rounds of gradient descent we would get
fxy) < f(ax)+e. Here, D is the diameter of the set, z* is the optimal solution, and we call % the condition
number. We will be developing a method called an accelerated gradient method which has a slightly different

step and we instead have T' = O(logg(\/g +1)). It actually turns out that this is asymptotically optimal.

Let us now look further at the problem we are going to be thinking about. Suppose we have a path of
length n and we want to do some electrical flow computation dealing with it:
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We are further considering the Laplacian; in other words, we are trying to solve Lz = y .

1
fl@) = mino" Lo — 27y

Vf(l') =Lz — Xst

We see that the only vectors that the algorithm knows is span{L®") ., L(~ Dy, ..., Lxsr, Xst }, which is
called t-Krylov subspace. We can see that in order to discover this vector space §2(n) iterations are
necessary. We also notice that V2 f = L. Hence, our smoothness is A, = O(1) and convexity is Ay = ().

Thus, roughly Q(,/ ’;—;) iterations are needed. This shows us that the bound on T in this case is tight; i.e
we have a lower-bound.

Key-point: this bound is only valid when we do the gradient computation method.

2 Accelerated Gradient in Convex Quadratic Unconstrained
Minimization
Suppose we have f(z) = 27 Az — bTx, where A is a non-singular psd matrix. It is obvious that x* = A~'b.

However, we can solve using gradient descent. Let us think of gradient descent as a polynomial. Here, we
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let p(x) be a polynomial of z.

Vf(x)=Az—b
xy = a1 + BV f(x4-1)
= axy_1 + BAxi_1 — Bb
= p(A)b

k
In gradient descent, we are using p(A) = a > (I — aA)?, where « is the step-length. We want the kth
=0

polynomial p;,(A) to be a good approximation to z. In other words, we want |[px(A)b— A~1b||4 to be
small. We observe that ||ps(A)b — A71b|[a < ||px(A) — A71||a]|b]|. Since we are dealing with the A-norm
and ||b|| is constant, we really only care that ||ps(A) — A7Y|| 4 is small. We can put A back in and write
[|Api.(A) — I||. This is a matrix question which we can turn into a scalar question by looking at eigenvalues
individually.

n n
Suppose A = 3" Nwvol, then ||Apk(A) — I|| = || 3 (Aipe(Ni) — 1)v;vl||. Our problem now is to find p of
i=1 i=1
degree k such that |A\;pr(A;) — 1] < e for all A; eigenvalues of A. The issue is we don’t know what the
eigenvalues of A are. We now suppose that \; < A; < A, and we know lambda; and \,. We can write out
problem now to be that we need to find py such that |xpg(z) — 1] <e Vae[Ar, \,]. This is a good
approximation to the inverse function.
3 Chebyshev Polynomial
Consider a polynomial g (z) = 1 — zpi(x). We want this polynomial to satisfy these properties:

e i has degree k + 1
e g(0)=1
o qi(z) <e Vze[h, \]

We can see that this polynomial looks like:

N
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The types of polynomials we are talking about are called Chebyshev Polynomials. Ty (z) is a Chebyshev
polynomial of degree k.

Theorem Using Chebyshev, we can construct ¢ such that ¢(0) =1, g(z) <& Vze[A1, A\y], and ¢ has degree
O(logl(1+ ,/%)). [The algorithm which produces this is known as Chebyshev iteration.]
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We have an implicit definition of our polynomial. T} is the polynomial such that cos(tz) = Ty cos(z). In
order to understand how this works more, first, recall some trigonometric properties:

e cos(z +y) = cos(z) cos(y) + sin(x) sin(y)

e sin(z + y) = sin(x) cos(y) + cos(x) sin(y)

e sin’(z) = 1 — cos?(x)
Example Consider cos(2z). We would like to write this as some polynomial of cos(x).

cos(2x) = cos?(z) — sin?(x)
=2cos?(z) — 1

From this, we can see that Ty(z) = 222 — 1 or Ty (z) = (2T3(v))? — 1.
Suppose T;(x) = cos(t arccos(x)) and we are considering values [—1,1]. We note that

arccos : [—1,1] = [-7,0] and cos : [-7,0] — [—1,1]. Thus, we observe that if x € [—1, 1], then T} € [—1,1].
Suppose further that |z| > 1; recall that arccos is not defined outside [—1, 1].

In order to handle this case, we turn to hyperbolic cosine (defined over reals),

cosh = cos(iz) = (e® + ™) ~ 2el*l. Now, we have T; = cosh(t arccosh(z)). We know

arccosh(z) = In(z + va? — 1) for > 1. Consequently, if |z| > 1, T;(z) is monotonically increasing. This is
because we estimate arccosh(z) & In(z) and so cosh &~ e¢* which are both monotoically increasing.
Therefore, T;(x) is monotonically increasing.

Lemma T3(1 + ) > % Let z =1+ 7.
Proof.

1
Tt (1’) — *(Bt arccosh(z) + eft arccosh(:c))

> %(er Va2 — 1)t
= Sy T F 7 )
> (14 V3
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