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1 Outline

We have previously discussed iterative algorithms where, given a function f which is σ-strongly convex
and L-smooth, we observed that after T = O(logDε − (Lσ + 1)) rounds of gradient descent we would get

f(xt) ≤ f(x∗)+ε. Here, D is the diameter of the set, x∗ is the optimal solution, and we call Lσ the condition
number. We will be developing a method called an accelerated gradient method which has a slightly different

step and we instead have T = O(logDε (
√

L
σ + 1)). It actually turns out that this is asymptotically optimal.

Let us now look further at the problem we are going to be thinking about. Suppose we have a path of
length n and we want to do some electrical flow computation dealing with it:

We are further considering the Laplacian; in other words, we are trying to solve Lx = χst.

f(x) = min
x

1

2
xTLx− xTχst

∇f(x) = Lx− χst

We see that the only vectors that the algorithm knows is span{L(t)χst, L
(t−1)χst, . . . , Lχst, χst}, which is

called t-Krylov subspace. We can see that in order to discover this vector space Ω(n) iterations are
necessary. We also notice that ∇2f = L. Hence, our smoothness is λn = O(1) and convexity is λ2 = Ω( 1

n2 ).

Thus, roughly Ω(
√

λn

λ2
) iterations are needed. This shows us that the bound on T in this case is tight; i.e

we have a lower-bound.

Key-point: this bound is only valid when we do the gradient computation method.

2 Accelerated Gradient in Convex Quadratic Unconstrained
Minimization

Suppose we have f(x) = xTAx− bTx, where A is a non-singular psd matrix. It is obvious that x∗ = A−1b.
However, we can solve using gradient descent. Let us think of gradient descent as a polynomial. Here, we
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let p(x) be a polynomial of x.

∇f(x) = Ax− b
xt = αxt−1 +B∇f(xt−1)

= αxt−1 +BAxt−1 −Bb
= p(A)b

In gradient descent, we are using p(A) = α
k∑
t=0

(I − αA)t, where α is the step-length. We want the kth

polynomial pk(A) to be a good approximation to x∗. In other words, we want ||pk(A)b−A−1b||A to be
small. We observe that ||pk(A)b−A−1b||A ≤ ||pk(A)−A−1||A||b||. Since we are dealing with the A-norm
and ||b|| is constant, we really only care that ||pk(A)−A−1||A is small. We can put A back in and write
||Apk(A)− I||. This is a matrix question which we can turn into a scalar question by looking at eigenvalues
individually.

Suppose A =
n∑
i=1

λiviv
T
i , then ||Apk(A)− I|| = ||

n∑
i=1

(λipk(λi)− 1)viv
T
i ||. Our problem now is to find p of

degree k such that |λipk(λi)− 1| ≤ ε for all λi eigenvalues of A. The issue is we don’t know what the
eigenvalues of A are. We now suppose that λ1 ≤ Ai ≤ λn and we know lambda1 and λn. We can write out
problem now to be that we need to find pk such that |xpk(x)− 1| ≤ ε ∀xε[λ1, λn]. This is a good
approximation to the inverse function.

3 Chebyshev Polynomial

Consider a polynomial qk(x) = 1− xpk(x). We want this polynomial to satisfy these properties:

• qk has degree k + 1

• qk(0) = 1

• qk(x) ≤ ε ∀xε[λ1, λn]

We can see that this polynomial looks like:

The types of polynomials we are talking about are called Chebyshev Polynomials. Tk(x) is a Chebyshev
polynomial of degree k.

Theorem Using Chebyshev, we can construct q such that q(0) = 1, q(x) ≤ ε ∀xε[λ1, λn], and q has degree

O(log 1
ε (1 +

√
λn

λ1
)). [The algorithm which produces this is known as Chebyshev iteration.]
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We have an implicit definition of our polynomial. Tt is the polynomial such that cos(tx) = Tt cos(x). In
order to understand how this works more, first, recall some trigonometric properties:

• cos(x+ y) = cos(x) cos(y) + sin(x) sin(y)

• sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

• sin2(x) = 1− cos2(x)

Example Consider cos(2x). We would like to write this as some polynomial of cos(x).

cos(2x) = cos2(x)− sin2(x)

= 2 cos2(x)− 1

From this, we can see that T2(x) = 2x2 − 1 or T2t(x) = (2Tt(x))2 − 1.

Suppose Tt(x) = cos(t arccos(x)) and we are considering values [−1, 1]. We note that
arccos : [−1, 1]→ [−π, 0] and cos : [−π, 0]→ [−1, 1]. Thus, we observe that if x ε [−1, 1], then Tt ε [−1, 1].
Suppose further that |x| ≥ 1; recall that arccos is not defined outside [−1, 1].

In order to handle this case, we turn to hyperbolic cosine (defined over reals),
cosh = cos(ix) = 1

2 (ex + e−x) ≈ 1
2e
|x|. Now, we have Tt = cosh(t arccosh(x)). We know

arccosh(x) = ln(x+
√
x2 − 1) for x ≥ 1. Consequently, if |x| ≥ 1, Tt(x) is monotonically increasing. This is

because we estimate arccosh(x) ≈ ln(x) and so cosh ≈ ex which are both monotoically increasing.
Therefore, Tt(x) is monotonically increasing.

Lemma Tt(1 + γ) ≥ (1+
√
2γ)t

2 . Let x = 1 + γ.

Proof.

Tt(x) =
1

2
(et arccosh(x) + e−t arccosh(x))

≥ 1

2
(x+

√
x2 − 1)t

=
1

2
(1 + γ +

√
(1 + γ)2 − 1)t

≥ 1

2
(1 +

√
2γ)t
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