
CS 591 O1: Iterative Methods for Graph Algorithms and Network Analysis Spring 2015

Lecture 7: Effective Resistance

Instructor: Lorenzo Orecchia Scribe: Kratesh Ramrakhyani and Mark Lemay

1 Review: Graphs as electric circuits

• The weights of the graph edges wi,j are the electrical conductance of the respective connec-
tions, i.e., the reciprocal of the resistances of the edges. We denote by W the diagonal matrix
of edge conductances.

• The vector χst = es − et is the demand vector when one unit of current flows from vertex s
to vertex t.

• B is the m × n incidence matrix of the graph. The row corresponding to edge {i, j} is χij .
An arbitrary orientation of the edges is chosen (in the previous example, from i to j).

• Ohm’s Law: f = WBv, where f is the flow

• Conservation Law: BT f = χst, flow is created only at the sources and sinks.

• From this we have BT (WBv) = χst = Lv, where L is the graph Laplacian.

• Pseudo-Inverse: When the spectral decomposition is L =
∑n

i=1 λiviv
T
i , then the pseudo

inverse is L+ =
∑n

i=1
1
λi
viv

T
i

• This implies that LL+ = (I − πnull(L)), where πnull(L) is the orthogonal projection on the null

space of L, i.e, πnull(L) =
∑

i:λi 6=0 viv
T
i .

• This last theorem, together with the fact that χst is orthogonal to the null space of L (assuming
G is connected) implies that the voltage vector of the electrical flow sending one unit of current
from s to t can be solved as:

v = L+χst.

2 Optimization Characterization of Electrical Flows

We start this lecture by providing an optimization view of electrical flows in terms of an energy
minimzation problem over voltages. While in the last lecture, we fixed the current going from s to
t, we are now going to fix the voltage gap between s and t to one.

In this scenario, always assuming G is connected, some current will flow from s to t, inducing
some voltages over G. It turns out that the energy consumed by edge {i, j} with a voltage gap of

-1



(xi − xj) can be expressed as wij(xi − xj)2. Optimizing over the total energy of the graph, while
keeping the gap from s to t fixed, yields the following optimization problem.

min
x6=0

∑
{i,j}∈E

wi,j(xi − xj)2 = min
x 6=0

xTLx

s.t. (xs − xt) = 1.

Theorem 1. The optimal solution is x∗ = 1
χT
stL

+χst
L+χst. The optimum is 1

χT
stL

+χst
.

Proof. Because the objective function is convex and the feasible set is the linear subspace χTstx = 1,
a voltage x will be optimal if the gradient of the objective (which is 2Lx) is parallel to χst, as at
that point it will not be possible to move within the feasible set while decreasing the objective.
This means that we want, for some λ ∈ R:

Lx∗ = λχst.

We must choose λ such that x∗ is feasible, i.e. χTstx
∗ = 1. Hence, we have λ = 1

χstL+χst
and

x∗ =
1

χstL+χst
· L+χst,

and the optimum is

x∗TLx∗ =
1

χTstL
+χst

3 Effective Resistance

The quantity 1
χT
stL

+χst
is known as the effective conductance between s and t. As shown in the

previous section, it is the energy consumed by the electrical flow when a voltage gap of 1 is set
between s and t. Notice that, under the same assumption, the flow going from s to t is 1

χstL+χst
:

BT (R−1Bx∗) = Lx∗ =
1

χstL+χst
χst.

This shows that, with respect to electrical flows going from s to t, the circuit graph G behaves
like a single resistor with conductance equal to the effective conductance. This also applies to the
energy of the circuit, which is the voltage times the effective conductance. Usually, these relations
are expressed in terms of the reciprocal of the effective conductance, i.e., the effective resistance.

Definition 1. For a connected graph G and pair of vertices s and t, the effective resistance Rst
between s and t is χstL

+χst.

In the next section, we will see how the electrical concepts discussed so far and in the previous
lecture can cast light on the behavior of random walks over the graph G.
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3.1 Eigenvalues and Random Walks

Recall that the second eigenvalue of the normalized Laplacian and its associated eigenvector are
the optimum and optimal solution of the following optimization problem:

λ2 = min
xTD1=0

xTLx

xTDx

A few lectures ago, we saw that λ2 is related to the worst-case mixing of a random walk over G. In
particular, we showed that for any initial probablity distribution p0 over V, we have:∥∥W Tρ− π

∥∥2
E
≤ (1− λ2)2t‖p0‖2E

A similar relation exists between the effective conductance and the behavior of a random walk
from s to t. An intuition behind this is that electrons follow a natural random walk over the graph,
where edges are picked based on their conductance. Consider for instance the following probability
vector h ∈ RV :

hu = Pr[a random walk starting at u gets to s before getting to t]

We can take a recursive approach to find h. By definition, we have:

hs = 1 and ht = 0

For v 6= s and v 6= t, we can also see the effect of taking one step of the random walk:

hv =
∑
u∼v

1

dv
hu =

1

dv

∑
u∼v

hu

Hence, we have:
hv = (W Th)v

and, for v /∈ {s, t},
[(I −W T )h]v = (D−1Lh)v = 0

This essentially means that h behaves like a voltage vector for an unknown vector of input/output
flows, which is only supported on s and t. In other words, for some values of c and λ, we must
have:

Lh+ c~1 = λχst.

We require c because voltages are determined up to a translation and we actually require hs = 1.
To figure out what λ is, we solve h = λL+χst and notice that we require hs − ht = 1. Hence, we
have

λ =
1

χstL+χst
.

and λ is the effective resistance between s and t. This makes sense, as we proved above that this is
the quantity of flow running into s and out of t when there is a voltage gap of one unit between s
and t. We can then also solve for c to get:

h = RstL
+χst + (1−RsteTs L+χst)~1.
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4 Other Properties of Effective Resistance

4.1 Monotonicity

Theorem 2. Let v be a vector of voltages, i.e.,

given v = L+χst. Then, for all c ∈ V
vs ≥ vc ≥ vt

Proof. Notice that for all c 6= s, t

hc =
1

dc

∑
u∼c

hu

In words, the voltage at c is the harmonic mean(average) of the voltages of its neighbors.1 By virtue
of being an average, the voltage at c can neither be the maximum nor the minimum value among
its neighbors. This implies that the only vertex whose voltage is maximum among its neighbors is
s and the only one for which it is minimum is t. Because G is connected, this implies the statement
of the theorem.

4.2 Metric Property

Theorem 3. The effective resistance Reff is a metric: for any a, b, c ∈ V , we have

Ra,b ≤ Ra,c +Rc,b

Proof. The theorem statement is equivalent to:

(ea − eb)TL+(ea − eb) ≤ (ea − ec)TL+(ea − ec) + (ec − eb)TL+(ec − eb)

The latter is equivalent to:

−2eTaL
+eb ≤ 2eTc L

+ec − 2eTaL
+ec − 2eTb L

+ec

Hence, it suffices to prove that:

eTc L
+ec − eTaL+ec ≥ eTb L+ec − eTb L+ea

But this is the same as:
eTc L

+(ec − ea) ≥ eTb L+(ec − ea)

This is easily seen to be true by the monotonicity law for an electrical flow of one unit going from
c to a.

Notice that this is a very special property because effective resistance is an `22-seminorm, i.e., a
distance of the form:

di,j = ‖xi − xj‖2

where xi = L−
1
2 ei. We saw when discussing Cheeger’s Inequality that, in general, this kind of

distance do not satisfy the triangle inequality and hence, are not metrics.

1Functions defined over graphs that have this property are said to be harmonic.
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