On Partitioning Graphs via Single Commodity Flows

Lorenzo Orecchia UC Berkeley

Leonard J. Schulman Caltech

Umesh V. Vazirani UC Berkeley

Nisheeth K. Vishnoi IBM Delhi – work done while visiting UC Berkeley

STOC 2008, Victoria

The SPARSEST CUT problem

Given a graph G=(V,E) and partition (S,\overline{S})

Expansion of
$$(S,\overline{S}) = \frac{|E(S,\overline{S})|}{\min\{|S|,|\overline{S}|\}}$$

The SPARSEST CUT problem

Given a graph G=(V,E) and partition (S,\overline{S})

Expansion of
$$(S,\overline{S}) = \frac{|E(S,\overline{S})|}{\min\{|S|,|\overline{S}|\}}$$

SPARSEST CUT:

find (S,\overline{S}) with <u>minimum</u> expansion $\phi(G)$.

Applications: Divide-and-Conquer, Image Segmentation, VLSI design, Clustering. Theoretical Importance: Metric Embeddings, Spectral Methods.

The SPARSEST CUT problem

Given a graph G=(V,E) and partition (S,\overline{S})

Expansion of
$$(S,\overline{S}) = \frac{|E(S,\overline{S})|}{\min\{|S|,|\overline{S}|\}}$$

SPARSEST CUT:

find (S,\overline{S}) with <u>minimum</u> expansion $\phi(G)$.

Applications: Divide-and-Conquer, Image Segmentation, VLSI design, Clustering. Theoretical Importance: Metric Embeddings, Spectral Methods.

The **SPARSEST CUT** problem is **NP-hard**.

Approximation Algorithms for SPARSEST CUT

Algorithm	Output Expansion	Running Time *
Spectral	$2\sqrt{d\phi}$ **	$O\left(\frac{d^2n}{\phi^2}\right)$ **
Leigthon-Rao	φlogn	Õ(n²)
ARV	φ√logn	[ARV] poly(n) [AHK] Õ(n²)

*All graphs have been sparsified to $\tilde{O}(n)$ edges. ** For a d-regular graph G.

Approximation Algorithms for SPARSEST CUT

Algorithm	Output Expansion	Running Time *
Spectral	$2\sqrt{d\phi}$ **	$O\left(\frac{d^2n}{\phi^2}\right)$ **
Leigthon-Rao	φlogn	Õ(n²)
ARV	φ√logn	[ARV] poly(n) [AHK] Õ(n²)

IN PRACTICE: Too slow for massive data sets.

Spectral and heuristics like METIS used instead.

*All graphs have been sparsified to $\tilde{O}(n)$ edges. ** For a d-regular graph G.

Fast Approximation Algorithms

Algorithm	Output Expansion	Running Time *
Spectral	$2\sqrt{d\phi}$ **	$O\left(\frac{d^2n}{\phi^2}\right)^{**}$
Leigthon-Rao	φlogn	Õ(n²)
ARV	φ√logn	[ARV] poly(n) [AHK] Õ(n ²)
KRV	φ(logn)²	Õ(n ^{3/2})
CUT-MATCHING GAME: FRAMEWORK FOR COMPUTING APPROX USING s-t MAXFLOW COMPUTATIONS		
*All graphs have been sparsified to $\tilde{O}(n)$ edges. ** For a d-regular graph G.		

Fast Approximation Algorithms

Algorithm	Output Expansion	Running Time
Leigthon-Rao	φlogn	Õ(n²)
ARV	φ√logn	[ARV] poly(n) [AHK] Õ(n²)
KRV	φ(logn)²	Õ(n ^{3/2})
AK	φlogn	Õ(n ^{3/2})

*All graphs have been sparsified to $\tilde{O}(n)$ edges. ** For a d-regular graph G.

Algorithm	Output Expansion	Running Time
KRV	φ(logn)²	Õ(n ^{3/2})
AK	φlogn	Õ(n ^{3/2})
THIS PAPER	φlogn	Õ(n ^{3/2})
IN KRV CUT-MATCHING GAME FRAMEWORK		

Algorithm	Output Expansion	Running Time
KRV	φ(logn)²	Õ(n ^{3/2})
AK	φlogn	Õ(n ^{3/2})
THIS PAPER	φlogn	Õ(n ^{3/2})
IN KRV CUT-MATCHING GAME FRAMEWORK		

LOWER BOUND

No better approx than $\Omega((\log n)^{1/2})$ in KRV framework.

Algorithm	Output Expansion	Running Time
KRV	φ(logn)²	Õ(n ^{3/2})
AK	φlogn	Õ(n ^{3/2})
THIS PAPER	φlogn	Õ(n ^{3/2})

LOWER BOUND

No better approx than $\Omega((\log n)^{1/2})$ in KRV framework.

Best integrality gap for SDP is $\Omega(\log\log(n))$.

Algorithm	Output Expansion	Running Time
KRV	φ(logn)²	Õ(n ^{3/2})
AK	φlogn	Õ(n ^{3/2})
THIS PAPER	φlogn	Õ(n ^{3/2})

LOWER BOUND

No better approx than $\Omega((\log n)^{1/2})$ in KRV framework.

Best integrality gap for SDP is $\Omega(\log\log(n))$.

CUT-MATCHING RIGHT ABSTRACTION?

CUT PLAYER **MATCHING PLAYER**

H₀

 (S_1, \overline{S}_1)

CUT PLAYER

50-50 Cut

MATCHING PLAYER

KRV: there exists a cut strategy achieving $T = O((\log n)^2)$.

Runs in time **c(n)** per iteration

CUT PLAYER STRATEGY

T = t(n)

Our Version of the Cut-Matching Game

• MODIFIED GAME

1.No Stopping Condition

Our Version of the Cut-Matching Game

• MODIFIED GAME

1.No Stopping Condition 2.Value of Game is $\frac{\phi(H_T)}{T}$ Approximation Ratio = $\frac{\phi(H_T)}{T}$

STILL YIELDS
APPROX ALGORITHM

Our Version of the Cut-Matching Game

- MODIFIED GAME 1.No Stopping Condition 2.Value of Game is $\frac{\phi(H_T)}{T}$ • STILL YIELDS
- STILL YIELDS APPROX ALGORITHM

$$\frac{\phi(H_{T})}{T}$$

<u>RESULTS</u>

CUT STRATEGY:	$\frac{\phi(H_{T})}{T} = \frac{\Omega(\log n)}{O(\log^2 n)} = \Omega\left(\frac{1}{\log n}\right)$
MATCHING STRATEGY:	$\frac{\phi(H_T)}{T} = O\left(\frac{1}{\sqrt{\log n}}\right)$

After t iterations, $H_t = \{ M_1, M_2, ..., M_t \}$.

- **= +1** charge **Random assignment of charge**
- = **-1** charge

After t iterations, $H_t = \{ M_1, M_2, ..., M_t \}$.

= +1 charge
= -1 charge

After t iterations, $H_t = \{ M_1, M_2, ..., M_t \}$.

- **= +1** charge Random assignment of charge
 - = **-1** charge

After t iterations, $H_t = \{ M_1, M_2, ..., M_t \}$.

- **= +1** charge Random assignment of charge
 - = -1 charge

Mix the charges along the matchings { M_1 , M_2 , ..., M_t }

After t iterations, $H_t = \{ M_1, M_2, ..., M_t \}$.

= +1 charge Random assignment of charge

Mix the charges along the matchings { M_1 , M_2 , ..., M_t }

Order the vertices according to the final charge present and cut in half.

The KRV mixing walk

KRV-walk

At round **t**:

$$P(t) = \left(\frac{I + M_{t-1}}{2}\right) \left(\frac{I + M_{t-2}}{2}\right) \dots \left(\frac{I + M_{1}}{2}\right)$$

Lazy random walk traversing matchings in order.

The KRV mixing walk

KRV-walk

At round **t**:

$$P(t) = \left(\frac{I + M_{t-1}}{2}\right) \left(\frac{I + M_{t-2}}{2}\right) \dots \left(\frac{I + M_{1}}{2}\right)$$

Lazy random walk traversing matchings in order.

The KRV mixing walk

KRV-walk

At round **t**:

$$P(t) = \left(\frac{I + M_{t-1}}{2}\right) \left(\frac{I + M_{t-2}}{2}\right) \dots \left(\frac{I + M_{1}}{2}\right)$$

Lazy random walk traversing matchings in order.

Sketch of KRV Analysis

1. Mixing of P(t) measured by potential function

$$\Psi_{t} = ||P(t) - J/n||_{F}^{2}$$

- 2. If P(t) mixes well, H_t has good expansion. Possible to embed K_n in H_t.
- 3. Potential Reduction at every iteration

$$\Psi_t = \Psi_{t-1} - L(M_t) \cdot P(t) \Longrightarrow \qquad \begin{array}{c} \text{Mixing due to} \\ \text{matching } M_t \end{array}$$

Decomposition possible as KRV walks matchings in order.

4. Cut-finding procedure reduces potential by a fixed factor

$$\Psi_{t} = \Psi_{t-1} \left(1 - \frac{1}{\log n} \right) \longrightarrow \begin{array}{c} \text{Yields expander in} \\ O((\log n)^{2}) \text{ rounds} \end{array}$$

Why KRV cannot do better

Why KRV cannot do better

Recall: Approximation is

Our Cut Strategy: a Different Walk

IDEA: use lazy natural random walk

$$P(t) = \frac{I}{2} + \frac{M_1 + M_2 + \dots + M_{t-1}}{2(t-1)}$$

ADVANTAGES:

- Eliminates bad case: possible to get better expansion.
- Better handle on expansion through mixing by Cheeger's Inequality.

CHALLENGE:

- Impossible to decompose potential as in KRV.

$$\Psi_t = \Psi_{t-1} - L(M_t) \cdot P(t)$$

Additional matching modifies all steps of walk.

Our Cut Strategy: a Different Walk

IDEA: use lazy natural random walk

$$P(t) = \left(\frac{1}{2} + \frac{M_1 + M_2 + \dots + M_{t-1}}{2(t-1)}\right)^d$$

ADVANTAGES:

- Eliminates bad case: possible to get better expansion.
- Better handle on expansion through mixing by Cheeger's Inequality.

CHALLENGE:

- Impossible to decompose potential as in KRV.

Additional matching modifies all steps of walk.

CHALLENGE:

Impossible to decompose potential as in KRV. Additional matching modifies all steps of walk.

Apply matrix inequality: $|(ABA)^{t}| \leq ||A^{t}B^{t}A^{t}||$

CHALLENGE:

Impossible to decompose potential as in KRV. Additional matching modifies all steps of walk.

Apply matrix inequality: $|(ABA)^{t}| \leq ||A^{t}B^{t}A^{t}||$

 $\Psi_{t} = \Psi_{t-1} - L(M_{t}) \cdot P(t)$

CHALLENGE:

Impossible to decompose potential as in KRV. Additional matching modifies all steps of walk.

Apply matrix inequality: $\left\| (ABA)^{t} \right\| \leq \left\| A^{t}B^{t}A^{t} \right\|$

 $\Psi_t = \Psi_{t-1} - \mathsf{L}(\mathsf{M}_t) \cdot \mathsf{P}(t)$

SOLUTION:

Use round-robin walk close to natural. Apply matrix inequality.

Yields same potential reduction as KRV.

But our walk is better related to expansion:

In O((log n)²) rounds, conductance (1\log n) by Cheeger.

SOLUTION:

Use round-robin walk close to natural. Apply matrix inequality.

Yields same potential reduction as KRV.

But our walk is better related to expansion:

In O((log n)²) rounds, conductance (1\log n) by Cheeger.

 $\Omega(\log n)$ expansion in O((log n)²) rounds.

SOLUTION:

Use round-robin walk close to natural. Apply matrix inequality.

Yields same potential reduction as KRV.

But our walk is better related to expansion:

In O((log n)²) rounds, conductance (1\log n) by Cheeger.

 $\Omega(\log n)$ expansion in O((log n)²) rounds.

<u>TIME</u>: only polylog factors worse than KRV

Lower Bound

A NAÏVE MATCHING PLAYER:

Fix a cut (S,V-S). Keep it as sparse as possible.

A NAÏVE MATCHING PLAYER:

Fix a cut (S,V-S). Keep it sparse.

Cut player plays...

A NAÏVE MATCHING PLAYER:

Fix a cut (S,V-S). Keep it sparse.

Cut player plays...

GAME OVER

A NAÏVE MATCHING PLAYER:

Fix a cut (S,V-S). Keep it sparse.

Cut player plays...

GAME OVER

IDEA: hedge over many cuts

THE REAL PLAYER - AT START:

Matching player selects log(n) 'orthogonal' 50-50 cuts in V.

THE REAL PLAYER - THROUGHOUT THE GAME:

Matching player adds matchings to minimize average expansion.

Main Lemma

∀ 50-50 cut (**S**,**V-S**),

Main Lemma

∀ 50-50 cut (**S**,**V-S**),

 \exists a perfect matching M, s.t.

Main Lemma

∀ 50-50 cut (**S**,**V-S**),

 \exists a perfect matching M, s.t.

Conclusion and Open Problems

POWER OF CUT-MATCHING GAME:

Simple yet powerful framework for SPARSEST CUT.

OPEN QUESTION:

Can we use Cut-Matching to get fast $(\log n)^{1/2}$ approximation?