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SPARSEST CUT:
find           with minimum expansion            .

Applications: Divide-and-Conquer, Image Segmentation,
VLSI design, Clustering.
Theoretical Importance: Metric Embeddings, Spectral
Methods.
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SPARSEST CUT:
find           with minimum expansion            .

Applications: Divide-and-Conquer, Image Segmentation,
VLSI design, Clustering.
Theoretical Importance: Metric Embeddings, Spectral
Methods.

The SPARSEST CUT problem is NP-hard.
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IN PRACTICE: Too slow for massive data sets.

Spectral and heuristics like METIS used instead.
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LOWER  BOUND
 No better approx than  Ω((log n)1/2) in KRV framework.

   Best integrality gap for SDP is Ω(loglog(n)).

CUT-MATCHING RIGHT ABSTRACTION?
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The KRV Cut-Matching Game
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GOAL:

Minimize T

KRV: there exists a cut strategy achieving T = O((log n)2).
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The KRV Cut-Matching Game

CUT PLAYER STRATEGY )n(tT =

APPROXIMATION
 ALGORITHM

Runs in time c(n)
per iteration

Approx Ratio:
t(n)

Running time:
 t(n)á (Tmaxflow + c(n))

)n(O
~ 2/3

KRV strategy has  c(n) =           and t(n)= O((log n)2).

TOTAL RUNNING TIME:

)n(O
~

)n(O
~ 2/3



1.No Stopping Condition

2.Value of Game is

Our Version of the Cut-Matching Game

• MODIFIED GAME

T

)H( T!



1.No Stopping Condition

2.Value of Game is

Our Version of the Cut-Matching Game

• MODIFIED GAME

• STILL YIELDS
APPROX ALGORITHM

T

)H( T!

Approximation Ratio =
T

)H( T!



1.No Stopping Condition

2.Value of Game is

Our Version of the Cut-Matching Game

• MODIFIED GAME

• STILL YIELDS
APPROX ALGORITHM
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Cut Strategies: Finding Cuts Quickly

Explain how we connect the mixing of the walk with expansion
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Random assignment of charge

After t iterations, Ht = { M1, M2, …, Mt }.
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Cut Strategies: Finding Cuts Quickly

Explain how we connect the mixing of the walk with expansion

= +1 charge

= –1 charge

Random assignment of charge

After t iterations, Ht = { M1, M2, …, Mt }.

Mix the charges along
the matchings { M1, M2, …, Mt }

If cut is small,
unbalance remains.



Cut Strategies: Finding Cuts Quickly

Order the vertices according to the final charge present
and cut in half.

n/2 n/2

S S



The KRV mixing walk

.
KRV-walk
At round t:

Lazy random walk traversing matchings in order.
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The KRV mixing walk

.
KRV-walk
At round t:

Lazy random walk traversing matchings in order.
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Sketch of KRV Analysis
1. Mixing of P(t) measured by potential function

2. If P(t) mixes well, Ht has good expansion.
Possible to embed Kn in Ht.

3. Potential Reduction at every iteration

Decomposition possible as KRV walks matchings in order.

4. Cut-finding procedure reduces potential by a fixed factor
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Why KRV cannot do better

S V-S

SUPPOSE:

Walk on M1, M2, …, Mk mixes perfectly on S and V-S

and

no edge cross (S,V-S)

Mk+1

Now walk mixes
perfectly.

Expansion is O(1).

Recall:

Approximation
is

Can KRV get
better than O(1)

expansion?



Our Cut Strategy: a Different Walk
IDEA:  use lazy natural random walk

ADVANTAGES:
– Eliminates bad case: possible to get better expansion.
– Better handle on expansion through mixing by Cheeger’s Inequality.

CHALLENGE:
– Impossible to decompose potential as in KRV.

Additional matching modifies all steps of walk.
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Modified Walk and Matrix Inequalities

CHALLENGE:
Impossible to decompose potential as in

KRV.
Additional matching modifies all steps of walk.

SOLUTION:
Use round-robin walk close to natural walk:

Apply matrix inequality:
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Modified Walk and Matrix Inequalities

SOLUTION:
Use round-robin walk close to natural.
Apply matrix inequality.

Yields same potential reduction as KRV.

But our walk is better related to expansion:

In O((log n)2) rounds,
 conductance (1\log n) by Cheeger.
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Modified Walk and Matrix Inequalities

SOLUTION:
Use round-robin walk close to natural.
Apply matrix inequality.

Yields same potential reduction as KRV.

But our walk is better related to expansion:

In O((log n)2) rounds,
 conductance (1\log n) by Cheeger.

Ω(log n) expansion in O((log n)2) rounds.

TIME: only polylog factors worse than KRV



Matching player yielding

against any Cut player.

Lower Bound
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A NAÏVE MATCHING PLAYER:

Fix a cut (S,V-S). Keep it sparse.

Lower Bound Idea

S
Cut player

plays… GAME OVER

IDEA: hedge over many cuts



THE REAL PLAYER - AT START:

Matching player selects log(n) ‘orthogonal’ 50-50 cuts in V.

THE REAL PLAYER - THROUGHOUT THE GAME:

Matching player adds matchings to minimize average expansion.

Lower Bound Idea

Orthogonal 50-50 cuts

Minimum correlation

Cut player cannot ‘kill’

many cuts at once
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Conclusion and Open Problems

POWER OF CUT-MATCHING GAME:
Simple yet powerful framework for SPARSEST CUT.

OPEN QUESTION:

Can we use Cut-Matching to get  fast (log n)1/2 approximation?


