On Partitioning Graphs via Single Commodity Flows

Lorenzo Orecchia
UC Berkeley

Leonard J. Schulman
Caltech

Umesh V. Vazirani
UC Berkeley

Nisheeth K. Vishnoi
IBM Delhi – work done while visiting UC Berkeley

STOC 2008, Victoria
The SPARSEST CUT problem

Given a graph $G=(V,E)$ and partition (S, \bar{S})

Expansion of $(S, \bar{S}) = \frac{|E(S, \bar{S})|}{\min\{|S|, |\bar{S}|\}}$
The SPARSEST CUT problem

Given a graph $G=(V,E)$ and partition (S, \overline{S})

Expansion of $(S, \overline{S}) = \frac{|E(S, \overline{S})|}{\min\{|S|, |\overline{S}|\}}$

SPARSEST CUT: find (S, \overline{S}) with minimum expansion $\phi(G)$.

Applications: Divide-and-Conquer, Image Segmentation, VLSI design, Clustering.

The SPARSEST CUT problem

Given a graph $G=(V,E)$ and partition (S, \bar{S})

Expansion of $(S, \bar{S}) = \frac{|E(S, \bar{S})|}{\min\{|S|, |\bar{S}|\}}$

SPARSEST CUT:
find (S, \bar{S}) with **minimum** expansion $\phi(G)$.

Applications: Divide-and-Conquer, Image Segmentation, VLSI design, Clustering.

Theoretical Importance: Metric Embeddings, Spectral Methods.

The **SPARSEST CUT** problem is **NP-hard**.
Approximation Algorithms for SPARSEST CUT

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral</td>
<td>$2\sqrt{d\phi}$</td>
<td>$O\left(\frac{d^2n}{\phi^2}\right)$ **</td>
</tr>
<tr>
<td>Leighton-Rao</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
<tr>
<td>ARV</td>
<td>$\phi \sqrt{\log n}$</td>
<td>[ARV] poly(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[AHK] $\tilde{O}(n^2)$</td>
</tr>
</tbody>
</table>

*All graphs have been sparsified to $\tilde{O}(n)$ edges. ** For a d-regular graph G.

** d-regular for a d-regular graph G.
Approximation Algorithms for SPARSEST CUT

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral</td>
<td>$2\sqrt{d}\phi$</td>
<td>$O\left(\frac{d^2n}{\phi^2}\right)$</td>
<td>**</td>
</tr>
<tr>
<td>Leighton-Rao</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^2)$</td>
<td></td>
</tr>
<tr>
<td>ARV</td>
<td>$\phi \sqrt{\log n}$</td>
<td>$[\text{ARV}] \ poly(n)$ [\text{AHK}] $\tilde{O}(n^2)$</td>
<td></td>
</tr>
</tbody>
</table>

IN PRACTICE: Too slow for massive data sets. Spectral and heuristics like METIS used instead.

*All graphs have been sparsified to $\tilde{O}(n)$ edges.** For a d-regular graph G.
Fast Approximation Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral</td>
<td>$2\sqrt{d\phi}$</td>
<td>$O\left(\frac{d^2n}{\phi^2}\right)$</td>
</tr>
<tr>
<td>Leighton-Rao</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
<tr>
<td>ARV</td>
<td>$\phi \sqrt{\log n}$</td>
<td>$[\text{ARV}] \ \text{poly}(n)$ $[\text{AHK}] \ \tilde{O}(n^2)$</td>
</tr>
<tr>
<td>KRV</td>
<td>$\phi (\log n)^2$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
</tbody>
</table>

CUT-MATCHING GAME: FRAMEWORK FOR COMPUTING APPROX USING s-t MAXFLOW COMPUTATIONS

*All graphs have been sparsified to $\tilde{O}(n)$ edges.** For a d-regular graph G.
Fast Approximation Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leighton-Rao</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^2)$</td>
</tr>
<tr>
<td>ARV</td>
<td>$\phi \sqrt{\log n}$</td>
<td>$\tilde{O}(n^2)$ [ARV] poly(n) [AHK] $\tilde{O}(n^2)$</td>
</tr>
<tr>
<td>KRV</td>
<td>$\phi (\log n)^2$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>AK</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
</tbody>
</table>

*All graphs have been sparsified to $\tilde{O}(n)$ edges. ** For a d-regular graph G.
Our Contribution

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRV</td>
<td>$\phi(\log n)^2$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>AK</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>THIS PAPER</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
</tbody>
</table>

IN KRV CUT-MATCHING GAME FRAMEWORK
Our Contribution

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRV</td>
<td>$\phi(\log n)^2$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>AK</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>THIS PAPER</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
</tbody>
</table>

IN KRV CUT-MATCHING GAME FRAMEWORK

LOWER BOUND

No better approx than $\Omega((\log n)^{1/2})$ in KRV framework.
Our Contribution

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRV</td>
<td>$\phi(\log n)^2$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>AK</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>THIS PAPER</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
</tbody>
</table>

LOWER BOUND

No better approx than $\Omega((\log n)^{1/2})$ in KRV framework.

Best integrality gap for SDP is $\Omega(\log \log(n))$.
Our Contribution

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Expansion</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRV</td>
<td>$\phi(\log n)^2$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>AK</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
<tr>
<td>THIS PAPER</td>
<td>$\phi \log n$</td>
<td>$\tilde{O}(n^{3/2})$</td>
</tr>
</tbody>
</table>

LOWER BOUND

No better approx than $\Omega((\log n)^{1/2})$ in KRV framework.

Best integrality gap for SDP is $\Omega(\log \log(n))$.

CUT-MATCHING RIGHT ABSTRACTION?
The KRV Cut-Matching Game

Cut Player

Matching Player

H_0
The KRV Cut-Matching Game

H_0

CUT PLAYER

MATCHING PLAYER

$(S_1, \overline{S_1})$

50-50 Cut
The KRV Cut-Matching Game

CUT PLAYER

MATCHING PLAYER

\(H_0 \)

\((S_1, \overline{S_1})\)

50-50 Cut

\(M_1 \)

Perfect Matching
The KRV Cut-Matching Game

H₁

CUT PLAYER

MATCHING PLAYER

(S₁, ¯S₁)
50-50 Cut

M₁
Perfect Matching
The KRV Cut-Matching Game

CUT PLAYER

MATCHING PLAYER

\[(S_1, \overline{S_1}) \]
50-50 Cut

\[(S_2, \overline{S_2}) \]
50-50 Cut

\[M_1 \]
Perfect Matching
The KRV Cut-Matching Game

CUT PLAYER

\((S_1, \overline{S_1}) \)
50-50 Cut

MATCHING PLAYER

\(M_1 \)
Perfect Matching

\((S_2, \overline{S_2}) \)
50-50 Cut

\(M_1 \)
Perfect Matching
The KRV Cut-Matching Game

\[H_2 \]

\[\begin{align*}
&\text{CUT PLAYER} \\
&\quad \rightarrow (S_1 , \overline{S}_1) \\
&\quad \quad \text{50-50 Cut} \\
&\quad \rightarrow (S_2 , \overline{S}_2) \\
&\quad \quad \text{50-50 Cut} \\
&\quad \rightarrow \quad M_1 \\
&\quad \quad \text{Perfect Matching} \\
&\quad \rightarrow \quad M_1 \\
&\quad \quad \text{Perfect Matching} \\
&\quad \ldots
\end{align*} \]
The KRV Cut-Matching Game

GOAL:
- Minimize T
- Maximize T

CUT PLAYER
- (S_1, \overline{S}_1)
 - 50-50 Cut

MATCHING PLAYER
- M_1
 - Perfect Matching

... Go until time T when $\phi(H_T) \geq \frac{1}{4}$
The KRV Cut-Matching Game

CUT PLAYER

MAPPING PLAYER

50-50 Cut

50-50 Cut

GOAL: Maximize T Go until time T when

$\phi(H_T) \geq \frac{1}{4}$

GOAL: Minimize T

KRV: there exists a cut strategy achieving $T = O((\log n)^2)$.
The KRV Cut-Matching Game

Runs in time \(c(n) \)
per iteration

CUT PLAYER STRATEGY

\(T = t(n) \)
The KRV Cut-Matching Game

- Runs in time $c(n)$ per iteration
- Running time: $t(n) \cdot (T_{\text{maxflow}} + c(n))$
The KRV Cut-Matching Game

Runs in time $c(n)$ per iteration

CUT PLAYER STRATEGY

Running time: $t(n) \cdot (T_{\text{maxflow}} + c(n))$

APPROXIMATION ALGORITHM

Time to compute s-t maxflow in G

$\tilde{O}(n^{3/2})$

$T = t(n)$

Approx Ratio: $t(n)$
The KRV Cut-Matching Game

CUT PLAYER STRATEGY

Runs in time $c(n)$ per iteration

APPROXIMATION ALGORITHM

Running time: $t(n) \cdot (T_{\text{maxflow}} + c(n))$

Approx Ratio: $t(n)$

$O((\log n)^2)$

TOTAL RUNNING TIME: $\tilde{O}(n^{3/2})$

KRV strategy has $c(n) = \tilde{O}(n)$ and $t(n) = O((\log n)^2)$. $\tilde{O}(n^{3/2})$
Our Version of the Cut-Matching Game

• MODIFIED GAME

1. No Stopping Condition
2. Value of Game is $\frac{\phi(H_T)}{T}$
Our Version of the Cut-Matching Game

• MODIFIED GAME

1. No Stopping Condition
2. Value of Game is \(\frac{\phi(H_T)}{T} \)

• STILL YIELDS APPROX ALGORITHM

Approximation Ratio = \(\frac{\phi(H_T)}{T} \)
Our Version of the Cut-Matching Game

• MODIFIED GAME
 1. No Stopping Condition
 2. Value of Game is \(\frac{\phi(H_T)}{T} \)

• STILL YIELDS APPROX ALGORITHM
 Approximation Ratio = \(\frac{\phi(H_T)}{T} \)

• RESULTS

<table>
<thead>
<tr>
<th>_strategy</th>
<th>(\frac{\phi(H_T)}{T})</th>
<th>(\frac{\Omega(\log n)}{\Omega(\log^2 n)})</th>
<th>(\Omega \left(\frac{1}{\log n} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUT STRATEGY:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATCHING STRATEGY:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cut Strategies: Finding Cuts Quickly

After t iterations, $H_t = \{ M_1, M_2, \ldots, M_t \}$.

- $+$1 charge
- $-$1 charge

Random assignment of charge
Cut Strategies: Finding Cuts Quickly

After \(t \) iterations, \(H_t = \{ M_1, M_2, \ldots, M_t \} \).

- \(\bigcirc \) = +1 charge
- \(\bullet \) = −1 charge

Random assignment of charge

Mix the charges along the matchings \(\{ M_1, M_2, \ldots, M_t \} \)

\((x+y)/2\)

\((x+y)^{1/2}\)
Cut Strategies: Finding Cuts Quickly

After t iterations, $H_t = \{ M_1, M_2, \ldots, M_t \}$.

- Red dot = +1 charge
- Blue dot = -1 charge

Random assignment of charge
Cut Strategies: Finding Cuts Quickly

After t iterations, $H_t = \{ M_1, M_2, \ldots, M_t \}$.

- \bullet = +1 charge
- \bigcirc = −1 charge

Random assignment of charge
Cut Strategies: Finding Cuts Quickly

After t iterations, $H_t = \{ M_1, M_2, \ldots, M_t \}$.

- \bullet = +1 charge Random assignment of charge
- \bullet = −1 charge

Mix the charges along the matchings $\{ M_1, M_2, \ldots, M_t \}$
Cut Strategies: Finding Cuts Quickly

After t iterations, $H_t = \{ M_1, M_2, \ldots, M_t \}$.

- $\bullet = +1$ charge
- $\bullet = -1$ charge

Random assignment of charge

If cut is small, unbalance remains.

Mix the charges along the matchings $\{ M_1, M_2, \ldots, M_t \}$
Cut Strategies: Finding Cuts Quickly

Order the vertices according to the final charge present and cut in half.
The KRV mixing walk

KRV-walk

- At round t:

 $$P(t) = \left(\frac{I + M_{t-1}}{2}\right) \left(\frac{I + M_{t-2}}{2}\right) \ldots \left(\frac{I + M_1}{2}\right)$$

Lazy random walk traversing matchings in order.
The KRV mixing walk

KRV-walk

- At round t:

$$P(t) = \left(\frac{I + M_{t-1}}{2}\right)\left(\frac{I + M_{t-2}}{2}\right)\ldots\left(\frac{I + M_1}{2}\right)$$

Lazy random walk traversing matchings in order.
The KRV mixing walk

KRV-walk

· At round t:

$$P(t) = \left(\frac{I + M_{t-1}}{2} \right) \left(\frac{I + M_{t-2}}{2} \right) \ldots \left(\frac{I + M_1}{2} \right)$$

Lazy random walk traversing matchings in order.

Averaging along M_2
Sketch of KRV Analysis

1. Mixing of $P(t)$ measured by potential function

$$\Psi_t = \| P(t) - J/n \|_F^2$$

2. If $P(t)$ mixes well, H_t has good expansion.
 Possible to embed K_n in H_t.

3. Potential Reduction at every iteration

$$\Psi_t = \Psi_{t-1} - L(M_t) \cdot P(t)$$

Mixing due to matching M_t

Decomposition possible as KRV walks matchings in order.

4. Cut-finding procedure reduces potential by a fixed factor

$$\Psi_t = \Psi_{t-1} \left(1 - \frac{1}{\log n}\right)$$

Yields expander in $O((\log n)^2)$ rounds
Why KRV cannot do better

Recall:

Approximation is

\[\frac{\phi(H_T)}{T} \]
Why KRV cannot do better

Recall:
Approximation is

Can KRV get better than $O(1)$ expansion?
Why KRV cannot do better

Recall:
Approximation is

Can KRV get better than $O(1)$ expansion?

SUPPOSE:
Walk on $M_1, M_2, …, M_k$ mixes perfectly on S and $V-S$
and
no edge cross $(S,V-S)$
Why KRV cannot do better

SUPPOSE:
Walk on M_1, M_2, \ldots, M_k mixes perfectly on S and $V-S$
and
no edge cross $(S,V-S)$

Now walk mixes perfectly.
Expansion is $O(1)$.

Recall:
Approximation is
Can KRV get better than $O(1)$ expansion?
Our Cut Strategy: a Different Walk

IDEA: use lazy natural random walk

\[
P(t) = \frac{1}{2} + \frac{M_1 + M_2 + \ldots + M_{t-1}}{2(t - 1)}
\]

ADVANTAGES:
- Eliminates bad case: possible to get better expansion.
- Better handle on expansion through mixing by Cheeger’s Inequality.

CHALLENGE:
- Impossible to decompose potential as in KRV.

\[
\Psi_t = \Psi_{t-1} - L(M_t) \cdot P(t)
\]

Additional matching modifies all steps of walk.
Our Cut Strategy: a Different Walk

IDEA: use lazy natural random walk

$$P(t) = \left(\frac{1}{2} + \frac{M_1 + M_2 + \ldots + M_{t-1}}{2(t-1)} \right)^d$$

ADVANTAGES:
- Eliminates bad case: possible to get better expansion.
- Better handle on expansion through mixing by Cheeger’s Inequality.

CHALLENGE:
- Impossible to decompose potential as in KRV.

$$\Psi_t = \Psi_{t-1} - L(M_t) \cdot P(t)$$

Additional matching modifies all steps of walk.
Modified Walk and Matrix Inequalities

CHALLENGE:
Impossible to decompose potential as in KRV.
Additional matching modifies all steps of walk.

SOLUTION:
Use round-robin walk close to natural walk:

\[N_i = \frac{d}{d+1} I + \frac{1}{d+1} M_i \]

\[P(t) = (N_1 N_2 \ldots N_{t-1} N_{t-1} N_{t-2} \ldots N_1)^d \]

Apply matrix inequality:

\[\left\| (ABA)^t \right\| \leq \left\| A^t B^t A^t \right\| \]
Modified Walk and Matrix Inequalities

CHALLENGE:

Impossible to decompose potential as in KRV.
Additional matching modifies all steps of walk.

SOLUTION:

Use round-robin walk close to natural walk:

\[N_i = \frac{d}{d+1} I + \frac{1}{d+1} M_i \]

\[P(t) = (N_1 N_2 \ldots N_{t-1} N_{t-1} N_{t-2} \ldots N_1)^d \]

Apply matrix inequality:

\[\| (ABA)^t \| \leq \| A^t B^t A^t \| \]

\[\Psi_t = \Psi_{t-1} - L(M_t) \cdot P(t) \]
Modified Walk and Matrix Inequalities

CHALLENGE:
Impossible to decompose potential as in KRV.
Additional matching modifies all steps of walk.

SOLUTION:
Use round-robin walk close to natural walk:
\[N_i = \frac{d}{d+1}I + \frac{1}{d+1}M_i \]

Apply matrix inequality:
\[\left\| (ABA)^t \right\| \leq \left\| A^t B^t A^t \right\| \]

\[\Psi_t = \Psi_{t-1} - L(M_t) \cdot P(t) \]
Modified Walk and Matrix Inequalities

SOLUTION:

Use round-robin walk close to natural.
Apply matrix inequality.

Yields same potential reduction as KRV.

But our walk is better related to expansion:

In $O((\log n)^2)$ rounds,
conductance $(1/\log n)$ by Cheeger.
Modified Walk and Matrix Inequalities

SOLUTION:

Use *round-robin walk* close to natural.
Apply *matrix inequality*.

Yields *same potential* reduction as KRV.

But our walk is *better related to expansion*:

In $O((\log n)^2)$ rounds,
conductance $(1/\log n)$ by Cheeger.

$\Omega(\log n)$ expansion in $O((\log n)^2)$ rounds.
Modified Walk and Matrix Inequalities

SOLUTION:

Use round-robin walk close to natural.
Apply matrix inequality.

Yields same potential reduction as KRV.

But our walk is better related to expansion:

In \(\mathcal{O}((\log n)^2) \) rounds,
conductance \((1/\log n) \) by Cheeger.

\(\Omega(\log n) \) expansion in \(\mathcal{O}((\log n)^2) \) rounds.

TIME: only polylog factors worse than KRV
Matching player yielding

\[\frac{\phi(H_T)}{T} = O\left(\frac{1}{\sqrt{\log n}}\right) \]

against any \textbf{Cut player}.

\textbf{No better approximation than} \(O((\log n)^{1/2}) \)

\textbf{in KRV Cut-Matching game}
Lower Bound Idea

A NAÏVE MATCHING PLAYER:

Fix a cut \((S,V-S)\). Keep it as sparse as possible.
A NAÏVE MATCHING PLAYER:

Fix a cut \((S,V-S)\). Keep it sparse.
Lower Bound Idea

A NAÏVE MATCHING PLAYER:

Fix a cut (S,V-S). Keep it sparse.

Cut player plays...

GAME OVER
A NAÏVE MATCHING PLAYER:
Fix a cut \((S, V-S)\). Keep it sparse.

IDEA: hedge over many cuts
Lower Bound Idea

THE REAL PLAYER - AT START:
Matching player selects $\log(n)$ ‘orthogonal’ 50-50 cuts in V.

THE REAL PLAYER - THROUGHOUT THE GAME:
Matching player adds matchings to *minimize average expansion*.
Main Lemma

\[\forall \text{ 50-50 cut } (S, V-S), \]

\[H_d = \left\{ -1, +1 \right\}^d \]
Main Lemma

∀ 50-50 cut \((S,V-S)\),

∃ a perfect matching \(M\), s.t.

\[H_d = \{-1,+1\}^d \]
Main Lemma

∀ 50-50 cut \((S, V - S)\),

∃ a perfect matching \(M\), s.t.

\[
\sum_{(u,v) \in M} |u - v|_1 = O(\sqrt{d})
\]

\[H_d = \{-1, +1\}^d\]
Conclusion and Open Problems

POWER OF CUT-MATCHING GAME:
Simple yet powerful framework for SPARSEST CUT.

OPEN QUESTION:
Can we use Cut-Matching to get fast $(\log n)^{1/2}$ approximation?