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The SPARSEST CUT problem

Given a graph G=(V,E) and partition (S, S)

Expansion of (S,S) = [E(S,S)]

min{| S|,| S [}

SPARSEST CUT:
find (S,S) with minimum expansion ¢(G).

Applications: Divide-and-Conquer, Image Segmentation,
VLSI design, Clustering.

Theoretical Importance: Metric Embeddings, Spectral
Methods.

The SPARSEST CUT problem is NP-hard.
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Fast Approximation Algorithms

Algorithm Output Expansion| Running Time *
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CUT-MATCHING GAME: FRAMEWORK FOR COMPUTING APPROX USING
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*All graphs have been sparsified to 5(n) edges.

** Fora d-regular graph G.




Fast Approximation Algorithms

Algorithm Output Expansion| Running Time
Leigthon-Rao | logn O(n?)
[ARV] poly(n)
ARV yvlogn -
dylog [AHK] O(n?)
KRV o(logn)? O(n*?)

*All graphs have been sparsified to O(n) edges.

** Fora d-regular graph G.
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Our Contribution

Algorithm Output Expansion Running Time
KRV d(logn)? O(n®'?)
AK | logn O(n*'?)

LOWER BOUND

No better approx than Q((log n)?) in KRV framework.

Best integrality gap for SDP is Q(loglog(n)).
CUT-MATCHING RIGHT ABSTRACTION?
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The KRV Cut-Matching Game

CUT PLAYER MATCHING PLAYER
—> (SuS) — M,
50-50 Cut Perfect Matching
— Q —
(Sz’ Sz ) Ml
50-50 Cut Perfect Matching
n . 11 1
Go until time Twhen " (H;)! 2
GOAL: GOAL:
Minimize T Maximize T

KRV: there exists a cut strategy achieving T = O((log n)?).
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The KRV Cut-Matching Game

Runs in time c¢(n)

. CUT PLAYER STRATEGY T =t(n)
per iteration

V

Running time: APPROXIMATION Approx Ratio:
t(n)&A(T,, .x0w T €(N)) ALGORITHM t(n)

KRV strategy has c(n) = 6(n) and t(n)= O((log n)?).

O(n™®) | | TOTAL RUNNING TIME:  O(n®'?)
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Our Version of the Cut-Matching Game

« MODIFIED GAME 1.No Stopping Condit:onH
2.Value of Game is - ( T)
T
+ STILL YIELDS o(H- )

APPROX ALGORITHM Approximation Ratio = T

« RESULTS

CUT STRATEGY:

o(H;) _ Q(logn) _o[ 1
T O(log® n)

logn
MATCHING STRATEGY: (H) § = #
' Pa/10g h
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Cut Strategies: Finding Cuts Quickly

After t iterations, H,={ M, M,, ..., M, }.

® -=+1charge Random assignment of charge

@ =-1charge o o © °®

. XY e
If cut is small,

® P
P o
unbalance remains. o © |~. O ® ®

Mix the charges along
the matchings {M;, M,, ..., M, }



Cut Strategies: Finding Cuts Quickly

Order the vertices according to the final charge present
and cut in half.

S S

n/2 n/2



The KRV mixing walk
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KRV-walk
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The KRV mixing walk

KRV-walk
At round t:

P(t)=§+Mt.lf§+Mt.2ﬁ..§+let
% 2 "% 2 " 0p 2

Lazy random walk traversing matchings in order.

14 o o 1/4
M1

Averaging M,
along M,

1/4 © s 1/4




Sketch of KRV Analysis

Mixing of P(t) measured by potential function

W, || P(t) - 3/n ||

If P(t) mixes well, H, has good expansion.
Possible to embed K, in H..

Potential Reduction at every iteration

o=t LIM)IP() P

Decomposition possible as KRV walks matchings in order.
Cut-finding procedure reduces potential by a fixed factor

1

= ' _- Yields expander in
( t ( t 1%:) Iog n f‘ O((log n)3) rounds
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no edge cross (S,V-S)



Why KRV cannot do better

Recall:
Miciq \ Approximation
N Ik mi / N / / ©
ow walk mixes

perfectly. // / / <
Expansion is O(1). \ \

S V-S Can KRV get

better than O(1)
expansion?
SUPPOSE:

Z
Walk on M,, M,, ..., M, mixes perfectly on S and V-S

and

no edge cross (S,V-S)



Our Cut Strategy: a Different Walk

IDEA: use lazy natural random walk

P(t) = I . M, +M, +...+ M, _,
2 2(t-1)

ADVANTAGES:

—  Eliminates bad case: possible to get better expansion.
—  Better handle on expansion through mixing by Cheeger’s Inequality.

CHALLENGE:

— Impossible to decompose potential as in KRV.

W =Y - L(Mt)'P(t)

Additional matching modifies all steps of walk.
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Modified Walk and Matrix Inequalities
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Modified Walk and Matrix Inequalities
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Additional matching modifies all steps of walk.
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Modified Walk and Matrix Inequalities

CHALLENGE:

Impossible to decompose potential as in
KRV.
Additional matching modifies all steps of walk.

SOLUTION:
U -robin walk close to natural walk:

N. =

= di1|+ M P(t) = (N1N2...Nt_1Nt_1Nt_2---N1 )d

Apply matrljtrjae\ Ljﬁa\lyﬂ HAtBtAtH

¥ =Y, -L(M,)-P(t)



Modified Walk and Matrix Inequalities

SOLUTION:
Use round-robin walk close to natural.

Apply matrix inequality.

Yields same potential reduction as KRV.
But our walk is better related to expansion:

In O((log n)?) rounds,
conductance (1\log n) by Cheeger.
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Modified Walk and Matrix Inequalities

SOLUTION:
Use round-robin walk close to natural.
Apply matrix inequality.

Yields same potential reduction as KRV.
But our walk is better related to expansion:

In O((log n)?) rounds,
conductance (1\log n) by Cheeger.

Q(log n) expansion in O((log n)?) rounds.

TIME: only polylog factors worse than KRV



Lower Bound

Matching player yielding
(I)(HT) — O 1
T Jlogn

against any Cut player.

: i

No better approximation than O((log n)'2)

in KRV Cut-Matching game




Lower Bound Idea

A NAIVE MATCHING PLAYER:

Fix a cut (S,V-S). Keep it as sparse as possible.
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Lower Bound Idea

A NAIVE MATCHING PLAYER:
Fix a cut (S,V-S). Keep it sparse.

Cut player
plays... S | GAME OVER

IDEA: hedge over many cuts




Lower Bound Idea

THE REAL PLAYER - AT START:
Matching player selects log(n) ‘orthogonal’ 50-50 cuts in V.

— Orthogonal 50-50 cuts

Minimum correlation

JL

Cut player cannot ‘kill’

many cuts at once

THE REAL PLAYER - THROUGHOUT THE GAME:

Matching player adds matchings to minimize average expansion.




| 50-50 cut (S,V-S),

Hy = 4 1+1]

Main Lemma

P

7
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Main Lemma

| 50-50 cut (S,V-S),

" a perfect matching M, s.t.

" |ut v],=0k/d)

(u,v #M

H, = { l"'l}j




Conclusion and Open Problems

POWER OF CUT-MATCHING GAME:
Simple yet powerful framework for SPARSEST CUT.

OPEN QUESTION:

Can we use Cut-Matching to get fast (log n)'2 approximation?




