
For an undirected unweighted instance graph G=(V,E) with |V|=n and |E|=m, the conductance of a cut S µ V     is defined as 

 
 
 
where vol(S) is the total degree in set S. A cut S is b-balanced if vol(S) ¸ b ¢ vol(V). 

 
b-BALANCED CUT PROBLEM: Given graph G, parameter °  2 (0,1) and balance b 2 (0,1/2), does G contain a b-balanced cut of 

conductance at most °      ?  
This problem is NP-hard. However, approximation algorithms exist: 
 
 
 
 
 
 
 
 
 
We use “spectral methods” to refer to algorithms that explore the graph by performing matrix-vector multiplications involving the 
graph Laplacian  L.  Such algorithms detect low-conductance cuts by exploiting the connection between the mixing of random walks 
in the graph and the cut structure of G.  
 
Spectral methods for finding balanced cuts perform well in many applications and have fast running times and optimized 
implementations that make them a popular choice among practitioners. The following are the theoretical guarantees of some 
spectral algorithms for this problem. 
 
 
 
 
 
 

 
OUR THEOREM: We give an algorithm that either outputs an (b)-balanced cut S ⊂  V   such that Á(S) ≤                , or 
outputs a certificate that no b-balanced cut of conductance ° exists. The algorithm runs in time O(m poly(log n)). 
 

TECHNICAL COMPONENTS: 

1) SDP primal-dual iterative algorithm with a simple random walk interpretation 

2) Novel analysis of Lanczos methods for computing heat-kernel vectors 

O(
p
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If a low-conductance balanced cut is found, we perform a soft removal of this cut by modifying the current random 
walk as follows: 

 

where Stari is the star graph rooted at vertex i.   

The transition rate from St to all vertices increases, making the process converge faster to its stationary. 

 

 

 

 

 

MIXING ANALYSIS: Using properties of the heat-kernel random walk, we show that the mixing improves significantly: 

 

 

After T=O(log n) iterations, if no low-conductance (b)-balanced cut is found, the following holds: 

 

 

We show that we can turn this fact into a NO certificate for the b-Balanced Cut problem: 

 

 

 

 

We take O(log n) random projections 
and find the best (b)-balanced sweep 
cut S of the resulting vectors. 
 
 
 
 
 
 
 
 
 
If Á(S) ·               , we output S and 

answer YES.  
 

Worst-case instance:              iterations. 
Each iteration takes time            , yielding a total running 
time of             . 
 
NB:   It is not possible to argue that ¸2(Gt) grows 
significantly at every iteration. 
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OUR RANDOM-WALK APPROACH FOR FINDING UNBALANCED CUTS 

APPLYING LANCZOS METHOD TO THE INVERSE ITERATION 

Approximating the Exponential, the Lanczos Method and an Õ(m)-Time Spectral Algorithm for Balanced Separator 
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Figure: Balanced cuts and unbalanced cuts, both of low conductance, in a citation graph.  

Algorithm Method Distinguishes  ¸   °   and Time 
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DETECTING AND REMOVING UNBALANCED CUTS 
Unbalanced cuts of low conductance are obstacles to 
detecting balanced cuts. 
 
Spectral methods are targeted towards finding low-
conductance cuts, regardless of how balanced they are. 
For this reason, spectral methods may have to find and remove 
all unbalanced cuts of low conductance before finding a 
balanced cut. 

 
The algorithmic challenge is to detect and remove 
unbalanced cuts of low conductance quickly. 
 

Iterative Eigenvector Approach 

Set G1 = G. For t=1, …,  n do: 

• Compute the slowest mixing eigenvector of Gt and      
corresponding Laplacian eigenvalue ¸2.  

•    If ¸2 ¸ °, output NO. Otherwise, sweep eigenvector to 

find cut St such that  

• If USi is (b/2)-balanced, output USi. 

• Otherwise, let Gt+1 be the graph induced by Gt   on V-St 
with self-loops replacing the edges going to St. Recurse on 
Gt+1. 

 

Example: 
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The eigenvector is unstable, as it may capture only a small cut and be oblivious to rest of the graph.  Hence, we 
switch to a more stable distribution over low eigenvectors, represented by the transition matrix of a random walk 
that has converged to have most of its norm over eigenvectors with eigenvalue at most O(°). 
For simplicity, take G to be regular. The graph Laplacian is L    = I-  W. 

IDEA BEHIND OUR ALGORITHM:  
Replace eigenvector by multidimensional embedding of heat-kernel random-walk. 
 

Denote the embedding {vi} given by                    with P   = Pt. 

MIXING: 
Define the deviation from stationary for a set S  µ V for process P: 

 

ª(P,V) measures the total deviation from stationary, which is also the variance of the geometric embedding {vi}. 

 

ROUNDING. Three possible cases: 

Pt = e¡¿L(Gt) ¿ = logn=°

vi = Pei

~1
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P
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WALK HAS MIXED 

ª(Pt; V ) · 1

poly(n)

This yields a certificate that 

¸2 (Gt)¸ °, 

Which we turn into a NO certificate. 

All vectors are short. 
The total deviation is: 

WALK HAS NOT MIXED AND 
BALANCED CUT IS FOUND 

WALK HAS NOT MIXED AND 
NO BALANCED CUT IS FOUND 

Some vectors must be very long, i.e. 
walk converges very poorly from some 
vertices. 
 
 
 
 
 
 
 
We can find St with Á(St) ·              .     
Moreover, 

St

GOAL: For symmetric diagonally-dominant A  and vector u , with sparsity m, compute vector v such that   

                                                                                    in time               

In our case,                         , so that                               and the running time is               . 

ITERATIVE APPROACHES:  

• Taylor Series Approximation: requires                                       terms and yields a running time of                  .        

• Direct Lanczos Method: requires                                                     iterations . The running time is                      . 

• Our Algorithm relies on a linear-system solver for A. We obtain the following running times:    

- Using  Spielman-Teng solver:                                                                                              , yielding  

- Using Conjugate Gradient:                                                                                                                          , yielding   

OUR APPROACH exploits the speed of the linear-system solver by using it to perform the inverse iteration. We speed 
up convergence by applying Lanczos method. 
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IDEA: Perform k matrix-vector multiplications to obtain the subspace 

Compute an orthonormal basis Qk   for Rk and let Tk be A restricted to Rk: 

As k grows,  Tk   becomes a better approximation to A. If a function f is close to a polynomial p of degree  k, i.e. 

then 
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Review of Lanczos Method 
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A direct application of Lanczos method does not meet our goal, but applying Lanczos to the inverse iteration 
yield our result. 

DIRECT LANCZOS: There exists a polynomial p such that 

 

and p has degree                          .  

IMPLICATION:                                                     iterations are sufficient.            

LOWER BOUND: This bound is tight:                           iterations may be necessary. 

 

IDEA:  Apply Lanczos Method to                                   , i.e. compute subspace 

 

NB:  We can use the linear-system solvers to compute, for any vector x, 

 

 

APPROXIMATION: In fact, the quality of the k-approximation depends on the existence of a good 
approximation to the exponential function by rational functions, a larger class of functions than polynomials. 

THEOREM (Saff, Schonhage, Varga `75) : There exists a polynomial p such that 

 

and p has degree                                                                  . 
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