Almost-Linear-Time Algorithms for Fundamental Graph Problems

A New Framework and Its Applications

Lorenzo Orecchia
A Tale of Two Disciplines

NEW INSIGHT: Deep connections between core concepts. These two fields have expanded and diverged. Use techniques from one to help the other. They face similar challenges, but with different tools.

Fastest Algorithms for Fundamental Graph Problems
- Asks about paths, flows, cuts, clustering, routing
- Asks about matrices, PDEs, computational linear algebra

A New Framework for the Design of Fast Algorithms
- Numerical/analytical
- Combinatorial/parametric
Why Graph Algorithms?

Why Graph Algorithms?

- Computer Networks
- Social Networks
- Transportation Networks
- Representations of Physical Objects
Why Fast Graph Algorithms

• **Classical Algorithms** (1970s-1990s):
 Standard notion of efficiency is *polynomial running time*

• **Today:**
 Graphs of interest are getting larger and larger ...

Even *quadratic* running time is **unfeasibly large** for these instances
Why Fast Graph Algorithms

- **Classical Algorithms** (1970s-1990s):
 Standard notion of efficiency is *polynomial running time*

- **Today**:
 Graphs of interest are getting larger and larger ...
 Even *quadratic* running time is *unfeasibly large* for these instances

- **New Efficiency Requirement:** *as close as possible to linear*

 ALMOST-LINEAR RUNNING TIME

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$O(n) \cdot O(n^{1+\epsilon})$ for any $\epsilon > 0$</td>
</tr>
</tbody>
</table>

Contrast with **Super-Linear Time** $\Omega(n^{1+\delta})$ for some $\delta > 0$

- n^2, $n^{1.5}$, $n^{1.001}$
GOAL: Build library of primitives running in almost-linear time

- What can you do to a graph in almost-linear time?

Almost-Linear Time

- Reachability
- Shortest Path
- Connectivity
- Minimum Cost Spanning Tree

SHORTEST PATH PROBLEM:
What is the shortest path from vertex \(u \) to vertex \(v \)?

 Probe Graph Structure in Simple Way
Almost-Linear-Time Algorithms

GOAL: Build library of primitives running in almost-linear time

- What can you do to a graph in almost-linear time?

Almost-Linear Time

- Reachability
- Shortest Path
- Connectivity
- Minimum Cost Spanning Tree

 ...

Laplacian Systems of Linear Equations [Spielman, Teng'04]

\[Lx = b \]

Deep Probe of Graph Structure

Solve systems of linear equations with an implicit graph structure

Fundamental problem in numerical analysis with ubiquitous applications

Simple Probe of Graph Structure
Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

Laplacian Systems of Linear Equations [Spielman, Teng’04]

BREAKTHROUGH: First almost-linear-time algorithm for complex graph problem

IDEA: Combine Computational Linear Algebra and Combinatorial Optimization

DISADVANTAGES: Involved theoretical algorithm, 3 papers = 100+ pages

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu ’12]

BREAKTHROUGH: Faster, simple almost-linear-time algorithm

IDEA: Combine **Continuous Optimization** and Combinatorial Optimization

ADVANTAGES: 5 lines of pseudo-code, proof fits on 1 blackboard
Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

- New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu ’12]
 Faster, simple almost-linear-time algorithm

- A New Framework for Designing Fast Algorithms
 Combining Continuous Optimization and Combinatorial Optimization

- Applying the Framework to Undirected Flow Problems
 s-t Maximum Flow [Kelner, Orecchia, Sidford, Lee ‘13][Sherman’13]
 First almost-linear-time algorithm for this foundational problem
 Previous best running time: $O(n^{4/3} \log(n))$ [Christiano et al. ’11]
Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu ’12]
Faster, simple almost-linear-time algorithm

A New Framework for Designing Fast Algorithms
Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework to Undirected Flow Problems
- **s-t Maximum Flow** [Kelner, Orecchia, Sidford, Lee ’13][Sherman’13]
- Concurrent Multi-commodity Flow [Kelner, Orecchia, Sidford, Lee ’13]
 - Oblivious Routing [Kelner, Orecchia, Sidford, Lee ’13]

... and Undirected Cut Problems
- Minimum s-t cut [Kelner, Orecchia, Sidford, Lee ‘13][Sherman’13]
- Approximate Sparsest Cut [Kelner, Orecchia, Sidford, Lee ’13] [Sherman’13]
- Approximate Minimum Conductance Cut [Orecchia, Sachdeva, Vishnoi ’12]
Talk Outline

New Solver for Laplacian Systems of Linear Equations
Faster, simple almost-linear-time algorithm

A New Framework for Designing Fast Algorithms
Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework: Undirected s-t Maximum Flow
First almost-linear-time algorithm for a foundational graph problem

Future Directions
Solving Laplacian Systems In Almost-Linear Time:

A Simple Algorithm
Laplacian Systems of Linear Equations

\[Ax = b \]

Fundamental Problem in Numerical Analysis

Some Applications
- Finite-element method
- Image Smoothing
- Network Analysis
Laplacian Systems of Linear Equations

Fundamental Problem in Numerical Analysis and Simulation of Physical Systems

\[Ax = b \]

Some Applications
- Finite-element method
- **Image Smoothing**
- Network Analysis
Laplacian Systems of Linear Equations

Fundamental Problem in Numerical Analysis and Simulation of Physical Systems

\[Ax = b \]

Some Applications

• Finite-element method

• Image Smoothing

• Network Analysis
Laplacian Systems and Electrical Flow

Matrix A defines a graph

Vector b defines: flow input/output

Graph Electrical Circuit
Edges Unit resistors

$Ax = b$
Laplacian Systems and Electrical Flow

\[Ax = b \]

Solution \(x \) is voltage induced by current

Vector \(b \) defines electrical current input/output

Current Source
Laplacian Systems and Electrical Flow

Computational Challenge: Compute how electrical flow spreads in the circuit in almost-linear-time in the number of edges m

Optimization Characterization: Electrical flow minimizes energy

$$\min_{f \text{ routes } (s,t)} \sum_{e \in E} r_e f_e^2$$
Laplacian Systems and Electrical Flow

Equivalent Characterization (Ohm’s Law):
There exist voltages v such that for every edge $e = (a,b)$,

Electrical Flow $f_e = \frac{(v_b - v_a)}{r_e}$

Voltage Gap

Edge Resistance
Previous Work

- Vast amounts of work on solving various subclasses of graphs
 - Multigrid on grids and meshes
- General direct solvers
 - Gaussian elimination, Strassen’s algorithm
- General iterative solvers
 - Conjugate gradient, Chebyshev’s method
- For Laplacians, long line of work leading to almost-linear-time algorithm
 - Very complicated: Algorithm and analysis of Spielman and Teng is divided into 3 papers totaling >130 pages
- All previous almost-linear-time graph algorithms have same structure
 - Can be seen as combinatorial analogue of Multigrid
Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f_0.
Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
• Choose a spanning tree T of G.
• Route flow along T to obtain initial flow f_0.

NOTE:
Flow f_0 is electrical flow if and only if **Ohm’s Law** holds for all edges $e=(b,a)$

\[f_e = \frac{(v_b - v_a)}{r_e} \]

• Apply **Ohm’s Law** to the spanning-tree edges to deduce voltages.
Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f_0.

NOTE:
Flow f_0 is electrical flow if and only if **Ohm’s Law** holds for all edges $e=(b,a)$

- Apply **Ohm’s Law** to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm’s Law on off-tree edges.
Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
• Choose a spanning tree T of G.
• Route flow along T to obtain initial flow f_0.

MAIN LOOP (CYCLE FIXING):
• Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
• Check if voltages and flows obey Ohm’s Law on off-tree edges.
• Consider cycle corresponding to failing off-tree edge e
Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
• Choose a spanning tree T of G.
• Route flow along T to obtain initial flow f_0.

MAIN LOOP (CYCLE FIXING):
• Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
• Check if voltages and flows obey Ohm’s Law on off-tree edges.
• Consider cycle corresponding to failing off-tree edge e.
• Send flow around cycle until Ohm’s Law is satisfied on e.
INITIALIZATION:
- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f_0.

MAIN LOOP (CYCLE FIXING):
- Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm’s Law on off-tree edges.
- Consider cycle corresponding to failing off-tree edge e
- Send flow around cycle until Ohm’s Law is satisfied on e
- Repeat
Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f_0.

MAIN LOOP (CYCLE FIXING):
- Apply **Ohm’s Law** to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm’s Law on off-tree edges.
- Consider cycle corresponding to failing off-tree edge e
- Send flow around cycle until Ohm’s Law is satisfied on e
- Repeat
INITIALIZATION:
- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f_0.

MAIN LOOP (CYCLE FIXING):
- Apply **Ohm’s Law** to the spanning-tree edges to **deduce voltages**.
- Check if voltages and flows obey Ohm’s Law on **off-tree edges**.
- Consider cycle corresponding to **failing off-tree edge** e
- Send **flow around cycle** until Ohm’s Law is satisfied on e
- Repeat
Algorithm Analysis

- Pick a cycle
- Fix it
- Repeat

Does it converge? \(\rightarrow \) **YES.** Converges to electrical flow.

How quickly? \(\rightarrow \)

Depends on:
1. Choice of **spanning tree**
2. Order of **cycle updates**

 Randomized Order
Algorithm Analysis

CHOICE OF SPANNING TREE:
- Cycle-fixing updates can interfere with one another, lead to slow convergence
- Choose spanning tree such that cycles interfere minimally: Spanning tree with minimal average cycle-length
- Number of iterations is $O(m) \cdot$ [average cycle-length]
Low-Stretch Spanning Trees

spanning tree T

G

C_e

e
Low-Stretch Spanning Trees

Stretch of e = Length of cycle C_e

$st(e) = 5$

C_e and e
Low-Stretch Spanning Trees

Stretch of e = Length of cycle C_e

$st(e) = 2\sqrt{n} + 1$
Low-Stretch Spanning Trees

Stretch of e = Length of cycle C_e

Average Stretch:

$$\text{st}(T) = \frac{1}{m} \sum_{e \in E} \text{st}(e)$$

$$\text{st}(T) = \Omega(\sqrt{n})$$
Low-Stretch Spanning Trees

Fact [Abraham, Neiman ’12]: It is possible to compute a spanning tree with average stretch $O(\log n \log \log n)$ in almost-linear time.
Algorithm Analysis

• Pick a cycle
• Fix it
• Repeat

Does it converge?

→ YES. Converges to electrical flow.

How quickly?

→ Depends on:

1. Choice of spanning tree
 Use low-stretch spanning tree

2. Order of cycle updates
 Randomized

Number of iterations is $O(m) \cdot \text{[average cycle-length]} = O(m \log n \log \log n)$

Each cycle update can be implemented in $O(\log n)$ time using simple data structure

TOTAL RUNNING TIME: $O(m \log^2 n \log \log n)$
Summary of Laplacian Solver

- Simple algorithm based on **cycle updates**
- **Practically appealing:** Generated interests from practitioners and is being implemented by groups at UCSB and Sandia Labs
- **Numerical stability** is very easy to prove
- Formalizes **Kaczmarz heuristic** used in Computerized Tomography
- Replaces more complicated setup based on Spielman-Teng
A Novel Framework for the Design of Almost-Linear-Time Graph Algorithms:

Generalizing Our Approach to Electrical Flow
Working in the Space of Cycles

START: Geometric interpretation of electrical flow algorithm

Subspace of flows routing required current input/output

NB: Our iterative solutions never leave this subspace thanks to cycle updates

\[
 f^* \approx f_0 + \sum_i \alpha_i C_i
\]

Linear combination of cycles
Coordinate Descent in the Space of Cycles

GOAL: \[f^* \approx f_0 + \sum_i \alpha_i C_i \]

- Pick a **basis** of the space of cycles
- Fix a coordinate at the time, i.e., **coordinate descent**
Coordinate Descent in the Space of Cycles

GOAL: \[f^* \approx f_0 + \sum_i \alpha_i C_i \]

EXAMPLE: High interference between basis vectors yields slow convergence.
Coordinate Descent in the Space of Cycles

RECALL:
Low-stretch spanning tree yields low-interference basis
Electrical Flow: Algorithmic Components

Continuous Optimization:
Randomized Coordinate Descent

Joint Design of Components

Combinatorial Optimization:
- Space of cycles
- Basis given by **Low-Stretch Spanning Tree**
A Framework for Algorithmic Design

Iterative Method

Leverage Continuous Optimization Ideas:
- Gradient Descent
- Coordinate Descent
- Nesterov’s Algorithm

Fast convergence of these methods depends on smoothness of objective function

\[
\min_{x \in X} f(x)
\]

Gradient changes too quickly!
A Framework for Algorithmic Design

ITERATIVE METHOD

Leverage Continuous Optimization Ideas
Fast convergence requires smooth problem

PROBLEM REPRESENTATION

Not all representations are created equal:
Use combinatorial techniques
to produce a smooth representation

Efficiency and simplicity rely on combining these two components in the right way
Applying Our Design Framework:

Undirected s-t Maximum Flow
Example: Undirected s-t Maximum Flow

INPUT:
- Undirected Graph $G = (V,E)$, n vertices in V, m edges in E
- Edges have positive capacities c_e
- Special vertices: source s and sink t

GOAL: Route maximum flow from s to t while respecting capacities

MAX = 3

Diagram:

- Edges with capacities labeled on each edge.
- Source s and sink t highlighted with arrows pointing towards each other.
- The maximum flow from s to t is indicated with double arrows.
Previous Work: Augmenting Paths

IDEA: Route one path at the time until one edge is congested. Modify graph to allow pushing flow back. Repeat.

Different policies for choosing augmentation lead to different variants.

DISCRETE ALGORITHM: Intermediate flows routed are always integral. Convergence analysis is combinatorial.

Running Times:
- [Edmonds, Karp ’72] \(O(m^2n) \)
- [Dinic ’70] \(O(mn^2) \)
- ...
- [Goldberg-Rao ’98] \(O(m\sqrt{n}) \)
An Optimization View of Maximum Flow

Maximize s-t flow while respecting capacities:

\[\forall e \in E, \quad \frac{f_e}{c_e} \leq 1 \]

Max edge congestion \(\leq 1 \)

Two Equivalent Formulations

Minimize maximum congestion while routing unit flow from \(s \) to \(t \)

\[\min \max \frac{f_e}{c_e} \]

s.t. \(f \) routes \(s - t \)
An Optimization View of Maximum Flow

Two Equivalent Formulations

Maximize s-t flow while respecting capacities:

\[\forall e \in E, \quad \frac{f_e}{c_e} \leq 1 \]

Max edge congestion \(\leq 1 \)

Minimize maximum congestion while routing unit flow from \(s \) to \(t \)

\[\min f \quad \max_{e} \frac{f_e}{c_e} \]

s.t. \(f \) routes \(s \rightarrow t \)
An Optimization View of Maximum Flow

Minimize maximum congestion while routing unit flow from s to t

$$\min_f \|C^{-1}f\|_\infty$$

s.t. f routes $s - t$
Connection with Electrical Flow

Electrical Flow

\[
\min_{f} \sum_{e \in E} r_e f_e^2
\]

s.t. \(f \) routes \(s - t \)

Energy Minimization

\[
\min_{f} \|C^{-1} f\|_{\infty}
\]

s.t. \(f \) routes \(s - t \)

Congestion Minimization

s-t Maximum Flow
Set resistances as: $r_e = \frac{1}{c_e}$

$$\min_f \|C^{-1/2}f\|_2$$

s.t. f routes $s - t$

Applying the framework: Can we change basis to make problem smoother?
An Extra Difficulty

Objective function: \(g(f) = \| C^{-1} f \|_{\infty} \)
An Extra Difficulty

Objective function: \[g(f) = \|C^{-1}f\|_\infty \]

PROBLEM: OBJECTIVE IS EXTREMELY NON-SMOOTH

No change of basis can help
An Extra Step: Regularization

Objective function: \[g(f) = \|C^{-1}f\|_{\infty} \]

PROBLEM: No change of basis can smoothen objective

SOLUTION: Change objective

Find function that is close to objective but somewhat smooth
Applying the Framework: Comparison

Electrical Flow

\[\| C^{-1/2} f \|_2 \]

Iterative Method

s-t Maximum Flow

\[\| C^{-1} f \|_\infty \]

Objective

Problem Representation

No regularization needed

Use basis given by Low-stretch spanning tree

Regularize to softmax

Which basis to use?

Little interference in \[\| \cdot \|_\infty \]

Surprising equivalence:

Basis is OBLIVIOUS ROUTING SCHEME

Iterative Method
Oblivious Routing

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

Routing = Probability Distribution over Paths = Flow
Oblivious Routing

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

DIFFICULTY: Requests arrive online in arbitrary order
How to avoid global flow computation at every new arrival

SOLUTION:

Oblivious Routing: Every request is routed obliviously of the other requests
Oblivious Routing

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

DIFFICULTY: Requests arrive online in arbitrary order
How to avoid global flow computation at every new arrival

SOLUTION:

Oblivious Routing: Every request is routed obliviously of the other requests

PRE-PREPROCESSING: Routes are pre-computed

MEASURE OF PERFORMANCE:
Worst-case ratio between congestion of oblivious-routing and optimal a posteriori routing

COMPETITIVE RATIO
Oblivious Routing: A New Scheme

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

DIFFICULTY: Requests arrive online in arbitrary order
How to avoid global flow computation at every new arrival

SOLUTION:
Oblivious Routing: Every request is routed obliviously of the other requests

PRE-PREPROCESSING: Routes are pre-computed

ALMOST-LINEAR RUNNING TIME

MEASURE OF PERFORMANCE:
Worst-case ratio between congestion
of oblivious-routing and optimal a posteriori routing

SUBLINEAR COMPETITIVE RATIO
Applying the Framework: Comparison

Electrical Flow

\[\|C^{-1/2}f\|_2 \]

- No regularization needed
- Use basis given by low-stretch spanning tree
- Coordinate Descent

s-t Maximum Flow

\[\|C^{-1}f\|_{\infty} \]

- Regularize to softmax
- Use basis given by oblivious routing scheme
- Non-Euclidean Gradient Descent

OBJECTIVE

PROBLEM REPRESENTATION

ITERATIVE METHOD
Euclidean Gradient Descent

Contour map of $g(f) = \|C^{-1}f\|_\infty$ over feasible subspace
Non-Euclidean Gradient Descent

Contour map of \(g(f) = \|C^{-1} f \|_\infty \) over feasible subspace
Applying the Framework: Comparison

<table>
<thead>
<tr>
<th>Electrical Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|C^{-1/2} f|_2$</td>
</tr>
<tr>
<td>No regularization needed</td>
</tr>
<tr>
<td>Use basis given by low-stretch spanning tree</td>
</tr>
<tr>
<td>Coordinate Descent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s-t Maximum Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|C^{-1} f|_\infty$</td>
</tr>
<tr>
<td>Regularize to softmax</td>
</tr>
<tr>
<td>Use basis given by oblivious routing scheme</td>
</tr>
<tr>
<td>Non-Euclidean Gradient Descent</td>
</tr>
</tbody>
</table>

ALMOST-LINEAR-TIME FOR BOTH PROBLEMS
Where Do We Go From Here?

Future Directions
A New Algorithmic Approach

- A novel design framework for fast graph algorithms
- Incorporates and leverages idea from multiple fields
- Based on radically different approach
- Has yielded conceptually simple, powerful algorithms
- Combinatorial insight plays a crucial role
 - Low-stretch spanning trees
 - Oblivious routings
- Numerous potential applications in Algorithms and other fields
What Are the Limits of Almost-Linear Time?

<table>
<thead>
<tr>
<th>Almost-Linear Time</th>
<th>Super-linear Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reachability</td>
<td>Directed Flow Problems</td>
</tr>
<tr>
<td>Shortest Path</td>
<td>Directed Cut Problems</td>
</tr>
<tr>
<td>Connectivity</td>
<td>All-pair Shortest Path</td>
</tr>
<tr>
<td>Minimum Cost Spanning Tree</td>
<td>Network Design</td>
</tr>
</tbody>
</table>

Recent Partial Progress:
- Improved running time for directed flow problems [Madry’13]
- Conditional lowerbounds for All-Pair Shortest Path [Williams’13]

Undirected Flow Problems:
- s-t Maximum Flow
- Concurrent Multi-commodity Flow
- Oblivious Routing

Undirected Cut Problems:
- Minimum s-t cut Approximate Sparsest Cut
- Approximate Minimum Conductance Cut
Properties of Resulting Algorithms

OBSERVE: Our algorithms solve regularized versions of the problem.

SOLUTIONS ARE STABLE UNDER NOISE

GROUND-TRUTH GRAPH

NOISY MEASUREMENT

INPUT GRAPH

Our iterative solutions are stable under noise.

Practical Advantage: Real-world instances are often noisy samples.

REGULARIZATION PREVENTS OVERFITTING TO NOISE

CONNECTIONS TO: Convex Optimization, Machine Learning, Statistics, Complexity Theory
EMPIRICAL OBSERVATION:
Many of the algorithms obtained in this framework resemble heuristics used successfully in practice

Examples:
- METIS for Graph Partitioning
- PageRank Random Walks for Clustering
- Kaczmarz Iteration for Solving Linear Systems

Future Work: Interpret and improve existing heuristics

Example: Clustering heuristics in computational biology
A Modern Theory of Algorithms

BROAD VISION:
Convergence of Combinatorial and Continuous Optimization yields new approach to the design of algorithms

PERSPECTIVE: We have only made first steps in leveraging this insight
5-10 year plan: much richer toolkit of almost-linear-time algorithms

RENEWED FOCUS ON PRACTICAL APPLICATIONS:
• Scalability
• Conceptual simplicity, practical appeal
• Address fundamental problems with wide applicability

LONG-TERM GOAL:
Redefine the relationship between Theory of Algorithms and other areas:
Scientific Computing, Machine Learning, Experimental Algorithms, and more