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The Rise of Large Graphs. Graphs are natural encoders of interconnected relations which can be leveraged to analyze
many real-world applications. With the unprecedented growth of such interconnected data stemming from various ap-
plications, analytics over large graphs is becoming increasingly popular. Real-world graphs often exhibit a vast scale,
encompassing millions, or even billions, of nodes interconnected by several billion edges. The sheer size of these graphs
often exceeds the capacity of main memory, posing a significant challenge for efficient processing. Consequently, spe-
cialized techniques have emerged to address the need for scalable solutions to handle these massive graphs.
State-of-the-art Graph Management Systems. Many scalable systems have been recently proposed that handle
large graphs by distributed processing, which come with unique challenges such as partitioning, load balancing, cluster
management, network overhead, and fault tolerance. On the other hand, single-node systems process large graphs in-
memory and achieve scalability through increasing memory size and adding more CPUs. This work [4] is orthogonal
to these approaches, however, it can benefit any system that spills data to storage. For example, our techniques can be
applied at the local shard level in distributed graph management systems to enhance performance. Single-node out-of-
core systems (which we focus on) primarily rely on (i) optimizing data partitioning techniques, (ii) improving memory
and disk locality, and (iii) reducing random I/O to utilize fast sequential I/Os. These techniques mainly address slow
random disk access, which is particularly relevant for traditional hard disk drives (HDDs). However, the storage layer of
data-intensive systems today employs solid-state disks (SSDs) and non-volatile memory (NVM) devices that have quite
different characteristics than HDDs, which require a careful system redesign to be effectively exploited [1, 2, 5].
Modern Storage Devices. SSDs dominate as secondary storage devices, while classical HDDs are nowadays primarily
used for archival storage. SSDs offer fast data access, high chip density, and low energy consumption by utilizing NAND
flash memory as their storage medium, thus eliminating the mechanical overheads of HDDs. Further, SSD internals
follows a hierarchical structure that creates high internal parallelism, which can be leveraged to enhance performance [1,
3]. That is, an SSD can perform multiple concurrent I/Os until its bandwidth is saturated. Following the Parametric I/O
model [2], we call this property concurrency, k, which is the number of I/Os the device can perform concurrently
without hurting latency per request. The level of concurrency supported by a device depends on the request type
(read/write), access granularity and on the device internals.
SSD Parallelism for Graph Processing. Graph traversal operations can utilize SSD concurrency by parallelizing node
and edge accesses, effectively distributing the workload across SSD’s parallel architecture. This idea takes advantage of
the availability of multiple paths that can be explored during graph traversal. However, most out-of-core graph pro-
cessing systems simply attempt to better utilize underlying storage devices by reducing random (in favor of sequential)
I/O. They do not aim to aggressively exploit opportunities for concurrent accesses, thus failing to use the full potential
of SSDs. Our goal is to parallelize graph traversal algorithms without changing their core properties in order to fully
utilize the underlying SSD concurrency. We identify two fundamental approaches to achieve this goal.
• Intra-Subgraph Parallelization: This approach focuses on parallelizing operations within a single subgraph. This
approach is effective when the nodes of a subgraph can be processed independently. For example, a parallel version of
Breadth-First Search (BFS) can follow this approach since multiple nodes of the same level can be processed indepen-
dently. The core integrity of the algorithm can be maintained via communication among the processing units, result
aggregation and synchronization.

• Inter-Subgraph Parallelization: In contrast to the previous approach, inter-subgraph parallelization involves pro-
cessing multiple subgraphs concurrently. This method is particularly useful when we can identify that multiple sub-
graphs can be processed independently. For example, in the pseudo Depth-First Search algorithm [?], the stack used
for traversal can be split into smaller stacks and processed in parallel by different threads. Multiple threads can then
work on different parts of the graph concurrently, thus traversing multiple branches simultaneously.

In both approaches, the key objective is to maximize the utilization of SSD concurrency, ensuring that multiple opera-
tions can be performed in parallel. Figure 1 illustrates these two techniques for a simplified graph. We integrate both
approaches into our prototype graph processing system.
Our Approach. We build an SSD-aware graph processing system, named CAVE1 [5] that is able to harness the concur-
rency of the underlying storage devices via intra/inter-subgraph parallelization. Specifically, CAVE provides the neces-
sary infrastructure to parallelize graph traversal algorithms when several independent vertex accesses can be performed
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Figure 1: Example of Intra/Inter-Subgraph Parallelization. (A) { B, D, E, F } are at the same level of BFS and are processed
concurrently by 4 threads. (B) As pseudo-DFS progresses, the stack is split into two subgraphs ({ D, E } and { B, F }),
which are processed in parallel by 2 threads.

in parallel. A prime example is our Parallel Breadth-First Search (PBFS) implementation that uses intra-subgraph par-
allelization as shown in Figure 1(A). The algorithm accesses the next wave of nodes {B,D,E,F} in parallel since we have
already identified the nodes of the next wave while processing the current one (node C). This leads to a faster response
time of the BFS search simply by carefully exploiting the underlying storage concurrency, resulting in faster conver-
gence within fewer iterations. Since classical Depth-First-Search (DFS) is tricky to parallelize, we use a pseudo-DFS
algorithm where the stack is split into smaller stacks when its size goes beyond a predefined threshold, and the smaller
stacks are processed in parallel. This allows for multiple threads to work on different subgraphs (paths) concurrently,
illustrated in Figure 1(B). CAVE uses a block-based file format based on adjacency lists, ensuring that graph metadata,
vertex information, and edge information are stored in aligned blocks while enabling efficient support for graph traver-
sal and analytical operations by ensuring optimized data retrieval. Furthermore, CAVE employs a concurrent cache
pool mechanism that enhances locality and ensures thread safety. Overall, CAVE identifies storage accesses that are
independent (thus can be parallelized) based on the task at hand and performs them concurrently based on the device’s
optimal concurrency [2], i.e., the number of I/O requests the device can handle without compromising latency.

To our best knowledge, CAVE is the first graph processing system that is capable of fully exploiting the available par-
allelism of the underlying flash-based storage leading to significant performance improvements. State-of-the-art graph
processing systems focus on the design of graph processing/traversal algorithms and the distribution of the work (e.g.,
partitioning), but not on the specific characteristics of the underlying hardware and especially storage devices. By build-
ing a better understanding of how to efficiently use SSDs, we build a faster (and/or cheaper in the cloud) graph processing
system. Further, one of the key benefits of this approach is that it is applicable in any graph system that spills data on
disk, so it can benefit a wide variety of systems. CAVE’s architecture is designed to pave the way for developing new
parallel graph algorithms that leverage the inherent concurrency of SSDs for both intra/inter-subgraph parallelization.
As our first step, we develop in CAVE the parallelized versions of five popular graph algorithms. In addition to BFS and
DFS, CAVE offers parallelized, SSD-aware versions of Weakly Connected Components (WCC), PageRank (PR), and Ran-
domWalk (RW). We compare the performance of CAVE with three popular out-of-core processing systems, GraphChi,
GridGraph and Mosaic, as they are widely recognized for their efficiency in handling large-scale graphs in a single ma-
chine. We also compare with a single-node deployment of a distributed system named GraphX. By experimenting with
six different types of graphs on three SSD devices, we demonstrate that CAVE utilizes the available parallelism, and
scales to diverse real-world graph datasets. We observe that CAVE can be up to three orders of magnitude faster than
GraphChi and up to one order of magnitude faster than GridGraph and Mosaic.
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