
Designing SSD-Conscious Data Systems
Tarikul Islam Papon (Boston University, USA)

Solid-state drives (SSDs) have become the dominant secondary storage devices replacing their great ancestors hard-disk
drives (HDDs). Unlike HDDs, SSDs exhibit two distinct characteristics: (i) access concurrency, allowing multiple I/O
operations to run simultaneously and fully utilize the device bandwidth, and (ii) read/write asymmetry, where writes are
slower than reads. Despite these, since most storage-intensive applications are primarily designed for HDDs, they do not
consider concurrency and asymmetry hence having subpar performance. We propose the Parametric I/OModel (PIO)
to capture the fundamental differences between traditional and modern storage devices: concurrency and asymmetry as
parameters [1, 2]. PIO allows for faithful storage modeling that captures those two device-specific properties and allows
the designing of storage-intensive algorithms tailored to the device at hand [5]. Using this novel storage model, we
develop a new asymmetry & concurrency-aware DBMS bufferpool manager that utilizes the device concurrency
to bridge the asymmetry [3]. We further present a concurrency-aware graph engine for out-of-core systems that
enables efficient concurrent storage access [4].
ACE Bufferpool Manager. We focus on DBMS bufferpool since it is closely connected to the storage device, hence,
better storage modeling has the potential to improve its overall performance. However, current approaches treat reads
and writes equally without leveraging device concurrency. We refactor the bufferpool design space by decoupling the
write-back policy from the eviction policy and propose an asymmetry/concurrency-aware bufferpool manager named
ACE that utilizes the underlying device concurrency to amortize the high asymmetricwrite cost [3]. Thewrite-
back policy always writes multiple pages concurrently (utilizing the device’s write concurrency), hence amortizing the
write cost. The eviction policy evicts one or multiple pages at the same time to enable parallel prefetching, exploiting the
device’s read concurrency. A key advantage of ACE is that it can be integrated with any existing page replacement policy
with low engineering effort, while, any prefetching technique can also be integrated, essentially allowing any existing
bufferpool manager to be augmented by our approach. We implement several popular page replacement policies
and their ACE counterparts in PostgreSQL and evaluate ACE’s benefits using TPC-C and several microbenchmarks.
The ACE counterparts of all policies lead to significant performance improvements, exhibiting up to 1.3× speedup
for mixed TPC-C transactions with a negligible increase in total disk writes and buffer misses. The concept of better
storage modeling and leveraging device concurrency and asymmetry can also be extended to file systems, especially
when supporting storage-intensive applications.
CAVE Graph Manager. Graph traversal operations, known for their random-access heavy pattern, can benefit from
SSD concurrency by parallelizing node and edge accesses, effectively distributing the workload across the SSD’s parallel
architecture. Hence, to assess the impact of better storage modeling on random access-intensive applications, we next
focus on developing an SSD-aware graph manager. Our goal is to parallelize graph traversal algorithms without chang-
ing their core properties while utilizing the underlying SSD concurrency. To achieve this, we identify two key ways
(intra/inter-subgraph parallelization) to parallelize traversal algorithms based on the graph structure and algorithm. We
propose an SSD-aware graph processing system, named CAVE that can harness the concurrency of the underlying
storage devices [4]. Specifically, CAVE provides the necessary infrastructure to parallelize graph traversal algorithms
when several independent vertex accesses can be performed in parallel. In essence, CAVE takes advantage of the avail-
ability of multiple paths that can be explored in parallel. CAVE uses a block-based file format based on adjacency lists,
ensuring that graph metadata, vertex information, and edge information are stored in aligned blocks while enabling
efficient support for graph traversal and analytical operations. Overall, CAVE identifies independent storage ac-
cesses (thus parallelizable) and performs them concurrently based on the device’s optimal concurrency. We
develop in CAVE the parallelized versions of five popular graph algorithms: Breadth-First Search, Depth-First Search,
Weakly Connected Components, PageRank, and Random Walk. We observe that CAVE can be up to three orders of
magnitude faster than baseline GraphChi and up to one order of magnitude faster than GridGraph and Mosaic.
Overall, our experience shows that incorporating asymmetry and concurrency in algorithmdesign leads tomore
faithful storage modeling and, ultimately, to better performance.

References
[1] T. I. Papon, and M. Athanassoulis. “The Need for a New I/O Model,” CIDR, 2021.
[2] T. I. Papon, and M. Athanassoulis, “A Parametric I/O Model for Modern Storage Devices,” DAMON, 2021.
[3] T. I. Papon, and M. Athanassoulis, “ACEing the Bufferpool Management Paradigm for Modern Storage Devices,” ICDE, 2023.
[4] T. I. Papon, T. Chen, S. Zhang, and M. Athanassoulis, “CAVE: Concurrency-Aware Graph Processing on SSDs,” SIGMOD, 2024.
[5] T. I. Papon, “Enhancing Data Systems Performance by Exploiting SSD Concurrency & Asymmetry,” ICDE PhD Symposium, 2024.

1


