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Abstract9

There exists a divide between the ever-increasing demand for high-performance embedded systems10

and the availability of practical methodologies to understand the interplay of complex data-intensive11

applications with hardware memory resources. On the one hand, traditional static analysis approaches12

are seldomly applicable to latest-generation multi-core platforms due to a lack of accurate micro-13

architectural models. On the other hand, measurement-based methods only provide coarse-grained14

information about the end-to-end execution of a given real-time application.15

In this paper, we describe a novel methodology, namely Black-Box Profiling (BBProf), to gather16

fine-grained insights on the usage of cache resources in applications of realistic complexity. The goal17

of our technique is to extract the relative importance of individual memory pages towards the overall18

temporal behavior of a target application. Importantly, BBProf does not require the semantics of the19

target application to be known — i.e., applications are treated as black-boxes — and it does not rely20

on any platform-specific hardware support. We provide an open-source full-system implementation21

and showcase how BBProf can be used to perform profile-driven cache management.22
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1 Introduction30

The evolution of multi-core architectures and the ever-widening gap between the performance31

of processor and memory has rendered the adoption of system-level management strategies for32

shared memory resources a must. Indeed, inter-core interference is a fundamental challenge33

for the practical adoption of multi-core systems in safety-critical real-time applications, as34

extensively surveyed in [26]. In a nutshell, the problem of inter-core interference arises due35

to priority- and criticality-agnostic arbitration for the allocation of and access to shared36

memory components of application workload deployed in parallel on multiple cores. Important37

achievements have been accomplished by the research community in the design of practical38

memory management techniques to mitigate inter-core interference.39

Unfortunately, however, the most widely used techniques rely on the enforcement of40

strict resource partitioning — e.g., shared cache space coloring [23], sustainable memory41

bandwidth partitioning [39, 37]. Often times, the rigidity of strict resource partitioning results42

in what is known as the one-out-of-m multi-core problem [20]. That is, the performance43

loss resulting from enacting strict partitioning outweighs its benefits. We argue that at the44

© Golsana Ghaemi, Dharmesh Tarapore, Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 4; pp. 4:1–4:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:golsana@bu.edu
mailto:dharmesh@bu.edu
mailto:rmancuso@bu.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2021.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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core of the problem is a fundamental lack of methodologies to analyze exactly how realistic,45

data-intensive applications interact with and benefit from the complex hierarchy of memory46

resources in modern high-performance embedded systems.47

The goal of this paper is to provide one such methodology that goes under the name of48

Black-Box Profiling, or BBProf for short. Specifically, we propose a profiling strategy that49

can be used to accurately understand how an application’s temporal behavior is affected by50

the presence/absence in the cache of individual memory pages. This sets our work apart51

from other profiling strategies that compute only end-to-end metrics such as the total cache52

hit/miss rate, number of bus accesses, resulting runtime when adopting a given resource53

partitioning scheme, and so on. The BBProf methodology is designed to operate without54

requiring a micro-architectural model, which is often unavailable (or just too complex) for55

high-performance systems. The proposed BBProf adopts a measurement-based approach56

that does not rely on any platform-specific hardware support, and can be ported to virtually57

any platform.58

With this paper, we make the following contributions. First, we propose a novel profiling59

methodology that requires no special hardware support to produce insights about the relative60

importance of each memory page towards the overall timing of a target application. Second,61

we describe how said methodology can be applied to profile realistic, pre-compiled black-box62

applications without requiring any source-level or compile-time modifications. Third, we63

propose a proof-of-concept, open-source, full-system implementation and show its capability64

of profiling real-world vision applications. Fourth, we demonstrate that profile-driven shared65

cache management is enabled by our BBProf methodology and highlight its benefit in66

two scenarios: (1) to enact flexible interference mitigation with absolute guarantees that67

are comparable to strict partitioning; and (2) as an efficient solution to the previously68

undocumented problem of Contention-Induced Instruction Stall (C2IS).69

2 Related Work70

Research interest for workload-aware cache management has been spurred a large body of71

works targeting real-time systems and general-purpose systems alike. A number of works72

have proposed techniques to estimate the working-set size (WSS) of applications for the73

purpose of performing informed cache management. One such work is [8], where the WSS of74

a periodic application is estimated by computing the average per-activation number of cache75

misses. This information, albeit coarse, is proven useful to avoid concurrently scheduling76

applications with incompatible WSS. In a spirit quite similar to our BBProf, the work in [40]77

proposes a technique to detect hot memory pages and to dynamically perform re-coloring to78

improve average performance. Hot pages detection is performed by periodically scanning79

the accessed-bit in all the page-table entries that belong to the target application. This80

methodology, however, only provides an indirect estimation of the importance of each page81

that depends on the frequency of sampling. It also relies on the presence of the accessed-bit,82

which is an Intel-specific hardware feature. The work in [32] uses a similar approach that83

relies on PowerPC-specific sampled-address data registers (SDAR).84

Several works [19, 17, 6] propose scheduling models where the balance between loss85

of performance due to smaller cache partitions and performance improvements thanks to86

reduced cache interference is studied. Generally, these model assume that certain intrinsic87

properties — e.g. their characteristic miss rates — of the applications under analysis are88

known. In this case, the BBProf methodology proposed hereby could be used to determine key89

behavioral parameters required to instantiate such and similar analytical frameworks. More90
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recently, a seminal piece of work has proposed an approach to jointly profile an application’s91

sensitivity to cache size and resulting increase/decrease in the requirement for main memory92

bandwidth [37]. In many ways, the information collected through the sensitivity study93

represent an experimentally driven profile. Yet, the workload characterization is quite coarse94

grained and cannot be directly used, for instance, to determine which specific pages of an95

application need to be shielded from interference.96

BBProf shares many similarities, at least in terms of the end goal, with a number of97

well-established performance analysis toolkits. The survey in [5] provides a good overview of98

popular toolkits such as Oprofile [9], Dprof [30], Zoom [1], DynamoRIO [7], Valgrind [28],99

and Pin [24]. The latter three employ dynamic binary instrumentation (DBI), i.e. the ability100

to translate and instrument on the fly a target binary. DBI-based tools require extensive101

platform-specific porting. Translation layers for multiple platforms are already provided in102

Valgrind and DynamoRIO. DBI heavily impacts the timing of an application, so profiling of103

memory pages has to be performed by instrumenting all the memory references and then104

conducting a frequency analysis. To the best of our knowledge, the only work that uses one105

of these tools — the Lackey sub-tool in Valgrind — in this manner is [25]. In [25], a list of106

hot memory pages to be locked in cache is constructed via meomory tracing, but due to107

extreme performance degradation incurred, the evaluation is limited to small benchmarks.108

Lastly, DBI frameworks meant for general-purpose systems seldomly work out of the box109

on embedded systems due to the complex tree of library dependencies that they rely on, as110

also reported in [22]. Oprofile, Dprof, and Zoom rely on hardware performance counters to111

collect information. Oprofile records a variety of statistics such as the mix of hit/miss for112

L1/L2 caches. It relies on runtime sampling and provides a configurable trade-off between113

accuracy and overhead. Zoom and Dprof operate on similar principles but the development114

of Zoom has been discontinued in 2015, while Dprof relies on AMD-specific debug registers.115

Similarly, the profiling approach proposed in the recently published CacheFlow toolkit [34]116

relies on the hardware-specific ability, available in a subset of Aarch64 CPUs, to snapshot117

the full content of CPU caches.118

Since BBProf follows a measurement-based approach, it shares some similarities with the119

vast literature on measurement-based WCET estimation tools. For instance, the work in [31]120

aims at producing more accurate WCET estimates by designing synthetic benchmarks that121

stress different hardware resources in the target system. The purpose of BBProf is not to122

construct WCET estimates, but rather to extract the importance of each page for the timing123

of an application. This information can then be used to perform more fine-grained cache124

management. WCET analysis should be performed after a given management strategy has125

been applied, and it thus represents an orthogonal goal.126

In light of the discussion above, what sets the proposed BBProf methodology apart is its127

unique capability of extracting fine-grained statistics on the contribution of each memory128

page to the overall runtime of an application under analysis. It does so without leveraging129

any hardware-specific support, by requiring no source- or compiler-level manipulation, and130

by operating directly on the black-box binary of the target application. Moreover, we131

demonstrate that the profile acquired through our BBProf can be used to enact advanced132

cache management techniques beyond strict task-level or core-level cache partitioning.133

3 Background134

In this section, we summarize the inner workings of the system components utilized by our135

tool for unfamiliar readers. We first present a brief overview of multi-level set-associative136
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caches. Next, we review the notion of cache coloring, before concluding with a conspectus on137

memory representation and management in modern computing architectures.138

Multi-Level Set-Associative Caches: Modern computing architectures implement139

several levels of caching. The L1 cache resides closest to the CPU and is private to a specific140

core. A cache miss in L1 triggers a lookup in the level below (L2, in this instance). Some141

architectures restrict the L2 cache to specific cores, making them private similar to the L1.142

A miss in the L2 cache may trigger a lookup in the level below (L3 and subsequently, L4) if143

it exists or failing that, a memory lookup. We constrain our discussion here to a normative144

ARM-based cache, with private L1 caches and a globally shared, last-level L2 cache.145

At all levels, caches adhere to a set-associative modality where a set-associative cache146

with associativity W consists of W identically-structured ways. Blocks of consecutive bytes147

are stored in lines referred to as cache blocks. The constant LS denotes the number of bytes148

in a cache line, with most line sizes being 32 or 64 bytes. Memory addresses in the cache are149

divided into three groups of bits: the offset, index, and tag bits that affect the specifics of150

a cache lookup. Shared cache levels are physically indexed and physically tagged (PIPT),151

meaning all addresses used for cache lookups must be physical addresses.152

Memory Abstractions in Operating Systems: Most modern operating systems153

employ a combination of hardware and software features to effectively encapsulate physical154

addresses into virtual addresses. Virtual addressing allows each process an exclusive view155

of the system’s memory, alleviating problems such as memory fragmentation or the limited156

availability of physical memory. The OS maps virtual and physical addresses using page tables.157

When a process references a virtual address, the Memory Management Unit (MMU) performs158

a page table walk to locate the entry (PTE) — if any — that points to the corresponding159

physical memory page. If the walk is successful, the accessed virtual address is resolved into160

a physical address and the result of the translation is stored in the Translation Lookaside161

Buffer (TLB). If the address is not found, a page fault is triggered by the MMU and handled162

by the OS. If the access is legitimate, a new physical memory page is allocated and mapped163

to the process (demand paging); if it falls outside any valid range of virtual addresses, a164

segmentation fault (SIGSEGV) signal is delivered to the offending application.165

Linux defines and manages the layout of legitimate contiguous regions of virtual memory166

by representing them as virtual memory areas or VMAs. VMAs consist of a range of start167

and end addresses, allowing for fine-grained control of virtual memory regions on a per-VMA168

basis. They have been a part of the Linux kernel since version 2.6 [10].169

Cache Coloring: A major source of interference in multicore systems is LLC contention.170

One of the solutions to this problem is cache coloring, a purely software-based partitioning171

technique. With cache coloring, memory pages are assigned “colors” based on the cache sets172

they map to, which is determined by the value of the index bits. It is possible to allocate173

virtually-contiguous memory pages to physically discontiguous pages that have the same color.174

By doing this on a per-application or per-core basis, one can achieve strict cache partitioning,175

which is a well-known mitigation strategy for cache interference [14]. In multicore embedded176

SoCs that support two-stage address translations, the OS entirely manages the translation of177

the first layer address (user virtual address) into the intermediate physical address (IPA).178

The second stage of translation, however, is controlled by the hypervisor [29, 11] which maps179

IPAs to physical addresses. Hypervisor-level coloring is advantageous to transparently color180

entire guest OS’s, as demonstrated in [27, 21, 15].181
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4 Design182

In this section, we describe the main principles that comprise the design of the proposed183

BBProf. We describe the operational approach and functional components that allow it to184

carry out a fine-grained experiment-driven memory analysis of generic applications. While185

we advocate for the benefits of the proposed BBProf as a methodology for memory analysis,186

we have also carried out a proof-of-concept open-source implementation [13]. As we show in187

Section 7, the information extracted by our BBProf toolkit opens new avenues to perform188

fine-tuned management of shared memory resources.189

In a nutshell, the main goal of the proposed BBProf toolkit can be formulated as follows.190

To consider a target application’s memory footprint decomposed into its smallest manageable191

entities — individual memory pages. And with that, to produce a ranking that captures and192

quantifies how crucial is each page for the temporal behavior of the application. In other193

words, BBProf allows extracting the relative importance of memory pages towards the overall194

temporal behavior of a target application. Importantly, our BBProf should be able to handle195

applications of realistic complexity, while requiring minimum knowledge and understanding196

of the application itself — i.e., by largely treating the application as a black-box.197

4.1 Core Principles198

The core principles that have driven the design of the BBProf methodology can be summarized199

as follows.200

Model-free Operation: Modern high-performance embedded systems are soaring in201

complexity. Additionally, manufacturers are often wary of providing exhaustive platform202

implementation details, as many of them constitute corporate intellectual property. Even if203

a formal micro-architectural model can be constructed, the high degree of complexity — in204

both software and hardware layers — can result in a state-space explosion even with simple205

workloads. It follows that, unfortunately, traditional static analysis methods might not be206

easily applicable to the considered class of embedded systems. In light of this, we aim to207

design a methodology that can be used in an arbitrarily complex system without the need208

for a micro-architectural model.209

Platform Independence: A key design-time constraint we impose is for our BBProf210

methodology to be feasible regardless of the specific target platform. In other words, our211

BBProf should not rely on hardware support that exists only in a fraction of existing and212

future platforms. Instead, it should leverage widely available hardware features that are213

exposed by embedded and general-purpose platforms alike, and that are unlikely to be phased214

out in future generations.215

Usable for Realistic, Unknown Workload: There exists a fundamental lack of216

practically viable toolkits that are industry-ready and capable of carrying out the memory217

analysis of complex applications in complex embedded platforms. The proposed BBProf218

aims that bridging such a gap with a solution that can be immediately adopted to better219

characterize the behavior of realistic applications. This implies that not only a minimal220

understanding of the target application should be required to perform profiling; but also that221

BBProf should be capable of handling widely used system-level features such as dynamically222

linked libraries and dynamic virtual memory allocation.223

Linear-time Profiling: To be practically useful, we impose our BBProf methodology224

to be able to operate in linear time with respect to the memory footprint of the application225

under analysis. Because our strategy is centered around a runtime measurement-based226

approach, we deem as viable an analysis strategy with a linear time complexity that is227
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(a) Profiling mode workflow. (b) Ranking mode workflow.

Figure 1 High-level workflow of BBProf in two of the main modes of operation.

impacted by (1) the runtime of the core logic of the application under analysis; and (2) the228

size of the memory footprint of the target application.229

4.2 High-level BBProf Workflow230

The proposed BBProf methodology pivots around the idea that it is possible to manipulate231

the memory allocation policy on a per-memory page basis. Thus, for a target application, it232

is possible to understand the importance of individual pages towards application timing by233

changing the allocation policy one page at a time. Albeit this idea is generic, the specific234

set of memory allocation policies depends on the type of analysis to be conducted. For the235

remainder of this paper we direct our focus to shared CPU cache analysis, which is a primary236

target of this work. Therefore, cacheability is the memory policy of choice to isolate the237

impact of a single memory page on the timing of an application.238

Figure 1 provides a high-level overview of the logical workflow of BBProf in its two239

main modes of operation. In the profile mode described in greater detail in Section 4.3 and240

depicted in Figure 1a, the required inputs to BBProf are (1) the path to the binary of the241

ELF executable to be profiled; and (2) the name of the C function whose timing needs to be242

profiled. This function corresponds to the observation segment defined below. The full list of243

optional operational parameters are described in [13]. The output produced in this mode is a244

binary file1 encoding the relative importance recorded for each page of each considered VMA.245

BBProf allows performing multiple profiling runs and will aggregate the result of all the246

runs into the same file keeping track of max, min, and average statistics on a per-page basis.247

BBProf includes a number of other analysis modes described in Section 4.4. These modes248

require a profile file previously obtained on the target application. For instance, Figure 1b249

depicts the high-level workflow of the ranking mode which produces a human-readable output250

describing the runtime of the target function as an increasing number of most important251

pages are made cacheable.252

We base our analysis on the presence of a single aforementioned observation segment,253

which represents a segment of logic whose temporal behavior is of interest. Although the254

observation segment can be extended to cover the entire application’s logic, in practice this is255

often not the case. Realistic applications are typically characterized into three main phases:256

(1) an initialization phase where parameters and inputs are parsed and pre-processed; (2) the257

1 The binary profile can be translated into human-readable format using the -t parameter as described
in [13].
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Figure 2 Logical interplay between modules of BBProf in profile mode.

main computational payload, which might be executed multiple times in a periodic fashion;258

and (3) a teardown phase where any acquired resource is released. The observation segment259

corresponds to the main computational payload of the target application. For the sake of260

simplicity, we assume that such a phase is encapsulated into a single function called the261

target_func, and hence that the target application has a structure similar to what depicted262

in the right-hand side of Figure 2. Any initialization and de-initialization logic is excluded263

from the analysis.264

4.3 Profiling Strategy265

When operating in profiling mode, the adopted strategy is visualized in Figure 2 and described266

in the following. (1) Perform a first run of the target application to identify its virtual memory267

layout; (2) re-execute the target application as many times as the number of memory pages268

M that comprise its memory footprint; (3) at each re-execution and before the invocation of269

the target_func, switch memory allocation policy for all the pages except the one under270

analysis; and (4) collect the impact of the selected policy over the execution time of the271

target_func. It is crucial that the profiling of an application is conducted in isolation, i.e.,272

with the lowest possible amount of noise in the target system.273

For instance, consider an application whose memory footprint is comprised of 4 pages274

and assume that its runtime when all the pages are marked as non-cacheable is some time275

Tnc. BBProf first detects the footprint of the application. Next, it performs 4 iterations. In276

the first iteration, only the first page is marked as cacheable, while all the others are marked277

as non-cacheable. Then, it measures the runtime of the target_func which will be of the278

form (Tnc − x1), with x1 being the performance gain that arises from having the first page279

in cache. We then repeat the same steps for the remaining three pages to extract the terms280

x2, x3, and x4 in the same way.281

To accomplish the strategy outlined above, our methodology relies on the definition282

of two components, as also depicted in Figure 1: a user-space driver and a kernel-space283

driver, which we refer to as UProfiler and KProfiler, respectively. Intuitively, the UProfiler284

is responsible for launching and collecting data about the temporal behavior of the target285

application, while the KProfiler is used to enforce the selected memory allocation policy. The286

main key design principles for the two components are reviewed in the following.287

4.3.1 User-Space Driver (UProfiler)288

The design of the UProfiler component shares a number of similarities with a typical debugger.289

Indeed, it operates by taking in two pieces of information — which are the only ones strictly290
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required to launch profiling. These are (1) the location of the executable binary (and any291

parameters it requires) of the target application; and (2) the name of the target function292

that corresponds to the observation segment.293

First, UProfiler parses the provided binary executable to translate the name of the294

function into the address that corresponds to the first instruction of the target function —295

i.e., the beginning of the observation segment. With this information at hand, UProfiler can296

launch the target application and set a breakpoint, called the entry breakpoint right at the297

beginning of its computational payload (Figure 2, step 1). As soon as the entry breakpoint298

is reached, UProfiler pauses the target application and performs a sequence of preparatory299

actions, called the entry sequence. The actions performed in the entry sequence depend on300

the type of analysis being carried out.301

As part of the entry sequence, UProfiler always detects the end of the observation segment.302

This is done by inspecting the return address of the target function. With this information,303

an exit breakpoint is installed by UProfiler (Figure 2, step 2). Before resuming the execution304

of the target application, UProfiler removes the entry breakpoint and snapshots the current305

start timestamp (Figure 2, step 3). In a similar way, as soon as the exit breakpoint is306

reached, UProfiler immediately snapshots the current end timestamp (Figure 2, step 4);307

removes the exit breakpoint, and performs a variable sequence of actions — the exit sequence.308

During the very first run of the target application (iteration 0), UProfiler detects its309

layout and the number of memory pages M that comprise its footprint. This information is310

collected during the entry sequence and double-checked during the exit sequence. Additional311

implementation-specific details about this step are provided in Section 5.312

In the generic profiling iteration i, the entry sequence is used by UProfiler to prepare313

a descriptor that determines the memory policy to be applied to each of the pages subject314

to profiling. Given the current focus on cache analysis, the descriptor prepared at profiling315

iteration i instructs the KProfiler to turn all the considered pages non-cacheable except for316

the i-th page. In the exit sequence, the difference between start and end timestamp is317

recorded and associated to page i.318

Here, the use of timestamps represents the preferred metric for two main reasons. First,319

it allows UProfiler to be a valid methodology regardless of the target platform, since time320

sampling primitives are commonplace in (modern) hardware platforms. Second, it allows321

UProfiler to directly correlate the impact of the selected memory policy on the timing of the322

observation segment. Nonetheless, UProfiler can be easily extended to capture additional323

platform-specific performance metrics such as number of cache references, hits, misses, number324

of retired instructions, instructions-per-cycles, and so on.325

4.3.2 Kernel-side Driver (KProfiler)326

The KProfiler encapsulates all the logic that requires elevated kernel-level privileges to327

manipulate the properties of the memory pages mapped to the target application.328

Following the proposed design, the KProfiler defines a communication interface exposed329

to the UProfiler (Figure 2, step 3). As needed — usually during the entry sequence — the330

interface is used to pass a descriptor with the list of changes to be applied to the target331

memory pages. Because absolute memory addresses change from run to run, UProfiler and332

KProfiler use relative addressing to uniquely identify memory pages across runs. Pages are333

grouped by the memory policy modification to be carried out over them.334

It is responsibility of the KProfiler module to leverage appropriate kernel-level APIs to335

apply the requested memory policy modifications for the target pages. So far we have only336

discussed the most basic operation mode of the proposed BBProf. In this case, the descriptor337
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passed by the UProfiler always follows the same structure. Only one page is selected to be338

kept cacheable, while all the others are requested to be made uncacheable.339

4.4 Additional Operational Modes340

So far we have described the design of UProfiler and KProfiler with respect to the main341

operational mode, which is page-level cache profiling. Our current design includes two342

additional modes that are briefly described in the following.343

Page Ranking Analysis: Once per-page statistics have been extracted, it is possible344

to globally rank all the memory pages that comprise an application’s footprint. Intuitively,345

those pages that led to the best time improvements will be ranked as more important towards346

the temporal behavior of our target. The page ranking analysis allows to understand the347

cumulative benefit of selecting the top-ranked k pages to be cacheable, where 0 ≤ k ≤ M .348

Notably, the case k = M corresponds to the default case where all the memory pages are349

considered cacheable. Expectedly, as we increase k, the observed runtime of the observed350

segment will generally decrease. Importantly, however, if a threshold of k∗ < M is found351

where the resulting runtime already approaches the case k = M , then k∗ corresponds to the352

working-set size (WSS) of the target application.353

Page Migration Analysis: A final useful operation provided in our design is the354

possibility of changing the physical location of a group of pages based on the information355

collected during profiling and ranking. For instance, consider a platform that includes a block356

of scratchpad memory. First profiling and ranking is performed to identify the pages that357

comprise the working-set of the target application. Next, our BBProf toolkit can be used to358

test what-if scenarios where all or a part of this group of pages is migrated to scratchpad359

memory. We will demonstrate two concrete use-cases where page migration can be used to360

efficiently mitigate inter-core cache interference.361

5 Implementation362

We hereby review the main details concerning a proof-of-concept Linux implementation of363

the proposed BBProf toolkit.364

5.1 UProfiler Implementation365

As we mentioned in Section 4, the UProfiler component is designed to act akin to a de-366

bugger. For this purpose, it leverages the ptrace family of system calls to manipulate367

the flow of a child process. Indeed, launch a new run of the target application, UProfiler368

performs the following sequence: (1) a fork system call to spawn a new child process, (2)369

a ptrace(PTRACE_TRACEME) in the spawned child allowing the parent to trace the child’s370

execution, (3) an exec system call to execute the target application under tracing.371

The ptrace system call represents a standard Linux interface. Albeit it is Linux-specific,372

it is possible to achieve a similar behavior even in a bare-metal system or RTOS by relying373

on basic debugging features. Indeed, the only features used by UProfiler are (1) the ability374

to set/remove breakpoints, and (2) the ability to read the content of CPU registers. These375

capabilities are available even in simple microcontrollers.376

Breakpoint Handling: To set a breakpoint in an architecture-independent way via377

the ptrace interface, one can replace (PTRACE_POKETEXT) the instruction at the desired378

breakpoint address with any illegal opcode. This way, when the execution of the tracee379

reaches the modified instruction, the process is paused by a SIGILL POSIX signal and a380
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SIGCHLD signal is delivered to the parent process — i.e., to our UProfiler. Before setting the381

breakpoint, UProfiler records the value of the instruction being replaced (PTRACE_PEEKTEXT)382

so that it can be restored once the breakpoint is reached. As soon as the breakpoint is383

hit, UProfiler records the value of the tracee’s program-counter (PC) register. To allow the384

tracee to resume from the breakpoint, UProfiler (1) restores the original instruction at the385

breakpoint address and (2) rewinds the PC of the tracee to the recorded address. Accessing the386

tracee’s CPU registers can be done via a combination of PTRACE_GETREGS/PTRACE_SETREGS387

operations2.388

As discussed in Section 4, UProfiler only sets two breakpoints. The entry breakpoint is389

set upon launching the target application and at the first instruction of the target function.390

The exit breakpoint is installed at the address to which the target function is set to return.391

To find the address of the entry breakpoint, UProfiler accepts as a command-line parameter392

the name of the target function whose body corresponds to the observation segment. It then393

uses the LibELF3 library to translate the provided function name into the corresponding394

instruction address by performing a lookup in the target ELF’s symbols table (SHT_SYMTAB).395

The address of the exit breakpoint is only known once the tracee hits the entry breakpoints.396

In ARM32 and ARM64, it is enough to read the content of the link register (LR) to retrieve the397

return address of the target function.398

Layout Detection and Enforcement: In a generic POSIX-compliant application,399

there is a number of system calls that can dynamically modify the memory layout of an400

application. Most notably, sbrk is internally used by the libc to implement functions401

that perform dynamic memory (de)allocation, such as malloc and free. Calling the sbrk402

can affect the size of the heap virtual memory area (VMA). Similarly, the mmap and unmap403

system calls can cause the addition, deletion, or modification of VMAs in the tracee’s layout.404

Importantly, the libc uses mmap instead of performing a heap extension when applications405

allocate large buffers. For the final output of our BBProf to be valid, it is crucial that no406

memory layout changes occur during the execution of the observation segment. This is not407

a concern with applications written for embedded/safety-critical systems where memory is408

always statically allocated. Nonetheless, UProfiler includes logic to enforce a deterministic409

memory layout even on applications that use dynamic memory allocation primitives.410

To achieve that, when the tracee is spawned for the first time, UProfiler runs the tracee a411

first time and records the peak amount (VmPeak) of data that was used during the target412

function. Once the maximum amount of memory required by the observation segment413

is known, all the subsequent runs of the target application are performed by setting two414

environmental variables that modify the behavior of the libc memory allocation routines.415

These are (1) the MALLOC_TOP_PAD_ and (2) the MALLOC_MMAP_MAX_ variables. The former416

allows setting an initial size for the heap and is set to the peak memory size detected by417

UProfiler in the first run. The latter is set to 0 to disable the use of mmap to handle dynamic418

memory allocations.419

All the subsequent runs of the target application can be used to perform profiling. In the420

first of such runs, UProfiler further detects the actual memory layout that results from setting421

the aforementioned environmental variables. It does so by querying the /proc/PID/maps422

interface as soon as the entry breakpoint is reached. Additional launch parameters are423

2 Note: this is true for many platforms, including x86, x86_64 and ARM32. Equivalent operations can be
carried out in ARM64 through PTRACE_GETREGSET and PTRACE_SETREGSET.

3 LibELF is part of the elfutils open-source project which is a toolkit to read, create and modify
Executable and Linkable Format (ELF) binaries.
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accepted by UProfiler to include/exclude certain types of VMAs in the profiling. For instance,424

in order to make profiling faster, one might want to exclude VMAs that belong to shared425

libraries and that are not used during the observation segment.426

Single-page Profiling: Once UProfiler has computed the number of pages M in the427

target VMAs, the single-page profiling phase can be initiated. Of course, the M pages can428

be distributed across multiple VMAs (e.g. text, heap, stack). Moreover, their absolute429

address will change from run to run due to address space layout randomization (ASLR). To430

operate even with ASLR in place, UProfiler uses a run-independent relative encoding to431

express the coordinate of memory pages. Specifically, we use two indices to identify each432

page: (1) the index v of the VMA that contains the page; and (2) the offset o of the page433

from the beginning of the VMA.434

To profile a generic page i ∈ {1, . . . , M} with coordinates ⟨v, o⟩, the UProfiler prepares a435

descriptor to instruct the KProfiler module to modify the cacheability of the pages in the436

target VMAs. In profiling mode, this descriptor contains the list of all the VMAs under437

analysis. For each of them, a list of pages whose cacheability attributes need to be modified438

is included, with an opcode field that determines how the cacheability attributes should be439

altered. In this case, the cacheability of page i is unchanged, but that of all the other pages440

is the target VMAs is set to become non-cacheable. The descriptor prepared as mentioned441

above is then passed to KProfiler to apply the necessary changes once the entry breakpoint442

is reached. The target application is resumed only once all the pending changes are effective.443

Note that any timestamp acquisition is performed after the cacheability changes have been444

applied, so that the overhead required to switch the cacheability attributes is excluded from445

the time measurements.446

Time Measurements: Albeit extensible, the current use of the BBProf toolkit is to447

analyze the relative importance of individual memory pages toward the overall temporal448

behavior of the observation segment. The most direct and platform-independent way to449

extract this information is by acquiring timing samples of the target function as we vary450

which page is allowed to be allocated in cache. In order to be as precise as possible, UProfiler451

directly reads CPU cycle counters instead of relying on system primitives.452

Time measurements are acquired right before resuming the application from the entry453

breakpoint and right after it reaches the exit breakpoint. Moreover, since timestamps can454

be affected by random system noise, UProfiler allows specifying an arbitrary number of455

samples to be collected for the same profiled page. System noise originates from workload456

on other cores, interrupt handlers, non-deterministic hardware behavior, and inaccuracy of457

time sampling instructions. Various mitigations strategies can be adopted to reduce the458

magnitude of system noise, such as turning off other cores and disabling peripherals. The459

only mitigation strategy used by BBProf is running UProfiler and the target process with the460

SCHED_FIFO Linux policy and with a high real-time priority. As we evaluate in Section 7.2,461

the observed degree of noise was negligible and did not impact the validity of our profiles.462

The final profile stores, for each page, the maximum, minimum, and average runtime of463

the observed segment across all the acquired samples. Note that with this infrastructure in464

place, it is straightforward to extend UProfiler to collect additional metrics such as hardware465

counters for micro-architectural events — e.g. cache references, misses, hits, bus accesses,466

to name a few. This can be done in a platform-agnostic fashion by leveraging the perf467

infrastructure [12].468

Page Ranking and Migration: The implementation of the other two modes of oper-469

ation is similar to what has been discussed above, hence much of the details are omitted.470

To perform page ranking and migration, it is assumed that a profile has been previously471
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acquired for the target application. The pages in the profile are then arranged in a sorted472

set in descending order of their impact on the timing of the target application. Examples of473

the output produced by a ranking experiment are provided in Figure 8.474

In the ranking phase, UProfiler performs M runs where in run k, the top k pages in the475

sorted set are requested to be kept cacheable by the KProfiler, while all the remaining pages476

in the set are turned non-cacheable. The timing of the M runs is collected and stored for477

later analysis.478

In a similar way, a page migration experiment requires a pre-acquired profile. The M479

pages in the target VMAs are sorted according to the same criterion described above. In this480

case, however, a single run is performed where the UProfiler instructs the KProfiler module to481

migrate the top k pages in the sorted set to a new location in physical memory. The value of482

k represents a parameter supplied by the user. The destination of the migration is determined483

by the KProfiler, as we discuss below. The support to conduct page migration directly from484

the profiler allows quick testing of what-if scenarios for the allocation of important pages.485

As part of our future work, we plan to directly modify the way applications are launched to486

take advantage of profiling information without the need to go through the profiler.487

5.2 KProfiler Implementation488

The KProfiler component is implemented as a Linux kernel module. Our current implementa-489

tion targets Linux 5.4. At startup, a communication channel with the UProfiler is created in490

the form of a file in the proc pseudo-file system. Whenever the UProfiler needs to trigger a491

kernel-side operation, the write system call is used to pass the content of the aforementioned492

operation descriptor. The descriptor also contains the PID of the tracee that will be targeted493

for the current operation. A combination of find_get_pid and get_pid_task kernel APIs494

is used to retrieve the descriptor of the tracee’s process given the provided PID. Moreover,495

the descriptor contains redundant information about the structure of the memory layout of496

the tracee as detected by UProfiler. This is used to perform a sanity-check in the KProfiler497

and ensure that the desired operations are performed on the right VMAs and pages.498

Cacheability Modification: For the profiling and ranking phases in which only the499

cacheability of the target page(s) is changed, no changes to the source code of the Linux500

kernel are required.501

For each VMA in the passed descriptor, the KProfiler retrieves the corresponding502

vm_area_struct descriptor by scanning the kernel-maintained linked list of tracee’s VMAs.503

It then ensures that any page that will be affected by the current operation is present in504

physical memory. This is done by faulting-in the target pages that can be achieved via505

the kernel API revget_user_pages_remote and with flags FOLL_POPULATE, FOLL_TOUCH506

and FOLL_MLOCK. Next, the kernel API apply_to_page_range is used to invoke a custom507

function for each page on which a change in cacheability attributes needs to be carried out.508

Such a function already invokes our custom routine with a pointer to the Page Table Entry509

(PTE) that needs to be manipulated to change the cacheability attributes of the page.510

Given a page that is set to be made non-cacheable, the following steps are performed.511

First, a new PTE is prepared to mirror the same exact value of the existing PTE, but where512

the page attributes have been switched to encode for normal, non-cacheable memory. Next,513

we clean and invalidate data and instruction caches to make sure that any dirty line is written514

back to main memory. Then, we install the newly created PTE to replace the previous entry.515

Finally, we invalidate any TLB entry (if any) for the current page on all the online CPUs.516

Page Migration: Being able to support page migration requires some changes to the517
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kernel sources4. A total of around 200 lines have been modified to implement the required518

changes. Specifically, we have generalized the existing support for the migration of physical519

memory pages across NUMA nodes used to implement the move_pages system call. We have520

introduced a new exported kernel API with the following prototype:521

int move_pages_to_pvtpool(struct mm_struct *mm, unsigned long nr_pages,522

unsigned long * vaddrs, new_page_t get_new_page,523

unsigned long private);524

Here mm is the virtual address space descriptor of the process targeted for page migration,525

nr_pages is the number of pages to be migrated, vaddrs is an array of nr_pages virtual526

addresses of pages to be migrated, get_new_page is a function pointer used by the internal527

routines to allocate destination pages, and private is a parameter to be passed to the528

allocation function.529

At load time, the KProfiler module internally maps an area of memory reserved at boot530

for page migration. The reservation is performed via a modified Device Tree Blob (DTB).531

Here we use the reserved-memory attribute 5 to exclude a given range of physical addresses532

from the default Linux allocator — the Buddy System. We do not mark this region with the533

no-map attribute to allow the kernel to initialize the necessary page descriptors to correctly534

map kernel virtual addresses and physical addresses in the reserved region.535

If a valid reservation is found by the KProfiler at load time, the module uses a combination536

of memremap and gen_pool_create kernel APIs to instantiate a new general-purpose memory537

allocator over the reserved memory region 6. The former produces a valid kernel virtual538

address that can be used to access the reserved memory region, while the latter enables the539

allocation of new pages from the region.540

With our custom allocator in place, whenever UProfiler requests the migration of a set of541

pages, a set of initial steps similar to those required to change the cacheability attributes is542

performed. But instead of manipulating the cacheability attribute of the exiting pages, a543

list of pages to be migrated is compiled and the newly introduced move_pages_to_pvtpool544

API is invoked. When doing so, a wrapper to a gen_pool_alloc call is passed as the545

get_new_page function pointer to allow internal book-keeping.546

We describe in Section 7.4 how profile-driven page migration can be used to enact547

advanced techniques to manage inter-core interference in the shared cache. Nonetheless, the548

implications of profile-driven page migration are deeper than what presented in Section 7.4.549

Indeed, this support allows defining a distinct memory pool for each heterogeneous memory550

component available in the system, e.g. scratchpad memory, in-FPGA block RAM, non-551

volatile memory, reduced-latency DRAM blocks (RL-DRAM) [16], to name a few. By552

leveraging profiling information, one can then decide which pages need to be mapped to the553

various memory resources.554

6 System Instantiation555

In this section, we review the full-system setup that was carried out to evaluate the potential556

of the proposed BBProf approach and proof-of-concept implementation.We have deployed557

4 The modified kernel sources are available at https://github.com/rntmancuso/linux-xlnx-prof.
5 See https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/

reserved-memory.txt.
6 See https://www.kernel.org/doc/html/v5.4/core-api/genalloc.html.
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the implemented UProfiler and KProfiler modules on an ARM64 platform that we also use for558

all our experiments. Specifically, we use a Xilinx-ZCU102 development platform featuring559

a Zynq UltraScale+ XCZU9EG MPSoC [36] with a quad-core ARM Cortex-A53 [4] 64-bit560

CPU operating at 1.5 GHz and implementing the ARMv8-A [2] architecture profile. The L1561

cache consists of a split cache with a 32 KB 2-way instruction (I) cache plus a 32 KB 4-way562

data cache. The L2, which is also the last-level cache (LLC) is unified and 1 MB in size; it563

has associativity 16, and it is shared among all the A53 cores. The cache line size is 64 bytes564

for both L1 and L2.565

Profiling and ranking analysis can be carried out directly under Linux. Conversely, to566

evaluate the ability to enact advanced memory management via profile-driven page migration,567

we additionally deploy a thin partitioning hypervisor, namely Jailhouse [3]. Jailhouse is568

used to perform cache coloring [38, 19, 27, 21] in a way that remains transparent to the569

Linux environment where we conduct our experiments. Our goal is to conduct a series of570

experiments centered around the problem of shared cache management. To achieve this,571

we have reproduced the setup described in [21] on the ZCU102 system, where dynamic572

re-coloring of the Linux environment is available. We use coloring in two ways. First, in a573

traditional way to statically restrict the applications running in the Linux environment to574

only a subset of the available colors — we vary this amount from two to 15, with 16 being575

the maximum value and corresponding to no partitioning. In this case, Linux is restricted to576

use only one CPU. Moreover, when strict coloring is used, interfering workload (Interf)577

consists of bare-metal memory-intensive synthetic applications deployed on all the other578

cores as stand-alone virtual machines (VM).579

We then use Jailhouse and page coloring to illustrate a new technique enabled by the580

profiler to mitigate the problem of shared cache interference. The setup, illustrated in581

Figure 4, essentially defines two contiguous ranges of intermediate physical addresses (IPA).582

The first corresponds to all the memory that Linux uses for legacy memory allocations583

through the Buddy System and is mapped by Jailhouse to 12/16 = 3/4 of the available colors.584

The second IPA range is mapped to pages with the remaining 4/16 = 1/4 of the available585

colors. The latter is then used by the KProfiler to instantiate a privately managed allocation586

pool. It follows that pages can be allocated in the pool only through explicit profiler-driven587

page migration. We refer to this setup with the PVT+SH short-hand notation. Note also588

that this setup provides page-level granularity over memory allocated in the private cache589

pool. This sets this work apart from the large literature on colored page allocators proposed590

in the past that assign colors at the process or core granularity [18, 20, 19, 23].591

In terms of workload, apart from the aforementioned Interf workload, an equivalent592

synthetic memory-intensive application, namely bandwidth from the IsolBench suite7, is593

used to generate cache contention when no other VMs are active in the system and Linux is594

used in SMP mode on all the cores. For the purposes of building confidence in the ability of595

the profiler to characterize the importance of memory pages, we use the Staircase synthetic596

benchmark described more in detail in Section 7.2. For our observed realistic workload,597

we used the San Diego Vision Benchmark (SD-VBS) suite [35]. While we conducted all598

our experiments on all the benchmarks, due to space constraints we only include a subset599

of the results that capture the more interesting cases. We also limit our discussion to the600

input sizes SqCif, QCif, Cif, and Vga. We exclude the FullHD sizes as the runtime of601

the benchmarks on the target platform is excessively high. As we mentioned in Section 5,602

the observed system noise was quite negligible which resulted in the timing of the profiled603

7 See https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c.

https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c
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Figure 3 Interference as a function of WSS. Figure 4 Overview of PVT+SH setup.

applications to be remarkably deterministic. Thus, five independent runs were sufficient to604

acquire each profile. For production systems with worse signal-to-noise ratios, we expect that605

a much larger number of runs might be needed to construct meaningful profiles.606

7 Evaluation607

In this section, we describe the evaluation that we have carried out on the system setup608

described in the previous section. We focus our attention on four main aspects. First,609

in Section 7.1 we evaluate the amount of shared cache contention that can be suffered by610

applications in this platform and understand the ability of strict cache coloring to mitigate such611

interference. Next, we show in Section 7.2 that our proof-of-concept BBProf implementation612

is capable of extracting useful profiling information for the considered synthetic and real-world613

applications. Third, we discuss how profile-driven migration can be used efficiently to solve614

the problem of contention-induced instruction stall in Section 7.3. Finally, we evaluate in615

Section 7.4 how profile-driven page migration can be used to controllably mitigate shared616

cache contention in real-world applications.617

7.1 Interference and Mitigation via Strict Partitioning618

In the experiments presented in this section, we focus on cache contention. Generating619

cache contention for an application under analysis is done by deploying a set of interfering620

synthetic memory-intensive applications on all the other cores. In order to set the WSS of621

the interfering workload with the goal of maximizing contention, we have conducted the622

experiment depicted in Figure 3. In this experiment, the application under analysis is Mser623

from the SD-VBS suite with input size SqCif. Three interfering applications deployed on624

the remaining cores continuously perform cache-allocate store operations over a buffer of625

increasing size (x-axis). We plot on the left y-axis (red) the runtime normalized to the case in626

which Mser runs in isolation (solo case) in the system. We display the memory bandwidth627

observed by the interfering workload on the right y-axis (blue). A clear trend emerges that628

highlights how the cache interference is maximized (both in average and maximum terms)629

when each interfering application accesses a buffer of around 420 KB, i.e. access in a total of630

about 1.23 MB.631

In light of the results highlighted above, we have set our interfering tasks to have a632

WSS of 420 KB. With this in mind, we want to understand how well strict coloring is able633

to mitigate cache interference. We have conducted a study where all the strict coloring634

configurations described in Section 6 are explored for all of our SD-VBS benchmarks and635

ECRTS 2021



4:16 Profile-driven Cache Management of Black-Box Appl.

2 4 6 8 10 12 14
1.0

1.2

1.4

Sl
ow

do
wn

 (×
)

dispar [sqcif]

2 4 6 8 10 12 14
1.0

1.2

1.4
dispar [qcif]

2 4 6 8 10 12 14
1.0

1.2

1.4

dispar [cif]

2 4 6 8 10 12 14
1.0

1.2

1.4

dispar [vga]

2 4 6 8 10 12 14
1.0

1.5

2.0

Sl
ow

do
wn

 (×
)

mser [sqcif]

2 4 6 8 10 12 14
1.0

1.5

2.0

mser [qcif]

2 4 6 8 10 12 14
1.0

1.5

mser [cif]

2 4 6 8 10 12 14
1.0

1.5

mser [vga]

2 4 6 8 10 12 14
# of Cache Colors

1.0

1.1

Sl
ow

do
wn

 (×
)

stitch [cif]

2 4 6 8 10 12 14
# of Cache Colors

1.0

1.2

stitch [vga]

2 4 6 8 10 12 14
# of Cache Colors

1.0

1.2

1.4
svm [cif]

2 4 6 8 10 12 14
# of Cache Colors

1.0

1.2

synth [sqcif]

No Col. (max) No Col. (min) No Col. (avg) Solo + Col Interf. + Col

Figure 5 Performance of SD-VBS benchmarks under strict partitioning with (orange) and without
(blue) cache contention.

considered input sizes. The most interesting nine cases are presented in Figure 5. In all636

the sub-plots, the vertical bars represent the slowdown of the application under analysis637

when no cache partitioning is performed. The blue bars (resp., orange) report the runtime638

of the application under analysis in the solo case (resp., under interference). It emerges639

that partitioning leads to significant improvements in certain circumstances, especially for640

workload with L2-sensitive footprint such as Disparity and Mser with input sizes QCif641

and SqCif, and for Stitch with input size Cif. However, the ability to mitigate cache642

contention with coloring alone is limited in some cases. This is due to contention over memory643

bandwidth which exacerbates as larger partitions are given to large-footprint applications644

— see Disparity and Mser with input sizes Cif and Vga. Indeed, the stress over the645

main memory subsystem placed by the interfering workload increases as it is confined to a646

smaller cache partition. Traditionally, bandwidth throttling techniques are used to solve this647

problem, such as MemGuard [39, 33].648

But an important takeaway from this study is that strict partitioning is just too rigid to649

(1) be able to efficiently mitigate cache contention for a wide variety of tasks deployed on650

the same core. And (2) that over-throttling of the interfering workload might be required to651

compensate for the lack of flexibility in coloring-based cache partitioning. Conversely, as652

shown in the following, the proposed BBProf toolkit can be used to strike a balance between653

strict partitioning and unregulated interference.654

7.2 Profiling of Staircase and SD-VBS benchmarks655

The first step toward profile-driven cache management is to use the proposed BBProf toolkit656

to acquire the page-level profile about the applications to be managed. As a first step to657

build confidence on the correctness of BBProf, we have designed the Staircase benchmark8
658

8 The code of the Staircase benchmark is available in the project repository [13].
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Figure 6 Profile of Staircase benchmark.

to exhibit a well-recognizable behavior in terms of memory accesses that can serve as the659

ground truth on the extracted profile. Specifically, the benchmark allocates a buffer of 100660

heap memory pages. It then performs a total of 1000 iterations reading over the buffer. In661

the first 200 iterations, the buffer is read entirely; in the next 200 iterations, the first 20 pages662

are skipped; after 200 additional iterations, the first 40 pages are skipped and so on. The663

result is that the second group of 20 pages is accessed 2× more than those at the beginning664

of the buffer. The third 20-pages group 3× more, and so on. Thus if we were to plot the665

importance of each page from beginning to end, the resulting plot would resemble a staircase,666

hence the name. Figure 6 provides a visualization of the extracted profile focused on the667

heap VMA. In the figure, the x-axis represents the index of the page under profiling. The668

blue bars from the top of the plot visualize by how much (in percentage) the runtime of669

the benchmark is reduced when each page is kept cacheable while all the others are not. A670

taller bar signifies a page with relatively higher importance for the temporal behavior of the671

application under analysis. For all the bars, the normalization baseline is always taken as the672

application’s runtime when none of the pages in the target VMAs is made cacheable. The673

pages are sorted based on their importance rather than their offset in the VMA. Because of674

the by-importance sorting, the most-accessed pages appear to the left-hand side of the plot,675

with the recognizable staircase characterization having been reconstructed by BBProf. One676

can also note that the gap between min and max in each profile sample is quite small, thus677

leading to the conclusion that the overall measurement noise is negligible.678

Next, we have acquired a profile for all the benchmarks in the SD-VBS suite, one for679

each of the considered input sizes. Due to space constraints we only visualize the three most680

representative profiles, namely those for Disparity, Mser with input size QCif, and for681

SVM with input size Cif. These are displayed in Figure 7, where we limit the plots only682

to the heap and stack VMAs. The style of the sub-plots in Figure 7 is identical to that of683

Figure 6, with the only difference that the bars of stack pages are color-coded in red and684

that we have omitted max/min error bars to avoid over-plotting. From the figure it emerges685

that in all the cases there exists a small group (1-3 pages) of heap pages that has a large686

impact on the runtime of the application. From left to right, these alone cause a reduction687

of around 1.8%, 69%, and 7.9% when kept cacheable. Moreover, the temporal behavior of688

Mser and Stitch is more heavily impacted by stack pages; the Disparity benchmark has689

a core set of around 65 heap pages that comprise its working-set. Taken individually, the690

presence in cache of each of these pages alone contributes to a runtime reduction between691

1.25% and 1.5%.692

To further understand the relationship between important pages and overall application693
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Figure 7 Profile of Disparity (left), Mser (center), and Stitch (right) — heap, stack pages
only.
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Figure 8 From left to right, ranking analysis of Disparity, Mser, Localization, and Stitch.

runtime, we conduct a ranking analysis (see Section 4.4) given the profiles obtained at694

the previous step. In Figure 8 we depict the result of the ranking analysis conducted on695

Disparity, Mser, Localization, and Stitch. In each subplot, the x-axis reports the696

number of pages, sorted in order of importance, that are made cacheable. The y-axis reports697

the resulting normalized runtime of the application under analysis. The normalization698

baseline is the runtime when only the most important page is made cacheable. A stark699

contrast emerged in the behavior of the considered applications. Specifically, Disparity700

features a block of pages with comparable importance that produces a constant slope in701

the runtime reduction as more pages are made cacheable. It is also possible to appreciate702

how the WSS size increases as the input size goes from SqCif to Vga. Conversely, the703

WSS of Mser is concentrated in a very small set of pages for the SqCif and QCif case,704

and increases rapidly for input sizes Cif and Vga. Next, Localization is characterized705

by quantized temporal improvements unlocked only when a certain threshold of pages is706

allocated in cache. Finally, Stitch appears to be relatively insensitive to caching as long as707

a core set of about 10 pages is allocated.708

Once the profile has been acquired, it is important to understand if the set of memory709

pages deemed important remains the same as when the content of the input images changes710

while their size remains the same. In the general case, this might not be true while for some711

applications the profile might transcend the specific data input. We hereby conduct a sample712

evaluation to understand in which category the considered benchmarks fall. Note that this713

is not meant to represent an exhaustive evaluation. For this experiment, we consider the714

profiles acquired on the default (“def”) input images provided with the SD-VBS suite. In715

terms of benchmarks, we limit ourselves to Disparity, Mser, Tracking, and Stitch.716

Compared to Figure 8, we have replaced Localization with Tracking because the latter717

uses images as input while the former takes as input a text file with an unknown format.718

The selected input size is VGA for Disparity, Mser, and Tracking and CIF for Stitch719
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Figure 9 From left to right, ranking analysis of Disparity, Mser, Tracking, and Stitch with
profiles acquired under “def” and varying input images.

because the latter runs for too long over the VGA input size. For each benchmark, we have720

produced four additional input images. The first two called “nor1” and “nor2” are meaningful721

(normal) scenes, while the last two, namely “deg1” and “deg2” are scenes that correspond to722

corner (degenerative) cases. Specifically, “deg1” corresponds to random noise while “deg2” to723

a solid-color frame. Due to space contraints, we refer the reader to the project repository [13]724

for the full list of images used in this experiment.725

Figure 9 provides the same type of analysis used to construct Figure 8. The key difference726

here is that for each of the considered benchmarks we construct the displayed ranking curves727

using the profile originally acquired with the “def” input images. To more clearly appreciate728

the difference in absolute runtimes as we vary the images supplied in input, the runtimes729

are not normalized and are instead expressed in CPU cycles. Among the four considered730

benchmarks, the runtime of Mser is the most heavily affected by the content of the input731

data. Nonetheless, the general trend in terms of runtime reduction as an increasing number732

of ranked pages is made cacheable is consistent across experiments. In the Disparity case,733

all the curves remain quite consistent. This suggests that the benchmark remains quite734

insensitive to the input image and that the profile acquired with the default input captures735

well the relative importance of individual memory pages regardless of the supplied input736

images. The Tracking case is quite similar to the Disparity case, with the trend of the737

curve remaining consistent across experiments. Conversely, Stitch shows visible variations738

in the relative importance of memory pages, especially when comparing between the “deg1”739

and “deg2” cases. In this case, the profile obtained with the “def” input images does not740

generalize well. We can conclude that what captured by BBProf remains mostly accurate for741

three out of the four benchmarks considered in this experiment. The fourth case (Stitch)742

displays important dependencies between input images and memory usage, in which case the743

profile constructed by BBProf does not generalize.744

7.3 Mitigation of Contention-induced Instruction Stall745

We hereby want to bring to the attention of the community a previously understudied746

problem, namely the problem of contention-induced instruction stall, or C2IS, for short.747

We also demonstrate that profile-driven page migration represents an effective strategy to748

mitigate the problem.749

In a nutshell, C2IS can occur in platforms with small L1 caches and shared, unified750

L2/LLC caches. The problem manifests itself when a process operates in a periodic fashion751

over a large block of instructions (e.g. a long function) that spans more pages than the size752

of the L1 instruction cache. For instance, in the target ZCU102 platform, the size of the753

L1 cache can hold up to eight pages. When such a threshold is crossed, instruction pages754

ECRTS 2021



4:20 Profile-driven Cache Management of Black-Box Appl.

0 10 20 30 40 50 60
# of Migrated Text Pages

1

2

3

4

5

6

7

No
rm

al
ize

d 
Ru

nt
im

e 
(m

in
/a

vg
/m

ax
)

LLC Size Threshold

Figure 10 Inteference mitigation via migration
of instruction pages.
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Figure 11 Interference mitigation via migration
of data pages.

spill over L1 and are allocated in L2. But when the L2 is shared, these instruction pages755

are subject to be evicted by data fetched by any interfering workload. Unlike with missed756

over data items, an L1 and L2 miss during an instruction fetch cannot be hidden by the757

micro-architecture, which causes an immediate pipeline stall. The resulting impact on the758

runtime of the application under analysis can be dramatic.759

We observed this effect in the wild and created a synthetic benchmark, namely C2ISbm,760

to isolate and study the C2IS problem. Our C2ISbm is a process that invokes a long function761

that spans through 65 text pages — i.e., it performs around 64,000 nops. Using as a baseline762

its solo performance, the runtime increases by a factor of 6.5× when Interf workload is763

activated on all the other cores. We extract a profile of the C2ISbm benchmark, where the764

instruction pages are identified as important. We then configure our system in the PVT+SH765

mode (see Section 6), and progressively select the instruction pages to be migrated to the766

PVT pool. Recall that in the PVT+SH configuration, the PVT pool is exclusively allocated767

to 1/4 of the L2 cache. Gradually migrating the profiled instruction pages to the private768

pool allows us to gradually de-conflict these pages and to create an equivalent L2 instruction769

cache with a size that is proportional to the number of migrated pages. The resulting impact770

on the runtime of the C2ISbm process is plotted in Figure 10. A sharp improvement in771

runtime can be observed until around 43 pages are migrated. After that, the benchmark772

becomes unaffected by the interfering workload as around 51 (43 + 8 in the I-cache) of the773

65 instruction pages are deterministically present in the cache. It can be noted that a slight774

runtime increase is visible when more than 64 pages are migrated because the private pool775

can hold up to 1/4 of the L2 cache size, i.e. 64 pages.776

In the presented use-case, being able to identify those pages that are crucial for the777

application’s performance and selectively migrate them to a reserved portion of the cache,778

space is an efficient solution to the C2IS problem. By contrast, strict coloring would force all779

the pages of the application to share the same color, which would require the allocation of a780

much larger cache partition to achieve the same degree of interference mitigation.781

7.4 Controllable Mitigation of Cache Interference782

In the last set of experiments, we use our BBProf toolkit and PVT+SH setup to demonstrate783

that (1) profile-driven interference mitigation is effective for real-world applications, and784

(2) that, albeit more flexible, its effectiveness is comparable to strict partitioning. For this785

experiment, we leverage the fact that we can profile the interfering workload and progressively786
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Figure 12 Mitigation of cache interference with profile-driven migration of interfering data pages.

migrate to the private pool the pages that are responsible for the generated cache contention,787

while we keep the pages of the application under analysis in their original location. Doing788

this allows cache-sensitive applications to benefit from 12/16 of the LLC space. First, we789

study the temporal behavior of the Mser benchmark with input size SqCif in Figure 11.790

On the x-axis we track the number of pages migrated to the private pool for each of the three791

Interf benchmarks — hence the total size of migrated pages is three times this value. The792

timing behavior of Mser starts to improve after 123 pages from the Interf benchmarks are793

migrated away. That is because each Interf process accesses a total of 315 pages (420 KB794

each, see Section 7.1), meaning that only 192 pages are left to migrate, which is exactly795

12/16 of the total LLC size.796

Lastly, Figure 12 summarizes the behavior of the most interesting benchmarks when a full797

migration of interfering pages is performed — see last bar of each cluster (“Interf.+Migration”).798

The resulting runtime is compared against a number of notable cases: (1) the “Solo” case799

where no Interf is deployed and no cache partitioning is performed. This is also the800

normalization baseline for all the other cases; (2) and (3) the solo runtime where only four801

(“Solo+Col.4”) or 12 (“Solo+Col.12”) cache colors are assigned to the application under802

analysis; (4) the “Interf.+No Col” case where Interf is deployed on all the other cores803

and no partitioning is enforced; (5) and (6) the cases “Interf.+Col.4” and “Interf.+Col.12”804

that correspond to (2) and (3) but with Interf active on all the other cores. Profile-driven805

migration has comparable performance to the case where 12 page colors are dedicated to806

the application under analysis. In a few cases (see Mser with input sizes SqCif and QCif)807

migration does worse. The reason is likely interference over shared Linux meta-data (e.g.808

page tables, kernel code and data structures). This kind of contention does not occur with809

strict partitioning because the Interf workload operates in a different, fully colored VM.810

8 Known Limitations811

The proposed method and current implementation present a number of limitations. First (i),812

BBProf is not designed to handle multithreaded applications, or applications comprised by813

multiple processes with complex data sharing, synchronization and dependencies. Second814

(ii), for applications that that exhibit strong dependencies between inputs and memory815

usage, the profile produced by BBProf on a given input might not generalize well to the816

entire input space. Third (iii), the only piece of information used by BBProf to construct817

profiles is timing. While this is a deliberate choice that allows BBProf to better generalize818

on many COTS platforms, we envision that being able to integrate additional metrics (e.g.819
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L1/L2 cache/miss count, consumed main memory bandwidth, energy consumption) might820

be useful to characterize page importance along additional dimensions beyond timing. In821

our current implementation, we only provide sample code to integrate calls to Perf [12]822

APIs during the entry/exit protocols, but more comprehensive handling of the additional823

metrics that can be collected is required. Fourth (iv), our current implementation relies on a824

number of Linux-specific features, such as PTRACE and the proc filesystem. Thus, while825

porting to other non-Linux OS’s or even bare-metal environments is possible, some heavy826

re-engineering is required. We expect that PTRACE might need to be replaced with direct827

interaction with platform-specific debug registers, while memory layout information currently828

collected via proc interfaces might need to be exported at compile-time. Next (v), BBProf829

does not rely on any hardware features that are not widely available. Nonetheless, a few830

architecture-dependent features are leveraged, requiring some porting effort when moving831

to different architectures. These are (1) cacheability manipulation, (2) sampling of CPU832

clock cycles, and (3) cache maintenance operations. Lastly (vi), the time required to carry833

out profiling is strictly dependent on the WSS of the target application and on the runtime834

of the observation segment. Thus, BBProf might become impractically slow at profiling835

large-footprint and/or long-running applications. Operating on groups of adjacent pages836

instead of individual pages might mitigate this problem, but the trade-off between loss in837

granularity and speed-up needs to be investigated.838

9 Concluding Remarks839

In this work, we introduced BBProf, a methodology and toolkit to extract the importance of840

individual memory pages towards the runtime of a target application. The proposed BBProf841

does not rely by design on any hardware-specific feature, and thus it can be implemented842

on any platform where (1) it is possible to change cacheability attributes at a single-page843

granularity; and (2) it is possible to acquire time samples. Additionally, BBProf can operate844

on the unmodified, pre-compiled binaries of complex applications, and includes strategies845

to cope with the use of dynamic memory allocation primitives. We have performed and846

described an open-source full system implementation and setup on a state-of-the-art high-847

performance embedded platform. With this setup, we have shown three main aspects. First,848

that BBProf is capable of extracting the profile of real-world complex vision applications.849

Second, that the extracted page-level profiles can be used to enact fine-grained shared cache850

management. Third, that a previously undocumented variant of inter-core interference,851

namely contention-induced instruction stall can arise in multi-core embedded platforms; in852

which case profile-driven selective page migration represents an efficient mitigation strategy.853

As part of our future work, we intend to relax some of the limitations described above.854

For instance, we aim at expanding the capabilities of BBProf to capture additional per-page855

properties. Moreover, we plan to develop strategies to use profiling information for OS-driven856

mapping of pages to heterogeneous memory resources — e.g., scratchpad memory, FPGA857

BRAM. Finally, we plan to further improve the level of detail of the collected information by858

identifying how each page impacts the runtime of multiple code sub-segments.859
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