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Abstract—The proliferation of multi-core, accelerator-enabled
embedded systems has introduced new opportunities to consoli-
date real-time systems of increasing complexity. But the road to
build confidence on the temporal behavior of co-running applica-
tions has presented formidable challenges. Most prominently, the
main memory subsystem represents a performance bottleneck for
both CPUs and accelerators. And industry-viable frameworks for
full-system main memory management and performance analysis
are past due.

In this paper, we propose our Envelope-aWare Predictive model,
or E-WarP for short. E-WarP is a methodology and technological
framework to: (1) analyze the memory demand of applications
following a profile-driven approach; (2) make realistic predictions
on the temporal behavior of workload deployed on CPUs and
accelerators; and (3) perform saturation-aware system consolida-
tion. This work aims at providing the technological foundations as
well as the theoretical grassroots for truly workload-aware analy-
sis of real-time systems. We provide a full implementation of our
techniques on a commercial platform (NXP S32V234) and make
two key observations. First, we achieve, on average, a 6% over-
prediction on the runtime of bandwidth-regulated applications.
Second, we experimentally validate that the calculated bounds
hold if the main memory subsystem operates below saturation.

I. INTRODUCTION

The proliferation of inexpensive and high-performance
multi-core embedded platforms have been enthusiastically
embraced by the industry. These are seen as an opportunity to
migrate away from system designs with many interconnected
single-core chips; to consolidate all the application workload
onto a few systems-on-chip (SoC) with multiple CPUs and
accelerators. And while the transition has been smooth for
general purpose workload, the same cannot be stated for
safety-critical systems.

It is well known that contention over shared hardware
resources leads to substantial violation of temporal properties
when workload developed and tested in isolation is consol-
idated on the same multi-core platform. Effects like shared
cache contention [1], [2], DRAM bank conflicts [3], [4],
contention at the DDR controller [5] have significantly slowed
down the adoption of multi-core solutions in the safety-critical
domain. The presence of performance interference channels
has been acknowledged by certification authorities [6], that
have mandated methodologies to “account and bound” the
temporal effect of interference channels for the certification
of avionic systems.

The last decade has produced seminal results [7] on tech-
niques to manage contention at the different levels of the
memory hierarchy. But unfortunately, there is a substantial
lack of frameworks and methodologies that can be applied
system-wise to: (1) take into account realistic applications,
(2) consider that processing workload does not occur only on
CPUs; accelerators (e.g. DMAs, video-encoders, GPUs) are
also fundamental components in real systems, and (3) that
can be deployed on existing platforms while ensuring that the

models assumed to derive analytical guarantees are in match
with the true behavior of the hardware.

In concurrent activity of CPUs and accelerators, main
memory is the performance bottleneck. Thus we set our focus
on the problem of contention in the DRAM subsystem. DRAM
bandwidth management [8], [9] is a promising grassroots
technique to exert control over main memory contention. Many
works have studied the behavior of applications in multi-
core systems under main memory bandwidth regulation [4],
[10], [11]. But the overwhelming focus of these works has
been put on formulating an increasingly more refined model
of the DRAM subsystem [4], [11] to reduce the pessimism
in the timing analysis. On the other hand, the behavior of
applications is abstracted away with only a few parameters,
for instance, to summarize the worst-case end-to-end number
of cache misses [4], [5], [12].

In this paper, we propose a focus-shift. We introduce
a comprehensive framework of techniques called Envelope-
aWare Predictive model, or E-WarP for short. In E-WarP,
accurate predictions on the worst-case execution time (WCET)
of co-running applications are made following a profile-
driven approach. Profiling represents a substantial refinement
of measurement-driven approaches, where fine-grained knowl-
edge of the interaction between applications and the platform
is collected and leveraged. Conversely, we treat the DRAM
subsystem, as much as possible, as a black-box. By shifting
our emphasis on a more precise representation of memory
bandwidth requirements of applications and by ensuring that
the DRAM subsystem operates below its saturation threshold,
we demonstrate that highly accurate predictions on the behav-
ior of tasks operating on CPUs and accelerators can be made.

We stress upfront that we do not construct a formal model
of the DRAM subsystem, nor formulate provable guarantees.
The correctness of our approach is corroborated by a full-
system evaluation, which provides evidence that the work
presented is practical for industrial applications. Furthermore,
our profile-driven approach enables a better understanding of
the important aspects that have traditionally received little
attention. Precise regulation overheads, impact of burst size
on DRAM utilization, and the unexpected presence of mem-
ory instructions that bypass regulation are some examples.
The proposed E-WarP framework can be used to integrate
multi-core, accelerators-enabled real-time systems in all those
domains where a measurement-based approach was deemed
acceptable for single-core systems.

In summary, this paper makes the following contributions.
(1) It introduces the E-WarP model where the time-varying
demand for main memory resources is characterized via
envelopes. (2) It introduces key requirements and design
principles for profile-driven approaches. (3) It considers the
integration of broadly implementable techniques for DRAM



bandwidth regulation of CPUs and accelerators. (4) It de-
scribes how to leverage memory enveloping to perform ac-
curate WCET predictions under regulation for both CPU and
accelerator workload. (5) It provides a technique to reason on
the saturation level of the DRAM subsystem. (6) Lastly, it
proposes a full-system implementation and evaluation that in-
cludes a low-overhead profiler and an augmented partitioning
hypervisor.

II. RELATED WORK

There has been a plethora of research works [4], [5], [10],
[13] that aimed at providing hard real-time guarantees for tasks
running on multi-core systems. A common denominator in
these works is that they consider the worst-case number of
main memory transactions (LLC misses) for tasks in isola-
tion [5], [10]–[12]; then compute an upper-bound on memory
interference when multiple applications run in parallel. This
type of analysis has been proposed with various degrees of re-
finement on different DRAM/CPU models. For instance, in [4]
the authors assume that there is only one outstanding request
per CPU; while [5] focuses on the First-Ready First-Come
First-Served (FR-FCFS) DRAM scheduling policy. Compared
to this line of work, E-WarP is substantially different because
its premise is to rely on high-accuracy observations of the
memory demands of applications, while treating the DRAM
subsystem mostly as a black-box.

Other works such as [8], [9], [14] focus on implementable
mechanisms to regulate/throttle the bandwidth of other low
criticality tasks with the goal of reducing contention and
improving performance isolation. The first work in this sense
was [8], where budget-based bandwidth enforcement is pro-
posed. The work in [9] builds on this technique by allowing
high-priority tasks to acquire a “bandwidth lock” on the
memory controller. These techniques have also been shown to
be implementable at the hypervisor level [14], [15]. Recently,
there have been important efforts to control, account, and
ultimately integrate the behavior of accelerators into real-
time systems. The work in [16] lays the groundwork for
managing hardware accelerator defined in FPGA, while [17]
touches on the topic of non-CPU components regulated via
platform-specific throttling mechanisms. In many ways, E-
WarP builds on top of the seminal results achieved in this
context and complements the CPU-centric management by
integrating traditional accelerators (e.g., DMAs, GPUs) in the
picture.

Finally, the need for a DRAM controller capable of enforc-
ing bandwidth partitioning and traffic prioritization has been
expressed in multiple papers [18]–[21]. We acknowledge the
important design principles proposed in said works. However,
as we strive for immediate industrial applicability, we restrict
ourselves to commercial-off-the-shelf platforms.

In summary, our work sets itself apart because it proposes a
novel profile-driven methodology to characterize the behavior
of applications that execute on CPUs and accelerators. It then
combines (1) CPU-centric bandwidth regulation techniques
with (2) broadly available hardware support for regulation
of non-CPU masters. In doing so, key relationships between
extracted bandwidth and saturation of the DRAM subsystem
are derived. Finally, a full-system integration is proposed
where we demonstrate that E-WarP is practical in real systems.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a heterogeneous multi-core system with accel-
erators and traditional CPUs. A hardware accelerator can be
any module capable of initiating transactions to the main mem-
ory. DMA engines, GPUs, video encoders/decoders, audio
sequencers, network interfaces, are some notable examples.
We use m to indicate the number of CPUs present in the
system and the index k ∈ {1, . . . ,m} to refer to a given
CPUk. The system also features a accelerators indexed using
l, with l ∈ {1, . . . , a}. The l-th accelerator is indicated with
ACCl. We use processing element (PE) whenever what stated
applies to both CPU and accelerator.

We make a restriction, namely the single driver assumption,
on how accelerators are used in our system. We assume that
there exists a single CPU task that acts as the driver for a
given accelerator. I.e., it must hold that for ACCl there exists
at most one CPU task acting as the driver. The assumption
allows us to abstract away the differences in the preemption
model of accelerators. The single driver assumption is accurate
only in a subset of possible system designs, but it allows
us to keep our focus on how accelerators interact with the
main memory. For the same reason, we make the assumption
that caches [15], [22] and DRAM banks [3], [4] are statically
partitioned on a per-core basis to ensure that the load generated
by each application toward main memory does not change
when multiple applications execute in parallel.

We assume that only one main memory controller is used
by all the tasks under analysis. This is referred to as the
“DDR controller”, or the “DRAM controller”. If more than
one controller exists, the techniques presented in this work can
be extended by partitioning tasks to memory controllers, and
then considering each sub-system independently. We assume
that the traffic originated by CPU and accelerators towards
main memory can be regulated. We use budget-based periodic
regulation (MemGuard [8]) to manage traffic from the CPU;
we leverage standard ARM QoS support that is broadly
available in modern ARM-based SoCs to regulate traffic from
accelerators (see Section VI-B). Lastly, the bandwidth at the
interconnect should be greater than the bandwidth of both
memory controllers.

IV. E-WARP TASK MODEL

The E-WarP task model incorporates the relationship be-
tween a task’s progress and its demand for main memory.
This relationship, expressed via cumulative memory envelopes,
is captured for each task in isolation. It is leveraged to
derive precise predictions on the behavior of the task under
regulation. Section VIII is dedicated to constructing memory
envelopes following a profile-driven approach.

We consider a set of n sporadic, deadline-constrained real-
time tasks scheduled according to fixed-priority. The generic
task τi is statically assigned to execute on a given CPUk
— partitioned fixed-priority scheduling. A task τi is a tuple
of the following form: τi = {Ti, Di, Ci,Mi}. Ti represents
the minimum inter-arrival time between two jobs of the same
task, Di is the relative deadline of task τi, and Ci captures
the worst-case execution time (WCET) of τi in isolation and
without memory bandwidth regulation. The Mi parameter
is a super-set of memory envelopes, one per each PE that
the task uses. Each memory envelope Mj ∈ Mi is of the
form {Rj , σj(1), . . . , σj(Li)}. Here, Li is simply the number
of σj(h) elements that compose the envelope, while each



Fig. 1. Overview of main parameters in the E-WarP model for a generic task
τi executing on CPU1 and ACC1.

σj(h) captures the activity of the task over a fixed small
time interval δ. It follows that Li = dCi/δe. The generic
σj(h) has the structure {x+j (h), x

−
j (h)}, where x+j (h) (resp.,

x−j (h)) captures the upper-bound (resp., lower-bound) on the
cumulative number of memory transactions at time h · δ for
the task in isolation and without regulation. Lastly, Rj keeps
track of the PE (CPUk or ACCl) on which the transactions
are executed. Figure 1 provides a visualization of the main
parameters in the E-WarP model.

Note that in principle the E-WarP model is capable of
encapsulating the behavior of input-dependent applications.
That is, as long as profiling is performed over a set of input
vectors that exercise those execution paths leading to the
worst-case memory envelope. To identify a set of represen-
tative input vectors, one could use approaches like symcretic
execution [23].

V. TRANSPARENT PROFILING

In the E-WarP methodology, the profiler plays a key role to
(1) define the memory envelopes of applications, (2) study the
saturation point of the DDR subsystem, and (3) differentiate
between the behavior in main memory of different PEs.
To precisely measure these quantities, the profiler must be
designed to satisfy the transparency requirement. Under this
requirement, the task under observation is not (or minimally)
impacted by the activity of the profiler. On the other hand,
the higher the granularity of the profiler, the smaller will be
the pessimism on WCET estimations. This corresponds to
the fine-granularity requirement. Indeed, an extremely coarse
profiler degenerates into a model where the entire activity of
the task is summarized by a single value for the worst-case
number of transactions.

The definition of a good profiler is challenging because the
two requirements are opposing objectives. Indeed, to achieve
fine granularity, the profiler needs to frequently sample DDR
performance and to keep in memory a complete history of
the acquired samples. Thus, a fine-grained profiler acts as a
memory bomb. We briefly outline the principles according
to which a profiler that satisfies both requirements can be
designed and implemented. We describe our software-only
implementation in Section IX.

To satisfy the fine-granularity requirement, the target plat-
form must provide a performance monitoring interface to sam-
ple key metrics of the DDR activity. The closer the interface
is to where the transactions are served, the higher the accuracy
of the resulting profile. Modern embedded platforms include
extensive facilities for performance monitoring [24]. Some of
these interfaces, such as the ARM Performance Monitoring

Unit (PMU), are broadly known and supported in software.
Often times, however, there exist better interfaces that operate
much closer to main memory. A few notable examples are
discussed in the following paragraph.

The P- and T-series of NXP embedded platforms [25],
[26] have been extensively studied in the literature [3], [10],
[12], [27], [28]. These platforms include an Event Processing
Unit (EPU) and a DDR debug subsystem. The DDR debug
subsystem can be configured to generate a trace of events at
the DDR controller(s) that includes performed reads, writes,
DRAM refreshes, DRAM row hit/miss events, and so on. The
trace can be processed on chip to create custom event counters.

The DDR trace can also be stored in memory for later
retrieval [29], [30]. The Xilinx Zynq UltraScale+ family
platforms [31] that are surging in popularity in the recent
years [32], [33] include an AXI Performance Monitor (APM)
that is interposed between the interconnect and the DDR
and that well fits our requirement. The APM can measure
the exact number of bytes read/written, as well as their
max/min latency over a user-specified sampling interval [31].
Unsurprisingly, support for fine-grained monitoring close to
memory resources is not limited to embedded platforms. Intel
has recently introduced its family of memory monitoring and
management techniques under the name of Resource Director
Technology (RDT) [34]. RDT includes support to monitor
the memory bandwidth extracted by CPUs via the Memory
Bandwidth Monitoring (MBM) interface [35]. On top of the
families of platforms mentioned above, yet another example is
the NXP S32V234 (NXP S32V family) platform [36] targeted
in our implementation.

To ensure transparency, the platform must allow storing the
profiled samples without introducing spurious DRAM traffic.
Fortunately, modern embedded platforms feature heteroge-
neous memory subsystems, with two common features that
can be leveraged. (1) The presence of fast on-chip scratchpad
memories (SPM); and (2) the existence of multiple DDR
controllers. Both are valid alternatives. But the limited size
of SPMs restricts the length of profiled application, and/or the
granularity of the profile. The NXP P- and T-series family of
platforms, the Xilinx Zynq UltraScale+ SoCs, the NXP S32V
and S32G family of platforms all define both multiple DDR
controllers and on-chip SPMs. A key takeaway is that fine-
grained transparent profiling is possible today in a range of
modern platforms. A sound implementation requires careful
consideration of platforms-specific features and the flow of
data within the memory hierarchy. Nonetheless, this level of
knowledge of the underlying hardware is not uncommon in
the development cycle of safety-critical systems.

VI. SYSTEM-WIDE BANDWIDTH REGULATION

To achieve system-wide control over memory bandwidth
allocation, with the goal of keeping the DRAM subsystem
below its saturation threshold, we combine two different
mechanisms for CPUs and accelerators, respectively.

A. Regulating CPU Memory Traffic
The first mechanism is budget-based periodic regulation

following the MemGuard [8] approach to regulate CPU mem-
ory traffic. MemGuard defines a global regulation period P
and a per-core budget of last-level cache line refills Qk. The
performance measurement unit (PMU) is used to keep track of
per-core cache line refills since the beginning of the current P .
A local interrupt is delivered by the PMU to stop the core until
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Fig. 2. Profile of a MemGuard-regulated synthetic task performing only loads
(left) or only stores (right) under the same regulation budget.

the next P interval if Qk refills have occurred. All the cores
have their budget synchronously replenished at the beginning
of the next regulation interval.

Two important considerations need to be made. Consider
a single CPUk active in the system. First, until CPUk hits
Qk, it alone can potentially drive the DDR controller to
100% utilization. In other words, MemGuard guarantees no
regulation at a time scale that is smaller than P . However,
when Qk is selected appropriately if CPUk performs back-
to-back transactions, it will eventually be regulated/stopped
until the next regulation period. Thus, the DDR utilization
observed over a time period, not shorter than P can be kept
below 100%. We statically set P = 1 ms.

Second, the same number of cache refills can result in very
different data exchanges with main memory because of write-
back CPU caches. When a load or store instruction causes
a cache miss, a read transaction is initiated to load the cache
block from main memory. If the line being evicted from cache
was dirty, then it is written back to memory with a write
transaction. Thus, MemGuard only directly regulates read
transactions. This phenomenon is shown in Figure 2 which
was produced by our profiler. The figure depicts the behavior
in terms of read/write bandwidth extracted by a synthetic load-
(left) and store-intensive (right) benchmark regulated with the
same budget. Note how the same budget can impact the DDR
utilization differently, depending on the exact state of the
cache. It follows that a safe approach is to construct memory
envelopes of read transactions (parameters x+j (h) and x−j (h)),
and always assume that the impact on DDR utilization is that
of read+write transactions.

B. Regulating the Memory Traffic of Accelerators

To enforce regulation on accelerators, we leverage traf-
fic shaping via ARM QoS support. ARM QoS has been
substantially ignored by past literature on real-time systems.
Yet, it encompasses a rich set of functionalities implemented
in many popular high-performance embedded platforms to
manage memory traffic at the level of bus masters. As the
first work to leverage and integrate QoS support, we hereby
provide some essential background.

Modern ARM-based platforms rely on the Advanced eX-
tensible Interface 4.0 (AXI4) [37] to establish on-chip data
communication channels between processing elements, I/O
devices, and memory modules. Each AXI segment defines
5 channels. Read (resp., write) requests are initiated by the
master through the AR (resp., AW) channel. The master
provides the data to be written through the W channel. The
slave responds with read data on the R channel, and with write
acknowledgments on the B channel.
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Fig. 3. Profile of QoS-regulated DMA traffic performing only reads (left),
only writes (center), or reads+writes (right). Each plot depicts regulation at
three enforced rates: 5, 10, and 20.

If the platform includes an interconnect with QoS ex-
tensions, such as the ARM QoS-301 [38] or ARM QoS-
400 [39], then traffic shaping is also supported and enforced
on individual requests that traverse the interconnect. Shaping
is supported for individual master ports attached to the main
interconnect. In all the instances of QoS-enabled platforms
we have studied, all the CPUs are treated as a single master.
Hence, QoS support cannot be used to regulate the traffic of
individual CPUs, but only to control the aggregated traffic of
all the CPUs. Conversely, QoS-based regulation is well suited
to regulate traffic from accelerators.

Besides a static bus priority for each regulated master, one
can specify a set of parameters to enforce traffic shaping
separately for traffic on the AR (read requests) and AW (write
requests) channels. Focusing on the AR, the ar_r parameter
controls the rate of read requests; the ar_b the accepted burst
size, and ar_p the peak rate of read transactions within the
allowed burst size. Setting ar_b =1 enforces strict regulation
at the rate selected by ar_r, which is the way QoS is used
in this work. The value of ar_r can be any 12-bit value
greater than 0 [38]. The resulting inter-transaction gap can
be computed as: tar = (212/ar_r)/fclk, where fclk is the
reference clock. In our platform, fclk corresponds to the DDR
clock (0.5 GHz). The same applies to write requests. In this
work, we always set ar_r = aw_r, and refer to this value as
“QoS level” with the notation Ql for each regulated ACCl.
Equation 1 can be used to compute the bandwidth in MB/s
given Ql, and the size w in bytes of each transaction initiated
by ACCl.

bqos,w =
w ·Ql · fclk

232
(1)

Figure 3 was obtained by programming the Enhanced
DMA (eDMA) on our platform at different QoS levels, and
by performing only reads (left), only writes (center), or
reads+writes (right). For the eDMA, w = 4 bytes. Firstly,
unlike MemGuard, QoS regulation operates with a transaction-
level granularity (flat lines). Secondly, the read+write traffic
once again achieves higher DDR utilization at the same QoS
level.

C. DDR Saturation Model under Regulation

We propose a linear model that describes how the different
active PEs subject to (MemGuard or QoS) regulation impact
the utilization Utot of the DDR subsystem. The proposed
model is simple and the actual values of the parameters are
described in Section X-C. The model is given in Equation 2:



Utot =
∑
CPUk

(
Uαmg ·

Qk · Ls
220 · P

+ Uβmg

)
+ (2)

∑
ACCl

(
Uαqos,w ·Ql + Uβqos,w

)
In the equation, CPUs and accelerators are treated dif-

ferently because they are differently regulated. For CPUs,
we first convert the MemGuard budget to the corresponding
bandwidth in MB/s — where P is expressed in seconds and
Ls represents the size of a cache line in bytes. Then a linear
slope Uαmg is applied and the initial offset Uβmg is added to
find the contribution of each CPUk to the total utilization.
For accelerators, instead, we convert directly from QoS level
to contribution in utilization with similar parameters Uαqos,w
and Uβqos,w. These parameters depend on the transfer size in
bytes, w, that masters are capable of transferring with each
read/write request — recall that ARM QoS only enforces a
minimum inter-arrival time on memory requests, regardless of
their size.

VII. FROM PROFILES TO E-WARP TASKS

In order to instantiate the E-WarP model, the starting point
is the profiles acquired on the task under analysis in isolation.
Indeed, a large number of runs and corresponding profiles are
required to build confidence on the worst-case behavior, like in
traditional single-core measurement-based WCET estimation.
The profiles are then integrated to build the task envelopes
Mi for the task under analysis. If a task executes on multiple
processing elements, then multiple sets of profiles need to be
acquired, one per each processing element Rj used by the
task. We hereby focus on the definition of the generic Mj for
processing element Rj .

Let us first consider a single run and resulting acquired
raw profile. A profile is an ordered collection of samples
{sr(1), sr(2), . . .}. Each sample collected by the profiler cap-
tures the activity of the task under analysis during an interval
of length δ. The smaller the parameter, the more accurate the
E-WarP model will be. Moreover, for the model to produce
valid predictions on the task’s WCET under regulation, it must
hold that δ < P . We hereby consider that δ << P and
evaluate how to find a suitable lower limit for δ in Section X-B.

We use the notation sr(h) to refer to the h-th sample in
the r-th run. Each sample collected by the profiler carries the
following information. (1) srr number of bytes read during δ;
(2) the swr number of bytes written during δ. The profile also
contains (3) the sur ∈ [0, 1] utilization of the DDR controller
during the δ time window. The latter information is not stored
in the task envelopes, but it is useful to study the saturation
point of the DDR controller, as studied in Section X-C.

Algorithm 1 constructs the envelope Mj and also returns
the observed task’s WCET in isolation from an arbitrary set
of runs R sorted by shortest-to-longest. The logic of the
algorithm is simple: (1) we expand the length of the envelope
Mj if longer runs are observed (Lines 11-17); and (2) we
keep track of the highest and lowest cumulative number of
transactions in each run (Lines 18-19). Note that Algorithm 1
only considers read traffic in the profiles, which is the correct
way of deriving envelopes when Rj is a CPU. To apply the
algorithm to accelerator tasks, it is enough to replace Line 10
with: xr ← max(srr(h), s

w
r (h)), to only keep track of the type

of traffic that constitutes the bottleneck.

Algorithm 1 Envelope Mj from profiler runs
1: function GETENVELOPE(τi, Rj ,R)
2: Li ← 0
3: Mj ← {Rj} . The first element is the proc. element
4: for r ← 1, |R| do . Consider each run
5: xr ← 0 . Cumulative num. of transfers in run r
6: h← 1 . Current sample index
7: Lr ← 0
8: for ∃sr(h), h← h+ 1 do
9: Lr ← Lr + 1 . Track length of the run

10: xr ← xr + srr(h)
11: if Lr > Li then
12: Li ← Lr . Remember longest run
13: x+

j (h)← max(x+
j (h− 1), xr)

14: x−j (h)← xr

15: σj(h)← {x+
j (h), x−j (h)}

16: Mj ←Mj + {σj(h)}
17: else
18: if xr > x+

j (h) then x+
j (h)← xr

19: if xr < x−j (h) then x−j (h)← xr

20: return Mj , Li · δ . Return envelope and WCET

VIII. PREDICTING WCETS FROM REGULATION LEVELS

In this section, we describe how to predict the WCET of
tasks for which a memory envelope has been constructed
according to Section VII. The key idea is to mimic the
behavior of budget-based regulation (for CPU envelopes) or
QoS-based regulation (for accelerator envelopes) as we move
through the envelope.

Let us first consider CPU envelopes. Given a generic enve-
lope Mj where Rj = CPUk, we use Algorithm 2 to predict
the WCET of the task when CPUk is assigned MemGuard
budget Qk. To be correct in practice, an extra overhead
introduced by MemGuard needs to be taken into account.
There are two types of overhead involved. The first, namely
tovh is the upper-bound on the extra time overhead introduced
by each periodic budget replenishment. Each activation of
MemGuard might also pollute some of the cache partition of
the application under analysis, leading to extra memory trans-
actions xovh being budgeted to the task, compared to when it
operates without regulation. We incorporate this overhead as
a restriction on the budget given to the core under analysis.
Hence, Algorithm 2 considers Q′k = Qk − xovh.
Intuition: Algorithm 2 returns the predicted WCET by keep-
ing track of the additional time tadd due to regulation at quota
Q′k. During every regulation period of length P , the algorithm
performs multiple steps through the profile samples. At each
step, from a memory bandwidth perspective, the worst-case is
when (1) the behavior of the application has followed the lower
envelope, i.e. when at the generic sample h−1 its cumulative
number of memory transactions is exactly x−j (h−1) (Line 16);
and (2) at sample h the cumulative number of memory
transactions jumps to x+j (h). If this difference is greater than
Q′k, (Line 12) then we increase the overall regulation stall.
But in doing that, we remember that at least Q′k transactions
were performed by increasing the value of xoff which is
always considered instead of x−j (·) (· refers to an arbitrary
sample) when xoff > x−j (·). This prevents the algorithm
from being overly pessimistic. Indeed, by tracking xoff , the
algorithm captures the worst-case progress of the application
as a trajectory somewhere between x+j (h) and x−j (h).
Correctness: To understand why the algorithm is safe, lets
take a closer look. Consider the easy case where the upper-
envelope is equal to the lower envelope, i.e. ∀h, x+j (h) =

x−j (h). In this case, it is enough to keep tracking the progres-
sion of transactions. If within a regulation period P we observe



more transactions than Q′k, then the extra regulation time is
added to the WCET (Lines 12-15). Conversely, if the budget
is not exceeded, it is replenished and counting transactions
restarts (Lines 9-11). In this case, transactions might suffer a
tstall time due to contention, which is accounted (Line 10).
This parameter makes the calculation generic and applicable
to in-order micro-architectures. In our observations, no visible
stall was measured when the saturation of the DDR is kept
below 100%, hence we considered tstall = 0. Moreover, any
carry-in due to misalignments between δ and P needs to be
taken into account — see Line 11.

In the more general case, i.e. when x+j (h) 6= x−j (h), one
must consider the case where the task might have been idle (in
terms of DDR activity) and then suddenly performs x+j (h)−
x−j (h− 1) transactions. If the jump incurs regulation, we add
the regulation time but also shift up the lower envelope by Q′k,
always preventing it from exceeding x+j (h) — see Lines 15-
16.

Algorithm 2 Predict WCET for CPU Envelope
1: function GETWCET CPU(τi,Mj , CPUk)
2: tadd ← P . Track time added by regulation, add tail
3: xoff ← 0 . Tracks offset of lower envelope
4: ts ← 0 . Start time of regulation period
5: xs ← 0 . Transactions at beginning of regul. period
6: h← 1
7: for ∃σj(h), h← h+ 1 do
8: t← δ · h . Advance time
9: if t− ts ≥ P then . No regulation

10: tadd ← tadd + tstall · xs + tovh . Add stall due to contention
11: ts ← t− ((t− ts)− P ) . New beginning of regulation period.
12: if x+

j (h)− xs ≥ Q′k then . Budget exceeded
13: tadd ← tadd + P − (t− ts) + tovh . Add regulation stall
14: ts ← t
15: xoff ← max(xoff , x

−
j (h)) +Q′k . Track offset on lower env.

16: xs ← min(x+
j (h),max(x−j (h), xoff )). New initial number of trans.

17: return twcet = t+ tadd . Predicted WCET

To compute WCET predictions on envelopes defined on
accelerators, i.e. when Rj = ACCl, we follow a similar
yet different strategy. The root of the difference is that QoS-
based regulation is performed at the granularity of individual
transactions. Hence, computing the length of the envelope
with QoS regulation can be done by reusing principles from
Network Calculus [40]. QoS-regulation corresponds to traffic
shaping under a service curve β(t) = with rate equal to the
QoS level Ql = ar_r = aw_r; where the maximum difference
between x+j (h) and x−j (h) is taken as the initial burstiness (b)
of the arrival curve α(t), and the sub-additive closure of the
upper-envelope as the arrival curve.

In the network calculus framework, shaping is computed as
the min-plus algebra convolution between the arrival curve and
the service curve. However, the computation on the WCET of
the envelope under QoS regulation can be performed in linear
time following a strategy similar to Algorithm 2. We omit the
full algorithm due to space constraints.

If a task τi runs only on a CPUk, then the new WCET
Ci(Qk) under regulation with budget Qk can be computed
by invoking Algorithm 2. In this case, schedulability can
be checked using the traditional partitioned fixed-priority
scheduling with preemptions, as long as preemptions are
restricted to occur only at the boundaries of regulation periods.
If preemptions can occur, however, care must be taken in
adding the additional overhead in terms of extra memory
transactions performed by τi due to cache-related preemption
delay (CRPD) [41], [42].

Fig. 4. Block diagram of the main PEs and memory modules in the NXP
S32V234 platform. The division between computation and profiling sub-shell
is highlighted.

However, if a task assigned to CPUk also uses an accelera-
tor ACCl, then we assume it will be blocked on CPUk while
it executes on ACCl. From a CPU scheduling point of view,
the time it takes for ACCl to return control to CPUk is a
self-suspension interval. τi’s worst-case response time can be
computed leveraging the results in [43]. To compute the overall
WCET of τi Ci(Qk, Ql) subject to regulation on CPUk with
budget Qk and with ACCl subject to QoS-based regulation
at level Ql, the following needs to be computed. First, we
compute the stall due to regulation on CPUk as tstallk =
Ci(Qk)−Ci computed using Algorithm 2; next, we compute
tstalll = Ci(Ql)− Ci using the equivalent of Algorithm 2 for
QoS regulation. Finally, Ci(Qk, Ql) = Ci + tstallk + tstalll .

IX. IMPLEMENTATION

We have performed a full-system implementation that in-
cludes a low-overhead, high-accuracy profiler, and a partition-
ing hypervisor augmented to support ARM QoS features. Our
implementation was carried out on the NXP S32V234 [36]
embedded platform. The main hardware blocks are presented
in Figure 4. The SoC features 4 ARM Cortex A53 CPUs
operating at a clock frequency of 1 GHz (fcpu = 1 ×
109 Hz) divided into two clusters. Each core has a private
32 KB+32 KB I+D L1 cache, and a 256 KB L2 cache is
present in each cluster. Because this platform is designed for
vision applications, it also integrates two accelerators. The first
is a programmable GC3000 GPU [44] and the second is the
APEX-CL Image Cognition Processor, or APEX for short. The
device contains two identical instances of the APEX engine,
namely APEX0 and APEX1. This accelerator promises to
deliver “high-performance parallel processing capability” [36].
The APEX are highly complex processing subsystems that
include scalar and vector processing units, local scratchpad
memories, and DMA engines. We focus on the APEX in
our evaluation as a realistic instance of a high-performance
accelerator.

The platform features two DDR controllers, namely DDR0
and DDR1, that operate independently on two separate por-
tions of DRAM memory of 1 GB each. The controllers operate
at fclk = 0.5 GHz and have a bus width of 32 bits. Importantly,
each controller exposes a set of memory-mapped perfor-
mance counters that report: (1) the number of DDR cycles
elapsed tot_ddr_cyc; (2) the number of busy DDR cycles



busy_ddr_cyc; (3) the total number of bytes transferred in
read (rd_bytes) and (4) in write (wr_bytes) transactions.
The DDR profiling interface also allows defining a filter on
the source of traffic (e.g. CPU cluster 1, APEX1, etc.) that
is applied when counting read/write bytes. To differentiate
between the traffic coming from different masters, counters (3)
and (4) can be programmed to only filter the traffic coming
from a specific master(s) based on their AXI-ID.

The last component that requires some introduction is the
interconnect. The S32V234 system uses a standard ARM
NIC-301 [45] with ARM QoS-301 [38] extensions. The QoS
extension of the NIC is where traffic regulation is performed
on traffic that traverses the interconnect towards DDR. ARM
QoS extensions are surprisingly, broadly available in many
current-generation ARM-based platforms. When we started
this work, we were surprised to discover that little-to-no
software support or research literature was available on these
modules. So we had to implement our own to carry out
this research. The NIC+QoS-301 provides a memory-mapped
interface to control the regulation parameters on a per-master
basis. Regulation interfaces are depicted as colored squares
on top of the NIC in Figure 4. Because the traffic from all
the CPUs arrives through the same master interface, QoS
regulation cannot be used to regulate individual CPUs, but
only the total traffic from all the CPUs. Conversely, it allows
one to set individual regulation regimes for each of the APEX,
for the GPU (see Figure 4), for the DMAs, for the network
interface and the I/O sub-shell (not shown).

We use the Jailhouse partitioning hypervisor [46] to partition
resources in our system. Jailhouse is the ideal choice for
this type of implementations because it does not perform
scheduling of virtual CPUs (VCPUs), it is lightweight and easy
to port/modify, includes support for cache coloring and DRAM
bank partitioning [47], and is open-source. It also includes
libraries to define bare-metal guest-OS that can be launched
directly on a subset of the CPUs. Unfortunately, Jailhouse
was not ported to the NXP S32V234 platform at the time we
started this work. Our first implementation tasks concerned
writing a layer of SoC-dependent code to port Jailhouse onto
the target platform. Doing so required a few modifications to
the stock boot-loader(u-boot), and to the CPU hotplug support
in the Linux kernel1. It also involved writing a driver for the
LINFlexD device in the S32 that controls the console outputs.

Next, we integrated into our porting an implementation of
MemGuard originally proposed in the context of the HER-
CULES project [48]. We also implemented from scratch a
platform-independent support for ARM QoS features, along
with the platform-specific code to setup QoS regulation in
the S32V234 system. With the implemented support, system
designers can set multiple QoS parameters for multiple masters
in a single hypercall, making the interface suitable for efficient
online dynamic QoS management.

Finally, we implemented a profiler that is comprised of two
parts: a low-level profiler, profvm, and a user-space control
toolkit, profctl. First, profvm is a small-footprint bare-
metal guest-OS that can be loaded by Jailhouse. To meet
the stringent accuracy and transparency requirements of our
profiler, we proceeded as follows. When loaded, profvm
takes exclusive ownership of a single CPU (CPU4), and of
an entire DDR controller (DDR1). Our profvm uses the

1This was required to overcome the lack of a PSCI firmware provided by
the vendor to control CPU shutdown.

dedicated 1 GB of DRAM memory for two purposes. (1) It
exposes a shared command&control interface; and (2) when
active, stores a sequence of samples of DDR0 activity. The
other three CPUs are assigned to Linux in SMP mode and are
used to run the user-space applications that need to be profiled.
When active, profvm performs periodic sampling of DDR0
at a configurable sampling rate expressed in CPU clock cycles.
Each sample collected in DDR1 contains the values, and the
time of sampling, of: (1) CPU cycles counter, (2) value of
tot_ddr_cyc, (3) value of busy_ddr_cyc, (4) value of
rd_bytes and (5) wr_bytes. The ratio between (3) and (2)
provides the instantaneous utilization of the DDR subsystems.
Some porting was also required to ensure that the APEX driver
does not attempt to use any memory space in DDR1. This is
because the out-of-the-box drivers execute APEX code from
the memory space of DDR1 controller.

Second, to facilitate profile acquisition, the profctl
toolkit is provided. It takes care of all the low-level coordina-
tion with the profvm module; launches the benchmark(s) to
be profiled; and at the end of the experiment gathers samples
from DDR1 to save them to disk for later analysis2. Multiple
parameters can be configured directly from profctl, most
prominently sampling period, and filter on individual masters.

Even with all the changes mentioned above, two important
features are needed to port E-WarP to another hardware.
(1) Profiling: The requirements for such a profiling tool are
discussed in detail in Section V. (2) Bandwidth Control: Mem-
Guard is a widely-implementable technique and ARM QoS
extensions are drop-in modules (ARM QoS-310/QoS-400)
bound to increase in popularity. Another tool, ARM Memory
System Resource Partitioning and Monitoring (MPAM) [49]
combines shared cache, memory, and interconnect bandwidth
management.

X. VALIDATION AND EVALUATION

In this section, we first build a set of experiments to identify
key parameters in our system. Next, we discuss how we
instantiated the E-WarP model on real-world applications and
evaluate the WCET predictions under regulation. Then an
in depth analysis of QoS-based controls for accelerators is
provided. Finally, we present a full-system integration where
all the applications analyzed in isolation on the CPU and the
accelerators are deployed to run in parallel.

A. Experimental Setup
We used the NXP S32V234 [36] platform introduced in

Section IX. A combination of synthetic and real benchmarks
are used to gain insight into the platform. The synthetic
benchmarks used to stress/evaluate specific parameters of our
platform are described in the corresponding subsections. For
our real benchmarks, we use a subset of the benchmarks in the
San-Diego Vision Benchmarks (SD-VBS) suite [50]. Because
we are interested in applications that are DRAM-bound, the
selection was performed by taking all the benchmarks that
operate on images. These come with different input sizes,
but we have excluded the FULLHD inputs which lead to
impractically long runtimes. We instead focus on the next
two largest sizes, i.e. VGA and CIF. The full list of selected
benchmarks is reported in Table II.

In terms of accelerators, we focus on the APEX engine in-
cluded in the S32 platform. The S32 features two independent

2https://github.com/rntmancuso/jailhouse-rt



APEX accelerators. Each accelerator is fully programmable
and includes a high-performance parallel processing unit
(APU) for vector and scalar operations, a DMA, and internal
scratchpad memories to operate on data/image tiles. The ARM
QoS control interface instantiated on this platform allows
setting regulation parameters on the main bus independently
for the two APEX engines. The selection of benchmarks
available for this unit is limited to the examples released by the
manufacturer. We were able to fully integrate the APEX within
our profiling infrastructure. But the benchmarks we observed
insisted on the processing capabilities of the engine as opposed
to generating a lot of DDR traffic. We focus our evaluation
on the most DRAM-intensive one we found, i.e., the “Region
of Interest” (ROI) benchmark. The ROI benchmark processes
different parts of the image on APEX.

For consistency, we always activate the Jailhouse hyper-
visor. As most of our experiments involve the use of the
presented profiler, the profvm bare-metal VM is generally
loaded (unless specified otherwise) and pinned to core 4.
Linux v4.19 is deployed on the other 3 CPUs. Some minor
modifications to the kernel were performed to port Jailhouse
and to enable support for the APEX. The kernel is compiled
in full-tickless (NO_HZ_FULL) mode. All the benchmarks
are always deployed using the SCHED_FIFO scheduler and
with explicit pinning to CPUs. We use the profctl to
synchronously launch multiple benchmarks in parallel and to
coordinate profiling and collection of execution times. All the
min/max/avg statistics were calculated on 30 runs for each
configuration, to remain statistically significant.

B. Profiler Transparency and Accuracy
As a first experiment, we evaluate how well the proposed

profiler satisfies the transparency and accuracy requirements.
The accuracy was evaluated along two sub-dimensions.

First, we evaluated how closely the obtained profile matches
the expected number of read/write bytes in a synthetic bench-
mark of known characteristics. To limit the number of spurious
DDR transactions in the experiment, we (1) program the
platform DMA (eDMA) engine to transfer a known number
of bytes; (2) leverage the filtering capabilities of our profiler
to only capture eDMA transactions. The resulting profiles
cumulative number of read/write bytes were in perfect match
with the synthetic benchmark.

Next, we want to find a suitable value for δ that directly
relates to the profiler’s accuracy. To do so, we varied the
configuration of profvm’s sampling period and selected the
smallest number of CPU clock cycles that leads to a mea-
surement error no larger than ±2 clock cycles3 with 99.99%
confidence over 100,000 consecutive measurements. Setting
1,500 clock cycles as the sampling period of profvm satisfies
this specification. This value was used in all the experiments.
With this setting, each acquired sample captures the behavior
of the DDR subsystem within a 1.5µs window. The profiler
operates 1, 500× faster than MemGuard, so it holds that
δ << P .

Lastly, we evaluated the impact of the profiler on all the
selected SD-VBS applications. We first capture the runtime
of a benchmark executing without the profvm loaded in
the system. The runtime is then compared to the case where
profvm is loaded and configured to collect the profile of
the application under analysis. On average across all cases,

3The DRAM operates at half the frequency of the CPUs.

we observed a runtime increase of 0.33%, with a maximum
of 1.67%. Since the profiler is designed to bypass the shared
cache and only interact with a private DDR controller, the
overhead necessarily arises at the shared interconnect. Because
the profiler is not required in production, this overhead will
not affect the final applications and all the WCET predictions
will still be safe.

C. DRAM Controller Saturation

In this section, we study the saturation of the DDR con-
troller under MemGuard and QoS regulation with the goal
of establishing appropriate values for the Uαmg , Uβmg , Uαqos,w,
Uβqos,w parameters discussed in the previous sections.

1) MemGuard Regulation: We first establish a relationship
between MemGuard budget assigned to a CPU, the resulting
bandwidth extracted from the DRAM, and the measured
DRAM utilization. Because we are interested in an upper-
bound on the utilization, it is important to design an experi-
ment where the DDR utilization is maximized at the selected
budget. It is already clear from Figure 2 that performing
stores achieves higher utilization at the same level of budget.
Furthermore, following the analysis in [51] we want to make
sure that each DRAM transaction performed by our benchmark
results in a DRAM row miss.

With this in mind, we consider the mapping of physical
addresses to DRAM coordinates (banks/rows/columns), and
design the USTRESS synthetic benchmark. USTRESS allo-
cates in user-space a 2 MB buffer that is contiguous in
physical memory leveraging standard support for huge-pages
(MAP_HUGETLB). It then performs the first store on column
0 and row 0. The next store is performed 215 bytes away —
because the first row bit is bit 15. This pattern keeps all the
accesses on bank 0. Once we reach the last accessible row, we
set the column offset to 64 bytes and restart from row 0 to fetch
the second cache line in the first row. We proceed by scanning
all the rows (inner loop) and then increasing the column offset
(outer loop) until reaching the last accessible column of the
last row. This pattern not only always accesses a closed row
in the same bank, but it also bypasses the cache and ensures
that no prefetching is performed because subsequent accesses
cross the 4 KB page boundary.

We then profile USTRESS subject to variable regulation
enforced with MemGuard. We compare the theoretical band-
width that should be extracted with what is observed in the
profiles. Simultaneously studying the trend of DDR utilization
as returned by the profiles. The results are shown in Fig-
ure 5. As predicted by our model in Equation 2 for cache
line size Ls = 64 bytes, the utilization grows linearly as
the extracted bandwidth increases. At bandwidth 950 MB/s
(budget = 15565) the controller is running at 97% utilization.
At the next budget value we considered (budget = 16384),
100% utilization is reached, and the observed bandwidth starts
to level-off and deviate from the linear trend. Hence we
consider 950 MB/s to be a safe bound on the cumulative
budget that can be extracted by the CPUs without saturating
the DDR controller. By finding the angular coefficient and
y−intercept of the utilization trend before saturation, we can
set Uαmg = 6.23856× 10−3 and Uβmg = 6.68742× 10−2.

2) QoS-based Regulation: We conducted a similar analysis
to the previous case, but this time we use two accelerators, to
study the relationship between extracted bandwidth and DDR
utilization with 4-byte and 128-byte transfers, respectively.
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TABLE I
MEMGUARD BUDGETS (Qk ) AND QOS LEVELS (Ql) WITH THE

CORROSPONDING BANDWIDTH AND UTILIZATION

Setting Bandwidth (MB/s) DDR Utilization (%)
MemGuard QoS MemGuard QoS MemGuard QoS

492 5 30.03 74.51 3.14 15.68
819 10 49.99 149.01 5.18 30.73
1475 20 90.03 298.02 9.27 60.83
2130 40 130.00 596.05 13.36 121.02
4096 80 250.00 1192.09 25.62 241.41
5734 100 349.98 1490.12 35.84 301.61
7373 160 450.01 2384.19 46.06 482.2
9830 320 599.98 4768.37 61.39 963.76

First, we use the eDMA module to generate read+write
access patterns at various levels of QoS regulation. The eDMA
is configured to generate 32-bit-wide transfers. Unfortunately,
the eDMA is not very efficient and hence it cannot bring
the DDR to 100% utilization. Indeed, the eDMA does not
incur any slowdown when regulated at QoS level 40 and
above. Hence, we use the regulation levels between 5 and 20
to establish the linear relationship between QoS levels and
utilization. The behavior of the eDMA at these regulation
levels was already shown in Figure 3 — see the rightmost
subplot for the read+write case. Once again we observe a
linear trend between QoS levels and DDR utilization, and
we identify the following parameters: Uαqos,4 = 2.05867 and
Uβqos,4 = −0.383333. We repeat the same type of experiment
using the APEX engine which transfers 128-bytes with each
transaction. This allows us to set the parameters Uαqos,128 =

3.00978 and Uβqos,128 = 0.632288.
We provide in Table I a recap on the relationship between

MemGuard budgets, QoS values, and upper-bounds on ex-
tracted bandwidth and the impact on DDR utilization.

D. MemGuard Regulation — Practical Quirks

Before moving on to instantiating our E-WarP on real
applications, a couple of aspects need to be clarified. These
are CPU regulation overheads and limitations to what can be
regulated. Both these aspects have been overlooked in previous
works because they were hard to evaluate. We were able to
user our profiler to evaluate these.

In terms of overhead, we mentioned that MemGuard in-
troduces two types of overheads, i.e. tovh and xovh. We
designed two synthetic tasks to evaluate these quantities. To
evaluate tovh, we implemented a task that defines a buffer
smaller than the L1 cache size, and that continuously samples
the CPU cycle counter, storing the difference between two
successive samples in the buffer. Because the benchmark
does not generate DDR traffic, it will not be regulated by
MemGuard. It will however be interrupted by the periodic
interrupt used for budget replenishment. To discover the end-
to-end overhead, we then look for discontinuities in the
sampled time deltas. With this, we measured the overhead

of our Jailhouse implementation of MemGuard to be up
to 450 cycles. This is also in line with [52] and we set
tovh = 450/1.0 GHz = 4.5× 10−4 ms.

To compute xovh, we rely on the profiler. We created a
benchmark that allocates a buffer of the same size as the
last-level cache — 256 KB. Like in USTRESS, the buffer is
placed contiguously in physical memory to control cache-set
conflicts. When this benchmark is profiled, we observe small
spikes of memory transactions at the periodicity of MemGuard
activations. By counting these transactions on a per-period
basis, we computed xovh = 35 transactions.

Another phenomenon we observed by analyzing the profiles
of some of our benchmarks is unregulated CPU activity.
MemGuard, as well as later implementations like the one
in [9], rely on the L2_CACHE_REFILL event to count
transactions. Clearly, a CPU can perform DRAM transactions
that are not counted by this event by accessing non-cacheable
memory, or when performing cache maintenance operations
— e.g. a cache flush. Fortunately, these operations are not
common in user-space applications. But there exists a class
of instruction routinely used in user-space applications that
behave in a similar way. Instruction like STM (in ARM
aarch32) and STP (in ARM aarch64) that might be treated as
write-no-allocate, which bypass the cache and generate DRAM
write transactions. Common operations such as memset are
implemented using these instructions. We have modified our
benchmarks to avoid the use of the problematic instructions.
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Fig. 6. Profile of QoS-regulated APEX computation over the ADD benchmark.
From left-to-right, top-to-bottom, the regulation levels are 80, 40, 20, and 10.
E. QoS Regulation — Adherence to Single-bottleneck Model

As we mentioned in Section VI-B, we assume that at
any point in time, the workload executing on an accelerator
is bottle-necked by either read or write operations. This is
trivially true if the accelerator first copies a block of inputs,
computes the result locally, and then writes back the result to
memory.

But some accelerators might perform stream-processing,
with interleaved reads and writes, where this assumption is
less obvious. If the assumption holds, when the traffic that
represents the bottleneck is regulated, the other type of traffic
will also slow down. This assumption allows us to reason
on a single upper-envelope curve and to predict the effect of
QoS regulation on the combined read/write traffic. We hereby
validate this assumption.



TABLE II
CPU BENCHMARKS — PREDICTION AND OVERESTIMATION

Budgets
492 983 1475 1966 2458B.mark In

Pr. (s) + % Pr. (s) + % Pr. (s) + % Pr. (s) + % Pr. (s) + %
sift cif 5.28 22.51 % 3.19 13.32 % 2.6 8.53 % 2.31 7.44 % 2.15 6.46 %

vga 13.91 9.45 % 8.74 4.55 % 7.23 3.08 % 6.5 2.16 % 6.08 2.9 %
disparity cif 10.68 5.53 % 5.3 2.57 % 3.57 1.74 % 2.72 2.07 % 2.21 2.69 %

vga 29.11 4.49 % 14.39 1.65 % 9.65 1.07 % 7.32 0.74 % 5.93 1.13 %
mser cif 1.79 1.72 % 0.91 0.98 % 0.63 0.94 % 0.49 0.38 % 0.42 0.5 %

vga 8.23 18.82 % 4.14 15.41 % 2.83 13.49 % 2.19 12.76 % 1.82 13.24 %
tracking cif 2.13 8.9 % 1.16 4.81 % 0.85 3.46 % 0.71 2.47 % 0.63 2.01 %

vga 7.2 23.69 % 3.92 18.9 % 2.89 16.51 % 2.39 14.92 % 2.13 14.34 %
localiz. cif 1.16 10.9 % 1.02 3.82 % 0.99 2.12 % 0.97 1.5 % 0.97 1.73 %

vga 4.48 5.28 % 3.7 2.02 % 3.5 1.8 % 3.41 1.1 % 3.38 0.83 %
tex synth cif 0.43 14.16 % 0.3 7.27 % 0.26 5.13 % 0.24 2.92 % 0.24 2.62 %

vga 1.42 10.35 % 1.1 3.04 % 1.01 1.51 % 0.98 0.62 % 0.97 0.55 %
stitch cif 1.42 9.69 % 1.09 3.38 % 1 2.11 % 0.96 1.27 % 0.93 0.74 %
svm cif 1.73 6.19 % 1.58 1.65 % 1.55 1.07 % 1.53 0.97 % 1.53 0.87 %

MAX 23.69% MIN 0.38% AVG 5.71%

We study the profile of a simple benchmark, namely ADD,
deployed on the APEX accelerator, and performing streaming
vector additions. Because the benchmark reads in input, two
operands for each unit of output, we expect the read bandwidth
to be the bottleneck. Figure 6 displays the activity in DDR of
this benchmark at different levels of QoS regulation. First, we
note that at QoS 80 (top-left) the APEX is able to saturate
the DDR and that, as predicted, it is bottle-necked by read
operations. As we lower the QoS level to 40, 20, and 10 it
can be noted that (1) the extracted write bandwidth also drops;
and (2) that the overall length of the operation is dictated by
the bottleneck traffic.

While all the benchmarks we observed on the target plat-
form behaved in a similar way, we do not exclude that
workload violating this assumption could be defined. The
model presented in this paper does not directly apply to such
cases.

F. E-WarP Instantiation and Prediction — CPU Tasks

Having identified key system parameters and having as-
sessed the validity of fundamental assumptions, we present
the results obtained by instantiating the E-WarP model on
the CPU-only SD-VBS applications in this section. In all
the predictions presented in this section, 30 runs/profiles of
execution were obtained for each benchmark in isolation
and without regulation. Then, we produce a prediction for
each budget in Table I using Algorithm 2. We then run the
benchmark under regulation at each of the selected values,
and compare our predictions against the maximum runtime
observed under regulation.

The full list of results is summarized in Table II. For each
benchmark/input size we report the predicted time in seconds
(“Pred. (s)”) column and the overestimation percentage (“Incr.
(%)”) compared to the longest run observed under the consid-
ered budget. We only report numbers for the lower values
of budgets because they are where predictions become worse.
However, we have carried out our predictions on the full range
of considered budgets and confirmed that the obtained WCET
always upper-bounds the experimental observations.

We visualize the memory envelope obtained on the appli-
cation that led to higher overestimation, namely TRACKING
with input VGA in Figure 7. Differently from most of the
other applications we studied, the upper and lower envelopes
create a visible gap, which forces the prediction to be more
pessimistic. As part of future work we want to explore how
much these curves diverge, and how that affects predictions,
when different inputs are provided in different runs.
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Fig. 7. Upper- and lower-envelope computed over 30 runs of the tracking
benchmark.
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In order to understand how precisely the runtime of CPU
tasks can be predicted following the E-WarP methodology, we
refer to Figure 8. Here, we plot the trend of our predictions
against the timing observed in the actual runs. The blue area
represents the min-max error range around the average. We
provide insets in each sub-plot to zoom in on the portions
that are otherwise harder to appreciate. All in all, what stands
out is that our prediction remains extremely close to the
observed runtimes, with an average over-prediction below 6%



0

50

100
Full System Activity - RoI Benchmark + DCU

0

500 APEX Activity

0

1000
CPUs Activity

20 40 60 80 100 120 140
Time (msec)

0

250 DCU Activity

DDR Utiliz. (%) Reads Writes
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for budgets between 492 and 2415 (Table II); and with max
an average over-prediction of 13.6% and 3%, respectively, for
budgets in the mid-range 4915—9830 (not shown in Table II).

G. E-WarP Instantiation and Prediction — Accelerator Tasks

We now consider the most memory-intensive benchmark,
i.e. ROI, available for the APEX accelerator. With ROI,
we perform the combined analysis for a task that runs in
intermittent phases on the CPU and the APEX. The profile of
CPU and APEX activity in DRAM is depicted in Figure 11.
The figure was obtained by acquiring three profiles of ROI, in
each profile, we filter traffic by the AXI-ID either APEX, the
CPU, or the Display Control Unit (DCU). More details about
the DCU are provided in the next section.

We first perform prediction of the runtime of the benchmark
when no QoS-based regulation is enforced on transactions
from the APEX block, while the CPU activity of the bench-
mark is regulated at different levels considered thus far.
The results for this experiment are reported in the left plot
of Figure 9. Once again, we observed that the predictions
remain very close to the maximum measured runtimes, with
10.58% max over-prediction at the lowest budget and 4.15%
on average across all the considered budget values.

We then studied our prediction on the same benchmark but
when only the APEX is regulated using QoS, while the CPU
is not throttled. The results for the QoS values considered in
Table I are reported in the right sub-plot in Figure 9. Once
again, with E-WarP we are able to predict with good accuracy
the total execution time of the benchmark. The maximum over-
prediction was 8.82%, while the average sat at 3.62%.

Next, we evaluate the accuracy of E-WarP predictions over
all the possible pairs of QoS values and MemGuard budgets in
Table II. We visualize the results in terms of over-prediction
as a heat-map in Figure 10, where CPU regulation levels
and APEX regulation levels are varied on the x- and y-axis,
respectively. As expected, highest levels of throttling for both
CPU and APEX lead to the largest over-estimations — around
14%, bottom-left corner. Conversely, over-estimation is below
2% for high QoS and budget values (top-right corner).

H. Full System Integration

In our last experiments, we tie everything together. We con-
sider a production-like system with CPU applications running
on all the cores, and hence without the profiler. We use one
of the cores (CPU 1) to execute the ROI benchmark; we
execute the MSER (or TRACKING) benchmark on (CPU 3) with
VGA input; and instantiate two memory bombs continuously
performing DDR transactions on CPUs 2 and 4.

First, we need to determine suitable budget and QoS levels,
since the unconstrained system easily drives the DDR to
100% utilization. In this system, when all the drivers from
the manufacturer have been loaded, the DCU becomes active.
The role of the DCU is to transfer display frames from the
frame-buffer in DDR, to the display port. The DCU is active
even without a display connected to the I/O port. Our profiler
was able to reveal the presence of this spurious activity, which
is visible in the bottom plot of Figure 11, which underlines
the importance of having a tool like the one proposed in this
work when working on modern complex embedded platforms.
While it is possible to disable the DCU, we believe that
an active DCU makes for a more realistic setup. Hence, we
conduct our experiments by simply accounting for its impact
on the utilization of the DDR subsystem.

We measure the upper-bound on DDR utilization caused by
the DCU at 36%. Unfortunately, the DCU cannot be regulated
using QoS. To reduce the number of parameters, we also
set the QoS level for the APEX at 10, so that the APEX
can increase the DDR utilization by at most 30.73%. From
Section VI-C, we know that a safe utilization is 97%. Hence
the cores need to be assigned MemGuard budgets so that they
increase the DDR utilization by no more than 30.27%, which
corresponds to a total budget of 4915 (about 300 MB/s). With
4 active CPUs, and by performing even division of this quota,
we expect that the DDR remains below the saturation threshold
as long as the individual CPU budgets remain below 1228.

In Figure 12 (resp., Figure 13), we plot what happens to
the runtime of the CPU tasks, i.e. ROI and MSER (resp.,
TRACKING) with VGA input as we increase the budgets on the
CPUs. The black solid line tracks the predicted DDR utiliza-
tion, with the 100% threshold marked with dashed line. Solid
blue lines are used to plot the maximum observed runtime of
the MSER (resp, TRACKING), with our predictions depicted in
the same color and dashed lines. The same convention using
red lines is used to plot the runtime of the ROI benchmark.
The areas under the blue/red curves captures the difference
between observed maximum and average runtimes. Three main
characteristics stand out in the figures. (1) In both, the max-
imum runtimes correctly remain below the predicted WCETs
until 100% DDR utilization is reached, which confirms the
validity of the E-WarP approach. (2) Once the saturation point
is exceeded, the behavior of the system is highly unpredictable,
with our benchmarks experiencing large swings in execution
times that are not mitigated by increasing the CPU budgets.
(3) In the system with TRACKING, the benchmarks behave
erratically slightly later than the predicted saturation point.
This is possible because the proposed utilization model has to



be conservative to be safe.
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Fig. 12. Full system setup with ROI, MSER and two bandwidth intensive
synthetic applications applications on CPU 1, 2, 3, and 4, respectively.
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Fig. 13. Full system setup with ROI, TRACKING and two bandwidth intensive
synthetic applications applications on CPU 1, 2, 3, and 4, respectively.

XI. CONCLUSION AND FUTURE WORK

This work presented E-WarP, a framework of technologies
to profile and bound the temporal behavior of workload on
CPUs and accelerators. E-WarP achieves full-system memory
bandwidth management by integrating two broadly available
regulation mechanisms. We design and implement a fine-
granularity, transparent profiler. We show how to build re-
lationships between regulation levels and DDR saturation.
Finally, we experimentally demonstrate that the formulated
WCET predictions hold as long as the main memory sub-
system remains below its saturation threshold.

E-WarP is meant to be a stepping stone for profile-driven
real-time application analysis with realistic upper-bounds on
application runtimes. It enables important future research
avenues in directions that include: (1) optimally setting regu-
lation parameters leveraging the convexity of the E-WarP’s
predictions; (2) performing WCET impact-aware dynamic
regulation control in the OS; and (3) integrating our profile-
driven approach with formal DRAM models for provable
performance guarantees.
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