
Low-overhead Online Assessment of Timely1

Progress as a System Commodity2

Weifan Chen #

Boston University, U.S.A
Ivan Izhibirdeev #

Boston University, U.S.A
3

Denis Hoornaert #

Technical University of Munich, Germany
Shahin Roozkhosh #

Boston University, U.S.A
4

Patrick Carpanedo #

Boston University, U.S.A
Sanskriti Sharma #

Boston University, U.S.A
5

Renato Mancuso #

Boston University, U.S.A
6

7

Abstract8

The correctness of safety-critical systems depends on both their logical and temporal behavior.9

Control-flow integrity (CFI) is a well-established and understood technique to safeguard the logical10

flow of safety-critical applications. But unfortunately, no established methodologies exist for11

the complementary problem of detecting violations of control flow timeliness. Worse yet, the12

latter dimension, which we term Timely Progress Integrity (TPI), is increasingly more jeopardized13

as the complexity of our embedded systems continues to soar. As key resources of the memory14

hierarchy become shared by several CPUs and accelerators, they become hard-to-analyze performance15

bottlenecks. And the precise interplay between software and hardware components becomes hard to16

predict and reason about. How to restore control over timely progress integrity? We postulate that17

the first stepping stone toward TPI is to develop methodologies for Timely Progress Assessment18

(TPA). TPA refers to the ability of a system to live-monitor the positive/negative slack—with19

respect to a known reference—at key milestones throughout an application’s lifespan. In this paper,20

we propose one such methodology that goes under the name of Milestone-Based Timely Progress21

Assessment or MB-TPA, for short. Among the key design principles of MB-TPA is the ability22

to operate on black-box binary executables with near-zero time overhead and implementable on23

commercial platforms. To prove its feasibility and effectiveness, we propose and evaluate a full-stack24

implementation called Timely Progress Assessment with 0 Overhead (TPAw0v). We demonstrate25

its capability in providing live TPA for complex vision applications while introducing less than26

0.6% time overhead for applications under test. Finally, we demonstrate one use case where TPA27

information is used to restore TPI in the presence of temporal interference over shared memory28

resources.29

2012 ACM Subject Classification Computer systems organization → Real-time systems30

Keywords and phrases progress-aware regulation, hardware assisted runtime monitoring, timing31

annotation, control flow graph32

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.1133

Funding Denis Hoornaert: Denis Hoornaert was supported by the Chair for Cyber-Physical Systems34

in Production Engineering at TUM and the Alexander von Humboldt Foundation.35

Renato Mancuso: The material presented in this paper is based upon work supported by the National36

Science Foundation (NSF) under grants number CCF-2008799 and CNS-2238476.37

1 Introduction38

Prompted by the proliferation of cyber-physical, safety-critical, and human-in-the-loop39

systems, the notion of timeliness in computing has gained growing interest. The accompanying40

demand for complex, robust, and computationally demanding control algorithms has led41

© Weifan Chen, Ivan Izhibirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo, Sanskriti
Sharma, and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 11; pp. 11:1–11:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wfchen@bu.edu
https://orcid.org/0009-0002-4856-0421
mailto:ivani@bu.edu
mailto:denis.hoornaert@tum.de
https://orcid.org/0009-0009-7419-549X
mailto:shahin@bu.edu
https://orcid.org/0000-0001-5187-5999
mailto:pfcarp21@bu.edu
mailto:sanas@bu.edu
mailto:rmancuso@bu.edu
https://orcid.org/0000-0003-3558-5216
https://doi.org/10.4230/LIPIcs.ECRTS.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Low-overhead Online Assessment of Timely Progress as a System Commodity

the real-time community to shift its focus away from simpler hardware platforms to high-42

complexity and high-performance platforms. As the complexity increases in platforms, many43

challenges have surfaced at all the software/hardware stack layers. It is well understood that44

the logic of an application can be hardened against control-flow attacks via Control Flow45

Integrity (CFI) [39] methods. But no established methodologies exist for the dual problem46

in the temporal domain, for which we coin the name Timely Progress Integrity (TPI).47

The introduction of heterogeneous multi-core System-on-Chip (SoC) along with complex48

memory subsystem mechanisms at the hardware level has complicated the problem of ensuring49

TPI. In particular, memory subsystem hierarchy such as shared [49], non-blocking caches [62],50

shared memory controller [67], and DRAM organization [66] are among noteworthy sources of51

interference. The interplay of each element mentioned above renders the task of guaranteeing52

timeliness an open challenge. In turn, the introduced complexity in SoCs and their ongoing53

proliferation have prompted the need for more complex operating systems and OS-level54

scheduling strategies, which exacerbate the problem.55

The real-time community has achieved important milestones towards restoring predict-56

ability [45, 48]. But traditional methods—e.g. static WCET analysis, memory resource57

partitioning—have largely focused on respecting end-to-end constraints in the worst case, as58

opposed to reason on the current (timely) rate of progress of live applications. Solutions that59

leverage code instrumentation have been proposed to checkpoint the progress of applications60

at runtime [37, 38, 58], but a system-level solution that can operate on black-box binaries61

and inform a rich OS of the expected/detected progress of its applications for it to make62

informed management decisions has not been studied. We propose one such solution.63

Timely progress assessment as a system commodity. Reasoning about, controlling,64

and reacting to changes in the progress of safety-critical applications is the goal. Thus, the65

ability to assess an application’s progress must become a system commodity. In referring to66

this capability, we coin the term Timely Progress Assessment (TPA). With TPA, a system is67

capable of detecting deviations in the timely progress of an application well before a deadline68

is missed, providing the ability to enact corrective measures toward ensuring TPI early on.69

On the other hand, when faster-than-expected progress is detected, the accumulated slack70

can be redistributed to other workloads. Thus, TPA is an enabling capability towards Timely71

Progress Integrity (TPI).72

This article presents a system design and methodology called Milestone-Based Timely73

Progress Assessment (MB-TPA) to perform TPA on live black-box applications. MB-TPA74

relies on binary analysis and widely available on-chip tracing subsystems to detect the timely75

completion of intermediate progress milestones for an application under analysis. We discuss76

a full-stack implementation of MB-TPA on commercial hardware. The implemented TPA77

subsystem was termed Timely Progress Assessment with 0 Overhead (TPAw0v), which we78

describe and evaluate. We show that MB-TPA (1) introduces negligible (< 0.6%) overhead79

to the monitored applications under test. MB-TPA is able to provide live progress assessment80

even if a low-power CPU is used to monitor a high-performance CPU. In light of the discussion81

above, we make the following contributions:82

1. We propose the concept of TPI as a requirement that is complementary to CFI to marry83

logical and temporal integrity.84

2. We demonstrate for the first time that online progress assessment without source code85

instrumentation for black-box applications is feasible in commercial platforms.86

3. We present a method called MB-TPA, that solves key challenges with offline milestone87

identification and online progress assessment.88

4. Provide a full-stack proof-of-concept implementation and evaluation of MB-TPA for89

W. Chen et al. 11:3

Figure 1 High-level overview of the proposed system design. The CFG of the target application
is analyzed to produce a Timed Milestone Graph (TMG). Together with the online data produced
by the Trace Unit (TU), a progress tracker assesses timely progress and reports to the OS. The OS
can take corrective measures accordingly.

multi-core Arm Aarch64 SoCs. We refer to our implementation as TPAw0v.90

5. Showcase three use cases focusing on real-world vision applications. We leverage TPA91

to (1) enforce the WCET of a target application; (2) achieve controlled performance92

degradation of the target application by modulating the degree of contention over shared93

memory resources; and (3) retrieve live progress-aware profiles of the microarchitectural94

resources used by the target application.95

1.1 Overview of Proposed System Design for MB-TPA96

The goal of making TPA a system commodity imposes two main design constraints. First and97

foremost, it must be possible for a system to enact TPA on potentially unknown (black-box)98

applications that cannot be recompiled from sources. At the same time, TPA shall be99

carried out with negligible temporal overhead. An overview of the proposed system design100

is provided in Figure 1. The design involves the use of a Tracee PE (Processing Element)101

where a target application (Task) runs unmodified. A second low-power/low-performance102

PE, the Tracer, controls the TU to generate trace data transparently to the application103

under analysis. Section 4 discusses the system assumptions that enable instantiating the104

proposed system.105

Initially, the unmodified binary of the target application is analyzed to construct its106

Control Flow Graph (CFG)—(1) in Figure 1. Through a sequence of refinement steps, a107

Timed Milestone Graph (TMG) is derived from the original CFG. An in-depth description108

of the methodology proposed to produce a TMG from a CFG is provided in Section 5. The109

TMG is a graph of milestones, each corresponding to some vertex in the original CFG, with110

associated time information—(2) in Figure 1. At runtime, the tracer uses the input TMG111

and the data received from the TU and detects (un)timely completion of the milestones—(3)112

in Figure 1. The detected positive/negative progress slack is reported back to the OS to113

enact management decisions. The tracer was implemented as bare-metal firmware running114

on a low-power CPU. The details of our implementation are provided in Section 7.115

2 Related Works116

Our work finds context in the broad literature concerned with ensuring that the timeliness of117

a (set of) critical task(s) can be controlled. In modern platforms, the progress of application118

ECRTS 2023

11:4 Low-overhead Online Assessment of Timely Progress as a System Commodity

workload can be impacted by many factors. These include scheduling decisions, overheads119

introduced by preemptions and migrations [15, 40, 50] and I/O activity [16, 33, 55, 68], un-120

predictable cache effects such as self-eviction [17,27], and contention over shared hardware121

resources [45, 48]. The set of solutions proposed by the real-time community to reason about122

the timeliness of an application can be placed on a spectrum. On one end are static analysis123

approaches; on the other are runtime monitoring solutions.124

Timeliness (interpreted as the ability to meet a completion deadline) in static analysis125

approaches [5, 20, 31, 47] is ensured by computing an absolute worst-case execution time126

(WCET) which is then used to compute a worst-case response time (WCRT). The promise is127

that WCET/WCRT computation is done by considering the initial state(s) and sequences of128

system states that lead to the worst possible temporal application behavior. Given the sheer129

complexity of interactions between applications, system-level, and hardware-level components,130

static approaches seldomly scale to modern multicore processors [30,35,46].131

Recently, approaches based on runtime monitoring have gained momentum. At a high132

level, these approaches select a monitoring scheme and a set of system metrics. By monitoring133

such metrics online—and taking management actions accordingly—the system detects and/or134

avoids undesired outcomes, e.g., uncontrolled contention over a shared resource or a deadline135

miss for a critical task. To properly contextualize our work with respect to related approaches,136

we categorize runtime monitoring solutions into software- and hardware-based approaches.137

2.1 Software-based Monitoring and Progress Assessment138

The vast majority of solutions for runtime monitoring and progress assessment introduce139

software mechanisms to enact monitoring and/or enact management decisions. We distinguish140

four main sub-categories discussed below.141

(A) Memory Bandwidth Regulation: Memory bandwidth controllers [59,62,67] monitor142

the number of last-level data cache refills and/or writebacks against an allocation budget.143

Periodically, they stall the processor if the consumed budget is exceeded. Although bandwidth144

regulation aims to prevent the unbalanced progress of co-running applications sharing the145

same memory subsystem, no exact knowledge of application progress is constructed.146

(B) Feedback Control Scheduling: Feedback control scheduling represents another form147

of runtime monitoring. In the context of real-time systems, this approach was pioneered148

in [60]. The key insight is that the knowledge of task parameters computed offline is refined149

via online observations performed at task completion. Task admission is geared accordingly to150

meet a target deadline miss ratio. Since the aforementioned original work, a broad literature151

on feedback control scheduling has surfaced [19,44,53].152

(C) Early Deadline Detection: Early deadline detection is the runtime monitoring153

technique at the center of adaptive mixed-criticality scheduling (AMC) [14, 18]. The key154

insight is that multiple (at least two) runtime estimates are expressed for high-criticality tasks155

with varying degrees of pessimism. Initially, an optimistic execution time is assumed, and an156

early deadline (virtual deadline) is set accordingly. At runtime, the system detects if any early157

deadline is missed and takes corrective measures accordingly by dropping [13,24,29,41,54] or158

degrading low-criticality tasks [28, 42]. Like feedback control scheduling, runtime monitoring159

in AMC systems is limited to detecting an application’s completion (or lack thereof) by a set160

(early) deadline. This is equivalent to detecting a single milestone at the application’s end.161

(D) Progress Detection: A handful of works attempt to provide a finer-grained under-162

standing of the progress of target applications. For instance, the work in [26] periodically163

monitors the number of retired instructions to detect a sequence of phases in which the164

application’s usage of hardware resources changes. This approach is inherently limited to165

W. Chen et al. 11:5

applications with a single execution path. In a way that is more closely related to our work,166

the works in [36–38,58] consider the full CFG of a target application. These works propose167

to instrument a target application’s code via source-to-source translation and/or a modified168

compiler. The goal is to insert watchpoints at which progress is assessed in software. At169

runtime, when the execution reaches a watchpoint, an interrupt/syscall is issued to decide170

whether the system should raise the critical level and drop/suspend low-criticality jobs. In171

previous works, the overhead is a limiting factor. Kritikakou et al., in an extension [36]172

to [37, 38], propose an algorithm to ignore some checkpoints in order to reduce the overhead.173

The authors of PAStime [58] place watchpoints outside of loops to limit the overhead.174

Compared to the works in the four categories surveyed above, this paper sets itself apart175

because we aim at precise progress assessment without the need to modify/recompile the176

application under analysis. Importantly, we are able to express a notion of timely progress177

even if the control flow is input dependent. Finally, for the first time, we demonstrate that178

leveraging widely available tracing hardware for progress assessment is possible and minimizes179

runtime overhead. Indeed, our system never interrupts the application under analysis while180

its progress is assessed asynchronously and, therefore, off the critical path.181

2.2 Run-time Monitoring via Hardware182

Comparatively, less work has explored progress monitoring via specialized hardware support.183

Most notably, Lo et al. proposed a customized hardware architecture for runtime monitoring184

of hard real-time tasks [43]. Apart from timely progress, the work aims to monitor other185

safety properties, such as the presence of uninitialized memory and the correctness of return186

addresses. Differently from [43], we focus on commercially available hardware.187

Few works have also proposed to leverage trace unit at runtime to perform control flow188

integrity [25, 34], while FPGA-based trace decoders were proposed in [6, 32]. We are the first189

to utilize a trace unit online to perform timely progress assessment in real-time systems.190

3 Background191

All the aforementioned approaches for progress assessment [36–38,43,58] consider the CFG192

of critical tasks. Kritikakou et al. have constructed a formal grammar to extract the193

CFG from a wide range of binaries [37]. There are also a plethora of tools capable of such194

transformations [57]. The following section provides a brief overview of CFGs.195

(A) Basic Block and Branch Instructions: A basic-block (BB) is a contiguous sequence196

of non-branching (assembly) instructions ending with a branching instruction. In other words,197

except for the last instruction, a basic block only contains instructions for which the program198

counter (PC) of the CPU—or more generally, processing element (PE)—is monotonously199

incremented. A branch instruction has one or more target BBs. For example, in Arm®200

aarch32/64 [11], an unconditional branch instruction b would take PC to the operand201

address, the beginning of a BB. Conditional branch instructions b.cond have two target202

BBs. When b.cond is executed, if the condition is met, the PC is set to the operand address,203

otherwise to the instruction following the b.cond instruction. The return instruction ret204

can have more than two target BBs. It is possible to statically know its target(s) if the call205

sites can be fully enumerated.206

(B) Control Flow Graph: A program’s control flow transfer information can be expressed207

as a directed graph G = (V, E). A node n ∈ V represents a BB, and an edge (np, ns) ∈ E208

indicates that the branch instruction in np has ns as a target. We term this type of edge209

a normal edge. In practice, it is unnecessary to expand the complete CFG for runtime210

ECRTS 2023

11:6 Low-overhead Online Assessment of Timely Progress as a System Commodity

monitoring purposes. Instead, one can view the program as a collection of functions with211

the entry point at main [37]. Thus, if no watchpoints are to be placed inside a function212

f, all nodes and edges related to f can be removed, and an edge from the caller BB to the213

returning BB is added. We refer to this operation as the folding of function f, and to the214

newly added edge as the folding edge.215

(C) Processor Trace: The processor trace, often called the embedded trace, is a highly216

compressed data stream generated by a PE when executing binary code. The trace contains217

the necessary information to reconstruct the history of the executed program. Trace generation218

is often used for debugging and performance evaluation purposes. As such, the on-chip219

hardware circuitry dedicated to processor trace generation, i.e., the trace unit (TU), is220

designed to introduce negligible overhead, if at all. The typical use of processor tracing221

capabilities is in conjunction with external trace probes. In this case, the system runs without222

modification while external hardware (probe) is connected to a physical trace port. The223

probe collects (portions of) the produced processor trace data for offline analysis. Two224

broadly used hardware probes are the Lauterbach® PowerTrace [1] and the Green Hills®225

Probe V4 [2].226

Trace generation units are almost ubiquitous in embedded and general-purpose high-227

performance CPUs. Many embedded modern processors include more or less capable on-chip228

TU’s. For example, Arm’s lineup of hardware modules for tracing and debugging that229

fall under the CoreSight [7] umbrella includes TU modules such as the Embedded Trace230

Macrocell (ETM) and Program Trace Macrocell (PTM). The TU solution from Intel® is231

called Processor Trace (PT). The PT infrastructure has been introduced in 5th generation232

Intel processors, promising overheads below 5% [21, Chapter 32]. RISC-V also has its own233

embedded trace specification [4].234

Since trace data is produced at the same (or comparable) timescale as instruction execution,235

the data bandwidth is usually considerably high, even after many lossless compression236

techniques are applied. A common compression technique only reports the progression of BBs237

instead of individual instructions. If the current BB is known, then a single bit of information238

is enough to encode whether the (conditional) branch at the end of the BB is taken or not.239

When this information is combined with static knowledge of the binary under analysis, the240

entire control flow can be recovered. If the current BB ends with an indirect branch such as241

a function return, the trace provides an explicit branching address.242

Trace data include additional metadata about the processor state. For instance, in systems243

that support multiple tasks, the context ID of the process in execution (as determined by the244

OS) is also generated. The virtual machine ID is also included for systems with hardware245

virtualization extensions. Similarly, information that can identify an interrupt context246

(interrupt taken, interrupt type, interrupt return) is also provided. Other valuable meta-247

information for performance analysis can also be included, such as the cycle counter and the248

occurrence of other microarchitectural events.249

A TU includes hardware resources that go beyond embedded trace generation to perform250

some degree of pre-processing. For instance, trace packet filters, counters, sequencers/format-251

ters, external input selectors, or aggregators to combine trace data from multiple sources252

(e.g., multiple CPUs) can be included in the TU subsystem.253

4 System Model and Assumptions254

In this section, we describe the assumed system model upon which our MB-TPA is formulated.255

These assumptions also dictate the system requirements to implement the proposed MB-TPA,256

W. Chen et al. 11:7

and ultimately introduce timely progress assessment as a commodity.257

4.1 System-level Assumptions258

(A) Tracee PE and Tracer PE: We assume that at least two PEs are present: (1) a main259

PE (or tracee) running the application under analysis and (2) the other PE serving as a tracer.260

Note that no assumption on the components’ nature nor performance is made, meaning that261

the tracer and tracee can be implemented using various technologies. For instance, a system262

could have high-performance PEs as tracee and be monitored by a low-performance real-time263

core or specialized hardware implemented as an ASIC or on an FPGA.264

(B) Address Range Filters: We assume that the tracee features a TU providing at least265

one range-programmable instruction address filter. That way, the TU can be programmed266

to trace specific address ranges corresponding to the immediate next milestones.267

(C) On-chip Trace Data Path: We assume that an on-chip data path exists through which268

the TU-generated trace data stream can be forwarded to the tracer, as it is commonly the case269

for high-performance embedded systems. For instance, many ARM-based COTS platforms270

offer dedicated on-chip trace routing and storage within the CoreSight [7] infrastructure1.271

4.2 Application-level Assumption272

(A) Single Binary: This work targets single-binary applications running on the tracee.273

No restrictions on the number of software layers used by the tracee are imposed, meaning274

that the target applications can equally run on top of a full-fledged OS, inside a virtual275

machine on a hypervisor, or as a bare-metal application. The binary is sufficient to apply the276

proposed MB-TPA: we place no assumption on the availability of the target’s source code,277

nor that it can be recompiled and/or binary-instrumented. The goal is that MB-TPA can be278

automatically employed by a system.279

(B) Single Entry/Exit: Without loss of generality, we assume that the entry BB address280

and the exit BB address are (1) known, (2) within the target’s binary, and (3) they are linked281

by at least one valid control path. The entry and exit BB of a function generally2 represent a282

valid selection. Otherwise, for applications implementing time- or event-triggered logic in an283

infinite loop, the first and last BBs of the loop iteration can be selected as the entry and exit284

BB points. If the debug symbols are part of the binary, the entry/exit BB selection can be285

automated (e.g., given a function name).286

(C) Availability of Representative Inputs: Finally, for complex and input-dependent287

applications, we assume that a set of representative input vectors is available to experimentally288

produce (offline) a nominal progress reference to check against during the online phase.289

5 Methodology for Milestone-Based Timely Progress Assessment290

We hereby describe the proposed Milestone-Based Timely Progress Assessment in its different291

phases. With reference to Figure 1, this section details the design choices and steps involved292

in going from CFG creation to TMG generation. A bird’s eye view of MB-TPA is depicted293

in Figure 2. The following sections cover the numbered steps (1) through (5) in detail.294

1 Trace data routing components include the Embedded Trace Router (ETR), Embedded Trace FIFO,
and Funnel. Storage components include the Embedded Trace Buffer and Trace Memory Controller.

2 If no infinite loops are present in the function nor in any other routine that can be called by it.

ECRTS 2023

11:8 Low-overhead Online Assessment of Timely Progress as a System Commodity

Figure 2 Abstract tool-chain proposed. Ovals represent the inputs and outputs, red rectangles
represent timing-sensitive tools, and green rectangles represent timing-insensitive tools.

5.1 Intuition of Key Challenges and Solutions295

(A) Monotonic Progress in Black-Box Binaries: As discussed in Section 3, the execution296

of a binary implies control flow transfer over a graph. On the other hand, the idea that a297

target application must execute (and thus complete) on time implies a monotonic notion298

of progress. Therefore, the first challenge we face is to construct a notion of progress given299

black-box application binaries.300

Our solution consists in identifying BBs that represent progress milestones (Section 5.3).301

Intuitively, a BB is a progress milestone (a.k.a. MBB) if, once reached, it is possible to302

conclude that a sizable amount of progress has been made by the application logic. Milestone303

identification is done through a combination of (1) CFG extraction, (2) CFG refinement by304

observing concrete runs of the target, and (3) applying the milestone placement algorithm.305

The output of the algorithm is a milestone graph (MG). The procedure is detailed in306

Section 5.3.307

(B) Keeping up with Trace Data: Timely progress assessment has to be performed in a308

timely manner. Assuming that a valid set of MBBs has been identified, the goal is to detect309

the completion of milestones at the tracer as soon as they are reached on the tracee, or with310

negligible delay. This way, the tracer can promptly assess TPI violations and trigger any311

correction countermeasure if necessary. Conversely, if the tracer lags significantly behind the312

tracee, then it might be too late to act upon detected TPI violations—and one might as well313

detect TPI violations at target completion instead.314

What makes this challenging? The first issue might reside in the latency for the315

propagation of TU-generated data to the tracer PE. As we evaluate in Section 8.1, it is not316

an issue if the tracer and tracee are different PEs on the same SoC. A second (and more317

problematic) issue is the limited bandwidth of the on-chip channels via which trace data318

is streamed. Despite aggressive trace compression, allowing the TU to stream trace data319

unrestrictedly leads to buffer overflows due to the performance gap between tracer and tracee320

PEs. These overflows can occur both within the TU or at the interface between the TU321

and the tracer, preventing any packet from reaching the tracer. Thus the naïve solution of322

constantly streaming data from the TU and matching against MBBs does not work.323

(C) Dynamic TU Reconfiguration: To reliably ensure milestone detection, we propose324

to dynamically reconfigure the TU so that it is silent for most of the time and only emits325

bare minimum packets when the event of interest happens—i.e., one of the next MBBs is326

reached. At this point, a new set of MBBs to monitor is configured. The TU then becomes327

silent again, waiting for the next milestone. In this paradigm, the TU only emits sporadic328

and short-lived signals, thus consuming a fraction of the sustainable trace bandwidth. The329

information of which MBBs to monitor after a given MBB is reached is expressed in the TMG.330

W. Chen et al. 11:9

V0 V1 V2 V3 V4

V7

V5

V6

(a) The extracted CFG. Red edges
are folding.

V0 V1 V2 V3 V4

V7

V5

V6

(b) Nodes satisfying the constraint
are colored red.

V0 V1 V5V3

V7

(c) Remove white nodes, add cor-
responding edges.

Figure 3 Illustrative MG generation for the main of the disparity benchmark.

5.2 Trace Blackout Window331

Two milestones cannot be placed arbitrarily close to one another. This is a consequence of332

the dynamic TU reconfiguration. Suppose MBB1 and MBB2 are adjacent, i.e., when the TU333

has detected that tracee’s execution has reached MBB1, then the TU should be reconfigured334

to detect tracee’s execution on MBB2. The reconfiguration typically consists of (1) disabling335

the TU to reprogram the relevant registers, (2) identifying the MBB that has been reached,336

(3) looking up in the TMG the next set of milestones to detect, and (4) resuming the TU.337

Let t1 and t2 denote the time for tracee’s execution reaching MBB1 and MBB2 respectively.338

From the time t1 at which MBB1 is reached and until the TU is brought back online to339

monitor MBB2, there is a window of time during which milestones cannot be monitored. We340

call this the trace blackout window and indicate it with the symbol Tr. If the best-case341

path between MBB1 and MBB2 is such that (t2 − t1) < Tr, then detection of MBB2 cannot be342

guaranteed. Our methodology avoids this issue by design.343

Formally, call D(MBBi,MBBj) ∈ R+ the time-cost to reach MBBj starting from MBBi.344

Clearly, this cost is a random variable that depends on the specific path taken and the345

progress at which the target executes. Moreover, D(MBBi,MBBj) = ∞ if MBBj cannot be346

reached from MBBi. We show that a lower-bound of this cost can be computed and impose347

that, for any two valid MBBi,MBBj , it must hold that348

min
i,j

{D(MBBi,MBBj)} > Tr. (1)349

It is worth noting that the blackout window and the sizable progress requirement discussed350

in the first challenge in Section 5.1 both require the distance between two milestones to351

be sufficiently large. In practice, the blackout window is generally smaller—we derive this352

parameter for our implementation in Section 8.1. Thus ensuring that enough progress occurs353

between milestones implies that the constraint imposed by the blackout window is also met.354

5.3 Milestone Graph Construction (Step 1 and 2)355

Figure 3 depicts the intuition behind the Milestone Graph (MG) construction procedure.356

First, the CFG of the target application is extracted (Figure 3a). The CFG is annotated by357

adding a weight on each edge that is indicative of the temporal distance between two nodes.358

Then a subset of nodes satisfying the constraint expressed in Eq. 1 is selected—the red359

nodes in Figure 3b. Finally, new edges are added to the red nodes to maintain reachability360

relationships, as per Figure 3c. The resultant digraph is a valid MG.361

(A) CFG Notation: Given a target black-box binary, the CFG is extracted (Step 1 in362

Figure 2). This is a digraph GCF G = (V, E) where V and E are the set of all the vertices and363

edges, respectively. Here a vertex vi ∈ V is a BB. An edge (vi, vj) ∈ E is either normal or364

ECRTS 2023

11:10 Low-overhead Online Assessment of Timely Progress as a System Commodity

folding (Section 3)3. For any edge (vi, vj) ∈ E , we assign a per-edge weight w equal to the365

lower bound on the time to execute the instructions in vi, including the folded function if366

its out-edge is folding. A safe albeit inaccurate lower bound can be obtained by dividing367

the number of instructions in vi by the maximum clock frequency of the tracee4. We define368

D(vi, vj) for any two vertices in V as the cost of the path (if any) from vi to vj with the369

minimum cost. This is used to lower-bound the minimum time needed to reach vj from vi.370

(B) MG Notation: An MG GMG = (M, Q), is a digraph where M ⊆ V is the set of MBBs.371

For each MBBi ∈ M, an edge (MBBi,MBBj) ∈ Q signifies that (1) MBBj is one of the next372

milestones to detect after MBBi has been reached, and (2) Eq. 1 holds. Note: the edge (MBBi,373

MBBj) might not exist in E because the corresponding BBs might not be in an immediate374

predecessor/successor relationship in GCF G.375

(C) Milestone Selection: The milestone selection problem is the following: (1) given376

a blackout window Tr, color the vertices in GCF G either red or white; (2) ensure that for377

any two red nodes, ri, rj ∈ V, D(ri, rj) > Tr; and (3) find the maximal set of red nodes.378

Other optimization objectives and heuristics could also be used—e.g, minimizing the sum379

of distances among red nodes. Finding the optimal solution is not the focus of this work380

and left as future work; an algorithm that is guaranteed to find a solution (if one exists) is381

presented here.382

(D) Graph Coloring Heuristic: The proposed strategy (Step 2 in Figure 2) is described383

in Algorithm 1. The algorithm first colors all of the vertices red (Line 6–8), then iterates384

over any non-visited remaining red vertex in DFS search order—thus, starting from the385

root BB (Line 9). Next, for each red vertex ri we compute the path with the shortest total386

cost D(ri, rj) to all other red vertices in V (Line 12). If for some rj D(ri, rj) > Tr does not387

hold (Line 14), color rj white (Line 15). The full adjacency map D for ri can be computed388

using Dijkstra’s algorithm [22]. The only adaptation needed to the standard algorithm is to389

correctly compute D(vi, vi), which is always 0 in the traditional algorithm. Instead, we must390

compute the cost to come back into vi if vi was reached, which can be computed as391

D(vi, vi) =
{

wi if (vi, vi) ∈ E
min(vi,vj)∈E{D(vj , vi) + wi} otherwise.

(2)392

To finalize the MG GMG, we proceed as follows. M is created from the colored GCF G by393

removing all the white vertices vi. To compute Q from E , we proceed as follows. For each394

white vertex vi, remove any self-loop and say that incoming (resp., outgoing) edges are of395

the form (vp, vi) (resp., (vi, vs)). Then, for each direct predecessor vp of an incoming edge,396

we add all the edges of the form (vp, vs) for any direct successor vs of vi in Q.397

(E) Degree Reduction: Recall that the number of address range registers available (noted398

M∗) at the TU is limited (Section 3). Intuitively, M∗ constraint how many milestones can399

be monitored by the TU after (one of) the current milestone is hit. After the MG has been400

produced following the procedure described so far, there is no guarantee that the outdegree401

(number of outgoing edges) of all the ri ∈ M is below M∗. Thus, a simple pruning strategy402

is adopted. That is, for each ri with outdegree greater than M∗, randomly pick one of the403

outgoing edges and color the vertex pointed by that edge white; then repeat the procedure to404

remove white nodes. This is done until no vertex with outdegree greater than M∗ is found.405

3 Folding all functions except for main can already produce meaningful milestone graphs for applications
under test. In practice, if the execution time of a function is long, unfolding it to allow milestones to be
placed inside can achieve better granularity.

4 We assume the CPI is greater or equal to one. Notice this might not be true for multi-issue processors.

W. Chen et al. 11:11

Algorithm 1 Constrained Directed Graph Coloring
1 input:
2 GCF G = (V, E), Tr ◁ CFG graph and blackout window
3 output:
4 Colored GCF G ◁ CFG graph with red-colored marked MBB’s
5 init:
6 for each v ∈ V do
7 v.color ← red ◁ Color all nodes red
8 end
9 Rleft ← Topol(V) ◁ Red vertices to visit, in DFS search order

10 algorithm:
11 for each ri ∈ Rleft do
12 D ← Dijkstra(ri, GCF G) ◁ Get all shortest-paths from ri

13 for each rj ∈ V s.t. rj .color == red do
14 if D(ri, rj) ≤ Tr then
15 rj .color ← white ◁ rj unsafe milestone from ri

16 Rleft ← Rleft \ {rj} ◁ Remove rj from Rleft

17 end
18 end
19 Rleft ← Rleft \ {ri} ◁ Mark ri as visited
20 end

We call FinalizeMG(Colored GCF G, M∗) the routine that takes in input a colored406

MG and performs edge construction plus MG pruning. Note that the selection of Tr and407

computation of the weights w can affect the pessimism of Algorithm 1. Moreover, in the408

presence of loops, the lack of static knowledge about the number of iterations that will be409

executed at runtime forces the algorithm to assume that only the iteration lower bound is410

taken. Finally, error-handling branches that are never taken during nominal execution create411

short-cut paths (e.g., from entry to exit in a routine) that prevent many intermediate BBs412

from being colored in red. Nonetheless, the important advantage of this first step is that an413

initial MG can be produced without the need to execute the application.414

5.4 Milestone Graph Refinement with Concrete Runs (Step 3)415

Refinement of the MG with concrete runs (Step 3 in Figure 2) mitigates the problems with416

static MG construction described in Section 5.3. During refinement, the target is executed417

on a set of representative inputs, potentially multiple times for each input. Techniques such418

as symcretic execution that combine symbolic execution and concrete runs can be used to419

automate the generation of representative inputs [23]. For the purpose of this work, we420

assume that a set of representative inputs has been identified for the target application.421

By executing the target application using representative inputs, we are able to measure422

the temporal distance between two BBs in the CFG and gather additional information about423

the path(s) taken by the target for each input. Importantly, we can now compute the424

max/min number of times that each edge (vi, vj) ∈ E was taken, and thus the min/max425

number of iterations of each loop is discovered. We record both observed minimum ai,j and426

maximum bi,j number of times each edge is visited. We only preserve the number of visits,427

but not their order, despite the trace data does provide the full history of the visited BBs.428

These runs are a way to collect extra information about the target and belong to the429

offline analysis phase of MB-TPA. In this phase, the TU is configured in a special mode430

where the TU can slow down the tracee. This is because the high-bandwidth nature of the431

trace data stream can overflow the internal buffer of the TU and cause information loss.432

Thus the slowdown ensures that a complete trace from entry to exit of the target is acquired.433

This is the only case in MB-TPA when the target is executed with a (possibly) heavy impact434

on its runtime due to the activity of the TU.435

ECRTS 2023

11:12 Low-overhead Online Assessment of Timely Progress as a System Commodity

1 1

1e6

1e61

v1 v2 v3

v3v2v1

Number of
access

Finalized
weight

(a) The number of access are a1,2 = 1,
a2,3 = 1, and a2,2 = 106. After applying
the heuristic, the number of access for the
self-loop becomes the weight for (v2, v3),
i.e. w2,3 = 106

entry
1

exit
1

... ...

... ...

... ...

entry exit
w = total number of branch instructions

executed in the subgraph

Number of
access

Finalized
weight

(b) No pair of nodes in the gray region
satisfies the constraint. Thus the total
number of branch instructions taken inside
the region becomes the weight for wen,ex.

Figure 4 Refinement by heuristics. The subgraphs before the heuristics applied are shown on
top, in which the number on an edge indicates the number of access ai,j . The subgraphs after the
heuristics applied are below, in which the number indicates the assigned weight wi,j .

(A) Branches as a Proxy of Distance: Since the exact temporal progress has been436

impacted, we need a different metric that correlates (and lower-bounds) the temporal distance437

between MBBs. The metric must be available from the traces and preserved when the runtime438

of the application is impacted. Thus, we use the reported number of visited BBs—i.e., the439

number of executed branch instructions. The advantage is threefold: (1) can be computed440

directly from the acquired trace without interfacing with any other architectural unit—e.g., a441

performance measurement unit; (2) when execution flows within the known CFG of the target,442

one can always retrieve the number of instructions executed; (3) we can put a (conservative)443

weight on branches to the outside of the CFG under analysis, such as calls to dynamically444

linked libraries and system calls. From our experience, (2) is unnecessary since the newly445

acquired information about the min/max number of loop iterations and the presence of446

never-observed paths already enables much lower pessimism in the MG construction.447

Under the new metric, the weight of every normal edge equals to one. The weight of a448

folding edge depends on the number of branch instructions executed in the folded function449

which can vary across different sample inputs. To ensure the blackout window condition450

holds (Eq.1), the weight of a folding edge is assigned to be the minimum across all inputs.451

Now the effective temporal distance D(ri, rj) is the shortest path from ri to rj . The following452

two heuristics can further fold subgraphs with certain properties, so that extra milestones453

can be placed.454

(B) Simplify Self-Loops: We identify any BB vi having only (1) one incoming edge455

(vi−1, vi), (2) one outgoing edge (vi, vi+1), and (3) one self-loop (vi, vi). All edges are normal.456

If the incoming and outgoing edges are both accessed only once, then replace the temporal457

cost wi,i+1 with the minimum number ai,i of self-edge accesses, and remove the self-loop, as458

shown in Figure 4a. Without this simplification, a suitable milestone candidate v3 would not459

be considered due to D(v1, v3) = 2.460

(C) Simplify Sub-graphs: Consider any sub-graph GCF G
sub with a single entry vertex ven461

and single-exit vex, in which all edges are normal. If it was unsafe to place any milestones462

within GCF G
sub , then (1) remove all the vertices that belong to GCF G

sub except ven and vex; (2)463

add the folding edge (ven, vex); and (3) set the temporal cost wen,ex = Wsub to the minimum464

number of branches Wsub observed across all runs inside GCF G
sub , as shown in Figure 4b.465

Besides the two heuristics above, the nodes/edges never accessed across all reference466

W. Chen et al. 11:13

A

B

C

D E

F

G

H

Tracee Tracer

Wait for

v0

v1

v2

v3

v4

v5

v7

v6

v0

v1

v3

v5

v7

v3

PC

(a) Initially, assume that tracee’s
program counter (PC) is inside v2.
The TU is programmed to monitor
arrival at v3. The TU is silent until
then, and the tracer awaits a signal
from the TU.

A

B

C

D E

F

G

H

Tracee Tracer

TU Reconfig

TU sends signal

v0

v1

v2

v3

v4

v5

v7

v6

v0

v1

v3

v5

v7

PC

(b) As soon as the tracee starts
executing instructions in v3, the
TU signals the tracer. The tracer
reconfigures the TU to monitor the
next milestones v5 and v7 during
the blackout window.

A

B

C

D E

F

G

H

PC

Tracee Tracer

Wait for
or

v0

v1

v2

v3

v4

v5

v7

v6

v0

v1

v3

v5

v7

v5 v7

(c) The TU reconfiguration is com-
plete and the tracer is ready to
wait for tracee’s execution to enter
either v5 or v7. By design, tracee’s
execution has not yet reached
them.

Figure 5 Tracer-Tracee interaction for milestone detection and dynamic TU reconfiguration.

inputs are also removed. For this work, we only apply the above refinements, but a large467

space exists for more advanced heuristics.468

5.5 Timed Milestone Graph Generation (Step 4)469

By the end of Step 3 (Section 5.4), an MG refined using concrete runs is obtained. Recall470

that the goal is to monitor the target’s progress online with negligible overhead. At this stage471

(Step 5 in Figure 2), the (refined) MG is decorated with timeliness information. The output472

of this step produces a Timed Milestone Graph (TMG) where each milestone is associated473

with a notion of when the milestone should be completed for satisfactory progress.474

(A) Milestone Timing: To associate timing information to milestones, the TU is configured475

never to slow down the traced application. In this mode, allowing full trace generation might476

result in unpredictable trace overflows, as discussed in Section 5.1. Instead, the refined MG is477

used to wake up the TU and tracer only when a milestone is reached, as depicted in Figure 5.478

In the considered example, the tracee is initially (Figure 5a) executing code within v2. The479

TU is configured to remain silent; its address range filter registers (see Section 3) are set to480

detect the arrival of execution into the next milestone (v3). When v3 is reached, the TU481

emits trace activity towards the tracer (Figure 5b). The TU uses the MG to dynamically482

reconfigure the TU to detect the next milestones, in this case, v5 and v7. Upon completion483

of the latter operation, the tracer goes back to waiting for an event from the TU (Figure 5c).484

Whenever a control transfer between two milestones is observed, the tracer measures the485

time—in terms of elapsed clock cycles—for the transfer.486

(B) Milestone Timeliness Information: Using the measured milestone-to-milestone time,487

timeliness information is added to the MG in two parts. (1) Each node in the MG is given a488

tail time; (2) each edge in the MG is given a nominal time.489

Tail time: The tail time Tt(MBBi) is the absolute time by which the target must hit490

MBBi for the last time. This value is the maximum taken across all the timed runs on the491

given set of representative inputs—worst-case in isolation. The tail time can be understood492

as the WCET till a specific milestone. However, loops and alternative paths make the tail493

time insufficient to assess a broader set of timeliness properties beyond WCET enforcement.494

Consider the case where we want to detect timely progress via loop iterations. Even if each495

iteration of the loop takes longer than usual, the tracer cannot detect per-iteration slowdowns496

by only using the tail time. The nominal time is designed to overcome such a limitation.497

Nominal time: Given an edge (MBBi,MBBj) ∈ Q, the nominal time Tn(MBBi,MBBj) is498

ECRTS 2023

11:14 Low-overhead Online Assessment of Timely Progress as a System Commodity

a reference time the application is expected to spend to transfer from MBBi to MBBj . Once499

again, the maximum is taken across all the timed runs. Even if the target runs in isolation500

(all other PEs idle), fluctuations in the value of Tn can occur due to microarchitectural noise.501

If (MBBi,MBBj) is part of a loop, nominal time is effective in detecting slower-than-expected502

transfer between MBBi and MBBj . Thus the nominal time offers finer timeliness checking per503

iteration.504

5.6 Online Timely Progress Assessment (Step 5)505

Once a TMG has been obtained, online TPA is possible, which is the focus of Step 5 in506

Figure 2 and described below. The TMG is passed to the tracer when the target is launched.507

The MBB0 that corresponds to the selected entry point for the target is programmed by the508

tracer on the TU. Live tracking of the application under analysis is performed by employing509

the same strategy described in Section 5.5 and illustrated in Figure 5.510

At runtime, we track two times: (1) the actual time Θ(i) and (2) the running nominal511

time N(i). Let MBBi be the i-th milestone for which a hit has been detected. Θ(i) is updated512

with the current time. Therefore, it tracks the time measured since MBB0 was hit and until513

MBBi is reached. Conversely, N(i) is updated as N(i) = N(i − 1) + Tn(MBBi−1,MBBi).514

At this point, everything is set to assess the timely progress of the target. Whenever a515

milestone MBBi is hit, the tracer can check that Θ(i) ≤ min(Tt(MBBi), N(i)). If a controllable516

amount of degradation—compared to the reference timing acquired in isolation—is accepted,517

one can express the allowed slowdown as α > 1 and check the following condition instead:518

Θ(i) ≤ α min(Tt(MBBi), N(i)). (3)519

Importantly, all the elements are in place not only for the detection of TPI violations but520

also to routinely report positive/negative current slack to the tracee PE. The slack at MBBi521

can be calculated as slack(i) = min(αTt(MBBi), αN(i)) − Θ(i).522

6 Use Cases for MB-TPA523

We hereby provide three use-cases enabled by the ability of MB-TPA to provide runtime524

timely progress assessment as a system commodity.525

(A) Strict WCET Enforcement: Previous work has provided a methodology based on526

code-level instrumentation to insert progress checkpoints (milestones in our notations) with527

the goal of enforcing a target WCET for a high-criticality task under analysis [36–38,58]. The528

capabilities of MB-TPA seamlessly support one such use case. Consider a mixed-criticality529

system in which a critical task is scheduled exclusively on the main core, and low critical530

tasks are scheduled on other cores. Kritikakou et al. [37] have proved that the following531

regulation policy can guarantee the timeliness of the critical task5. Following their strategy,532

low-criticality tasks are suspended if a checkpoint is reached and the slack is not sufficient as533

indicated by the following condition:534

RWCETiso(x) + RWCETmax + tRT > Dc − ET (x),535

where RWCETiso(x) is the remaining WCET (measured in isolation) from the arrival at536

watchpoint x until completion. In our MB-TPA, this is equivalent to Tt(MBBexit) − Tt(MBBx).537

5 Due to space constraint, the proof is omitted here. The work also includes a treatment to regulate loop
components.

W. Chen et al. 11:15

RWCETmax is the WCET from watch-point x to the next watchpoint when other low critical538

tasks are present, which can be measured as Tn(MBBx,MBBx+1) according to Section 5.5 by539

adding interference. tRT is the software interrupt overhead. Our MB-TPA does not use540

interrupts, but to remain safe, the delay in the milestone detection at the tracer must be541

considered. This term is evaluated in Section 8.1. Dc and ET (x) are deadline and actual542

time at x. We refer to the latter as Θ(x). The required metrics for the regulation policy are543

offered by MB-TPA, thus our method can also achieve strict WCET enforcement.544

(B) Progress-aware Profiling: In this use case, we demonstrate that it is possible to545

acquire application profiles about their interaction with the underlying hardware in a way546

that is progress aware. This can be done by performing online tracking according to what547

described in Section 5.6. In addition, the tracer is modified to interface with the performance548

monitoring unit of the tracee. By doing so, it is possible to measure the progression of549

architectural events (e.g. cache misses, branch mispredictions, bus stalls) at the reached550

milestones. This allows precise attribution of exhibited behaviors to specific code paths551

inside the target. More importantly, it enables correlating slowdowns on specific milestones552

to root causes in terms of platform behavior. And therefore, to identify hardware bottlenecks553

on a per-code-path basis. We evaluate this use case in Section 8.2.554

(C) Progress-aware Controlled Degradation: Lastly, we consider TPA-driven detection555

of TPI violations due to contention over shared memory resources and perform regulation of556

interfering PEs with the goal of tracking a degraded performance setpoint for the target.557

In a nutshell, TPI violation is triggered if the target suffers a slowdown greater than558

a selected α factor. At runtime, if Equation 3 does not hold, the tracer sends a signal to559

the tracee to pause the activity of all the other PEs. After the interfering cores have been560

stopped, the target might recover some slack. Thus, it might be possible to resume the561

paused PEs. To decide when the interfering PEs should be resumed, we use an aggressiveness562

parameter β ∈ [0, 1]. Whenever slack(i) > βαN(i), the interfering PEs are resumed. As563

β decreases, the tracer resumes the co-runners as early as possible. When β increases, the564

tracer becomes more conservative. We evaluate this use case in Section 8.2.565

7 System Instantiation and Implementation Details566

We performed a full-stack implementation of the proposed MB-TPA. We name our proof-567

of-concept system instantiation Timely Progress Assessment with 0 Overhead (TPAw0v).568

TPAw0v was implemented on the ZCU102 development board featuring a Xilinx UltraScale+569

MPSoC. The target platform comprises two CPU clusters: (1) the APU cluster with four570

ARM Cortex-A53 CPUs operating at 1.3GHz, used as the tracee; (2) the RPU cluster with571

two ARM Cortex-R5 CPUs operating at 600MHz, used to implement the tracer. Following572

the platform assumptions described in Section 4, the target platform features an ARM573

Coresight infrastructure commonly with tracing capability.574

Figure 6 illustrates the trace data path. Each tracee CPU has a TU, namely an ARM575

Embedded Trace Macrocell (ETM) [10]. The ETMs produce trace data for the respective576

core. The ETMs are capable of filtering the trace data by comparing the PC against a set of577

4 range-address filters. Each filter uses two registers (TRCACVRn) for the address range’s578

upper and lower ends. Trace data packets are generated whenever the PC falls within any of579

the defined ranges.580

The trace packets traverse multiple on-chip CoreSight components. The bare-metal581

drivers used by the tracer to manage all these components were written from scratch. In582

TPAw0v, the ETR is configured to asynchronously store trace packets to the RPU cluster’s583

ECRTS 2023

11:16 Low-overhead Online Assessment of Timely Progress as a System Commodity

Figure 6 The Embedded Trace Macrocell (ETM) is the CPU-local device responsible for trace
generation. The Trace Memory Controller [8] can be configured into an Embedded Trace FIFO
(ETF) or Embedded Trace Router (ETR). The former serves as a buffer for the trace stream; the
latter routes trace data to memory. ARM AMBA Advanced Trace Bus (ATB) [9] is adopted for
trace data transmission. Funnels merge trace streams from potentially multiple ETMs and ATBs
into a single ATB. The Replicator duplicates trace data from a single master to two slaves [12].

scratchpad (TCM), where a 2KB circular buffer is reserved. The TMG in binary format is584

also stored on the TCM. The tracer implements all the modes to carry out the full MB-TPA585

pipeline described in Section 5, including online tracking.586

7.1 Constructing MB-TPA with ETM587

To implement MB-TPA, the ETM is driven using a Finite State Machine (FSM) by the588

tracer and composed of three states (solid circles), two transition states (dashed circles),589

and several transitions as depicted in Figure 7. The controller starts in the Inactive state.590

This state is the only one in which reconfiguring the ETM (modifying the address filtering591

registers) is allowed, as the ETM is idle. Once reconfiguration is completed, the controller592

activates the ETM by asserting the TRCPRGCTLR.EN register (A), leading to a transition593

state to guarantee that the ETM is not idle. Here, the tracer waits for the TRCSTATR.IDLE594

register to be cleared before moving to the Active-off state (B). In Active-off, the ETM595

is monitoring the PC, but not generating informative packets6, because the PC has not596

reached any addresses specified by the address filtering registers. I.e. the PC has not reached597

any milestones yet. When the PC reaches any of the specified addresses, Three packets598

are emitted in order by the ETM: a synchronization, a trace-on, and an address599

packet. This sequence signifies that a milestone was hit and the address packet includes600

the current value of the PC. Then, the controller moves to the Active-on state (C). Otherwise,601

the controller stays in Active-off (!C). Similar to its “off” counterpart, the Active-on state602

keeps the ETR actively waiting for the next packet (!D). Once the packet is finally captured,603

the controller (1) identifies the milestone hit via the PC, (2) computes the negative slack, and604

(3) propagates the latter to the tracee. The controller then moves back to the Active-off state605

(D). In both active states, the controller is allowed to request a change of address range to606

monitor. In such case, the ETM must be set to idle by clearing the TRCPRGCTLR.EN register607

(D). Then, the controller enters a transition state where it awaits for the TRCSTATR.IDLE608

register to be asserted, ensuring the ETM is idle (E).609

8 Evaluation610

First, we evaluate TPAw0v to understand its performance in terms of milestone detection611

delay, size of the trace blackout window, and overhead on the tracee. Next, we evaluate the612

6 In Active-off state the ETM still generates synchronization and address packet pairs at a very
low rate. These packet pairs can be ignored for our purpose.

W. Chen et al. 11:17

Figure 7 Tracer’s controller
as a finite state machine.

Figure 8 Delivery time (cumulative) distribution.

ability to enact progress-aware profiling and controlled performance degradation.613

8.1 Progress Assessment Performance614

(A) Delivery Time: Let t denote the time at which tracee executes the first instruction in615

the monitored MBB. The TU generates a trace packet toward the tracer via on-chip buses.616

Let t′ denote the time at which the tracer receives it. The delivery time ∆t = t′ − t has to617

be comparably small so that the TPAw0v can operate effectively. To measure ∆t, we use a618

synthetic benchmark on the tracee in which the cycle counter is periodically read. MBBs are619

chosen as the BBs where the cycles are sampled. The tracer reads the same cycle counter620

upon receiving the signal. For a given MBB, the application’s timestamp is t; the tracer’s621

is t′. We sample 1500 data points, 50% in isolation and the rest with interference from622

memory-intensive applications. Figure 8 shows the overall (cumulative) distribution. The623

delivery time is upper-bounded by 5750 cycles, or 4.4µs on our 1.3GHz tracee.624

Recall that software-based detection methods [38,58] inevitably introduce overhead due625

to synchronous interrupt handling. In contrast, our method never interrupts the tracee. Due626

to our monitoring scheme’s asynchronous nature, the delivery time is not an overhead term.627

Nonetheless, it is informative to contrast the overhead for software-based detection to the628

magnitude of our delivery time. A convenient way to obtain such measurement is to use629

a widely-adopted Linux support for dynamic binary instrumentation, namely UPROBEs [3].630

They allow hooks to be registered at different locations of a user application. A software631

interrupt is issued when a hook is reached and time can be sampled. We measured the632

overhead of UPROBEs at about 4µs.633

(B) Blackout Window Size: The reconfiguration of the TU is solely handled by the634

function reconfigure residing in the control logic of the tracer. Thus by reading the cycle635

counter before/after the function call of reconfigure, the size of Tr can be measured. We636

conduct such measurements while running TPAw0v normally with target applications from637

the SD-VBS suite [64] which is a diverse collection of computer vision applications. The638

characteristics of these benchmarks have been extensively studied by the community [51,52,61].639

Our measurements show that Tr is around 3µs. Recall that we choose Tr in terms of number640

of executed branch instructions. In the (very unlikely) worst case, all the instructions641

executed during the blackout window are branch instructions. Thus, we conservatively set642

Tr = 10000 given the 1.3GHz tracee.643

(C) Overhead on Tracee: When the tracer only performs TPA but takes no regulation644

actions, the target should only experience a negligible slowdown. Five SD-VBS benchmarks645

were evaluated: disparity, texture_synthesis, mser, tracking, and sift.646

We run benchmarks with their respective default inputs in two configurations: (1) without647

ECRTS 2023

11:18 Low-overhead Online Assessment of Timely Progress as a System Commodity

Table 1 Overhead (%) of tracer activity and TMG/trace size information.

Benchmark disparity text. mser tracking sift

Mean(%) 0.512 -0.009 0.250 -0.072 0.168
Max(%) 0.585 0.033 0.263 -0.110 0.194
Min(%) 0.483 0.085 0.225 -0.059 0.173

of MBBs in TMG 17 5 18 16 13
of MBB hit in execution 143 1169 20 18 19
of unfolding functions 1 1 1 1 2
TMG size (bytes) 340 108 408 320 324
Raw trace size (MB) 10 44.4 14 175.2 236.4
Filtered trace size (bytes) 1500 9400 210 350 300

TPAw0v, and (2) with TPAw0v but taking no regulation actions. Ten runs are conducted per648

benchmark and in each configuration. The top section of Table 1 reports the slowdown caused649

by TPAw0v on the benchmarks as a percentage of their runtime. Expectedly, the overhead is650

low (< 0.6%). The low yet visible overhead in some applications might arise from interference651

on the main interconnect between the tracer and the tracee CPUs. Implementing the tracer652

on the on-chip FPGA might mitigate the issue [65] and further reduce the overhead. Negative653

entries indicate that the applications run faster when traced. H. Shah et al. [56] observed654

and theorized such counterintuitive timing anomalies.655

(D) Application Considerations: The sum of delivery time and blackout window size656

(∼ 7.4µs) indicates the responsiveness of the tracer in detecting and reacting to milestone hits.657

Thus, TPAw0v is better suited for applications with execution times on the order of 103µs658

and above, e.g., data processing workloads. Approaches using software interrupts would incur659

overheads of at least 4µs, as measured on our platform. Thus, for short-lived applications, the660

overhead introduced by software instrumentation would significantly degrade performance.661

8.2 Evaluation of MB-TPA Use Cases662

We hereby evaluate the last two use cases described in Section 6. For our evaluation,663

we consider the same five aforementioned SD-VBS benchmarks. The memory-intensive664

application bandwidth from IsolBench [63] is deployed on all the other cores to create665

interference in both main memory and shared cache.666

(A) TMG Construction: First, we provide information regarding TMGs and trace data667

in the second section of Table 1. When a milestone is placed inside a loop, high granularity668

regulation can be achieved. disparity and texture synthesis demonstrate such669

granularity as the number of milestones hit is high. TMG size refers to the memory usage670

for the tracer to store the binary TMG; raw traces are only used during the offline MG671

refinement phase; the TU generates the filtered trace during online tracking.672

(B) Progress-aware Profiling: When the execution reaches a milestone, we collect673

architectural event statistics by directly reading the PMU event counters7. In this evaluation,674

the architectural event monitored is the L2 data cache refill, i.e. we track last-level cache675

misses. The benchmarks under evaluation run (1) in isolation and (2) with interference tasks.676

7 ETM can also report architectural events in the trace stream. ETM can optionally implement external
inputs which connect to PMU event bus lines. Event packets can be inserted into the trace stream
whenever the monitored events occur.

W. Chen et al. 11:19

0 500 1000 1500 2000
Milestone Hit time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L2
 C

ac
he

 R
ef

ill
Co

un
ts

1e7
Nominal
With co-runner

(a) Disparity

0 200 400 600 800
Milestone Hit time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L2
 C

ac
he

 R
ef

ill
Co

un
ts

1e6
Nominal
With co-runner

(b) Mser

200 400 600 800 1000 1200 1400
Milestone Hit time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

L2
 C

ac
he

 R
ef

ill
Co

un
ts

1e6
Nominal
With co-runner

(c) Tracking

Figure 9 Relationship between timeliness (x), L2 cache misses (y), and milestones (markers).

0 500 1000 1500 2000 2500 3000
Time (ms)

0

20

40

60

80

100

120

140

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(a) Disparity

100 200 300 400 500 600
Time (ms)

0

150

300

450

600

750

900

1050

1200

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(b) Texture Synthesis

0 200 400 600 800
Time (ms)

0
2
4
6
8

10
12
14
16
18

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(c) Mser

500 1000 1500 2000 2500
Time (ms)

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(d) Tracking

0 1000 2000 3000 4000 5000 6000 7000
Time (ms)

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation
Solo Time

(e) Sift

Figure 10 The TMG for disparity and texture synthesis captures appropriate loops,
achieving fine granularity. Despite a coarser control for mser, TPI is maintained.

In each case, the benchmark runs 20 times. The tracer reports the time and cache refill677

statistics at each milestone hit. The relationship between elapsed time (x-axis), cumulative678

number of L2 misses (y-axis), and milestones hit (markers)—and therefore segments of679

executed code—as captured for three SD-VBS applications is reported in Figure 9. The figure680

highlights that disparity and tracking suffer only marginally from cache contention,681

while five milestones in mser are significantly impacted by contention in L2.682

The significance of relating the consumption of hardware resources to progress is twofold.683

First, resource management decisions can be enacted proactively as opposed to reactively.684

Second, by comparing the expected profile at a milestone to what is observed online, a system685

can identify the root causes of performance degradation and enact appropriate corrective686

actions. The combination of progress tracking and progress-aware resource management687

requires extensive research.688

(C) Controlled Performance Degradation: In this scenario, we evaluate the ability to689

set a degraded performance setpoint for the application under analysis and stop/resume690

interfering cores based on the online slack calculation reported by the tracer. The behavior691

of the five SD-VBS benchmarks is reported in Figure. 10. We compare the runtime under692

ECRTS 2023

11:20 Low-overhead Online Assessment of Timely Progress as a System Commodity

1 3 5 7 9 11 13 15 17 19
Target Deviation (%)

0

500

1000

1500

2000
Ti

m
e

(m
s)

Set-point
Nominal
Exec. Time
Ctrl. Ratio

1

0.5

Ct
rl.

 T
im

e
to

 To
ta

l T
im

e
Ra

tio

(a) Disparity

1 3 5 7 9 11 13 15 17 19
Target Deviation (%)

0

100

200

300

400

500

Ti
m

e
(m

s)

Set-point
Nominal
Exec. Time
Ctrl. Ratio

1

0.5

Ct
rl.

 T
im

e
to

 To
ta

l T
im

e
Ra

tio

(b) Texture Synthesis

1 3 5 7 9 11 13 15 17 19
Target Deviation (%)

0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(m

s)

Set-point
Nominal
Exec. Time
Ctrl. Ratio

1

0.5

Ct
rl.

 T
im

e
to

 To
ta

l T
im

e
Ra

tio

(c) Tracking

Figure 11 As target deviation β increases, the tracer becomes more conservative, and only
resumes the co-runner when a sufficient positive slack presents. Thus, the application follows the
set-point more closely for small β.

tracer-enforced regulation ("Regulated Run Time") with two other cases: (1) the nominal case,693

i.e., the worst-case progress in isolation, and (2) the progress under unregulated interference694

("Co-runner w/o Regulation"). We use α = 1.3 and β = 7%; the resulting progress reference695

is labeled "Set point." The history of accessed milestones in chronological order is reported696

on the y-axis; the time elapsed between milestones is reported on the x-axis; the binary697

decisions to suspend (red dot) or resume (green dot) the co-runners are reported.698

In all the cases, the tracer was able to enforce a controllably degraded notion of TPI for699

the target. Corrective measures are taken as soon as the detected progress falls below the700

reference. The specific value of β we considered works well in most cases but becomes overly701

conservative in the case of mser. In this case, preventing a slowdown in the early stages702

(at milestones 2–4) is sufficient to ensure that the setpoint is met for the rest of the run.703

The behavior of sift (Figure 10e) is interestingly different. The solo, uncontrolled, and704

controlled progress nearly coincide. This indicates that sift is unaffected by the interference705

tasks. The nominal progress, however, is slower than the above three. Recall that the706

nominal time for each edge is taken as the maximum transfer time across all runs. But in a707

single run, not all transfers take the worst-case time.708

To better understand the impact of β on the behavior of the applications, we sweep709

through values of β ∈ [1%, . . . , 19%] and present the results in Figure 11. The "Exec Time"710

bar captures the runtime under contention and regulation. The "Ctrl. Ratio" bar reports the711

fraction of time during which the real-time is below the set-point. As β increases, TPAw0v712

becomes more conservative, and the aggressiveness of the regulation increases. sift is not713

included since it does not suffer from performance degradation.714

9 Conclusion715

Prompted by the demand for high-performance embedded platforms, the design of modern716

system-on-chip has gained in complexity at the expense of software predictability and717

timeliness. We argue that reasoning on the progress of live applications must be a key718

requirement to achieve Timely Progress Integrity. In this paper, we propose a method called719

MB-TPA and present a prototype, TPAw0v, feasible on widely available commercial platforms720

featuring tracing capabilities. Our experiments show that our prototype is successful in721

tracking the progress of applications under test with near-zero overhead while operating on a722

lower-performance core! Moreover, through its prototype implementation, we demonstrate723

the capability of our model to detect execution anomalies and enforce corrective measures724

to preserve TPI. We envision that the contributions made by this work represent the first725

building blocks towards elaborated real-time policies with TPI at their core.726

W. Chen et al. 11:21

References727

1 Powertrace iii. https://www.lauterbach.com/powertrace3.html. Accessed: 01-03-728

2023.729

2 Technology overview. https://www.ghs.com/products/probe.html. Accessed: 01-03-730

2023.731

3 Uprobe-tracer: Uprobe-based event tracing. https://docs.kernel.org/trace/732

uprobetracer.html.733

4 Working draft of the risc-v processor trace specification. https://github.com/734

riscv-non-isa/riscv-trace-spec. Accessed: 01-03-2023.735

5 J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy, M. Azkarate-askasua,736

J. Perez, E. Mezzetti, and T. Vardanega. Wcet analysis methods: Pitfalls and challenges on737

their trustworthiness. In 10th IEEE International Symposium on Industrial Embedded Systems738

(SIES), pages 1–10, 2015.739

6 S. M. Ali Zeinolabedin, J. Partzsch, and C. Mayr. Analyzing arm coresight etmv4.x data trace740

stream with a real-time hardware accelerator. In 2021 Design, Automation & Test in Europe741

Conference & Exhibition (DATE), pages 1606–1609, 2021.742

7 ARM. Coresight components technical reference manual, 2004.743

8 ARM. CoreSight trace memory controller technical reference manual, 2010.744

9 ARM. AMBA ATB Protocol Specification, 2012.745

10 ARM. Embedded trace macrocell architecture specification etmv4.0 to etm4.6, 2012.746

11 ARM. Arm architecture reference manual for a-profile architecture, 2013.747

12 ARM. ARM CoreSight SoC-400 Technical Reference Manual, 2015.748

13 S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and749

L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline750

sporadic task systems. In 24th Euromicro Conference on Real-Time Systems (ECRTS 2012),751

pages 145–154, Los Alamitos, CA, USA, Jul 2012. IEEE Computer Society.752

14 S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed criticality systems. In753

2011 IEEE 32nd Real-Time Systems Symposium, pages 34–43, 2011.754

15 A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-related preemption and migration755

delays : Empirical approximation and impact on schedulability. In Proceedings of the 6th756

annual workshop on. Operating Systems Platforms for Embedded Real-Time Applications,757

volume 10 of OSPERT’10, page 33–44, 2010.758

16 E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-time i/o management system759

with cots peripherals. IEEE Transactions on Computers, 62(1):45–58, 2013.760

17 R. J. Bril, S. Altmeyer, M. M. H. P. van den Heuvel, R. I. Davis, and M. Behnam. Fixed priority761

scheduling with pre-emption thresholds and cache-related pre-emption delays: integrated762

analysis and evaluation. Real-Time Systems, 53(4):403–466, Jul 2017.763

18 A. Burns and R. I. Davis. Mixed Criticality Systems - A Review : (13th Edition, February764

2022). February 2022.765

19 M. Caccamo, G. Buttazzo, and L. Sha. Elastic feedback control. In Proceedings 12th Euromicro766

Conference on Real-Time Systems. Euromicro RTS 2000, pages 121–128, 2000.767

20 H. Cassé and P. Sainrat. OTAWA, a Framework for Experimenting WCET Computations. In768

Conference ERTS’06, Toulouse, France, Jan. 2006.769

21 I. Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3 (3A, 3B, 3C770

& 3D): System Programming Guide, 2022.771

22 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,772

1(1):269–271, 1959.773

23 P. Dinges and G. Agha. Targeted test input generation using symbolic-concrete backward774

execution. In Proceedings of the 29th ACM/IEEE International Conference on Automated775

Software Engineering, ASE ’14, page 31–36, New York, NY, USA, 2014. Association for776

Computing Machinery.777

ECRTS 2023

https://www.lauterbach.com/powertrace3.html
https://www.ghs.com/products/probe.html
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://github.com/riscv-non-isa/riscv-trace-spec
https://github.com/riscv-non-isa/riscv-trace-spec
https://github.com/riscv-non-isa/riscv-trace-spec

11:22 Low-overhead Online Assessment of Timely Progress as a System Commodity

24 P. Ekberg and W. Yi. Outstanding paper award: Bounding and shaping the demand of778

mixed-criticality sporadic tasks. In 2012 24th Euromicro Conference on Real-Time Systems,779

pages 135–144, 2012.780

25 L. Feng, J. Huang, J. Hu, and A. Reddy. Fastcfi: Real-time control-flow integrity using fpga781

without code instrumentation. ACM Trans. Des. Autom. Electron. Syst., 26(5), jun 2021.782

26 R. Gifford, N. Gandhi, L. T. X. Phan, and A. Haeberlen. DNA: Dynamic resource allocation783

for soft real-time multicore systems. In 27th IEEE Real-Time and Embedded Technology and784

Applications Symposium (RTAS ’21), May 2021.785

27 G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni. A survey on cache786

management mechanisms for real-time embedded systems. ACM Comput. Surv., 48(2), nov787

2015.788

28 X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-789

criticality systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 47–56,790

2016.791

29 X. Gu, A. Easwaran, K.-M. Phan, and I. Shin. Resource efficient isolation mechanisms in792

mixed-criticality scheduling. In 2015 27th Euromicro Conference on Real-Time Systems, pages793

13–24, 2015.794

30 J. Gustafsson. Usability aspects of WCET analysis. In 2008 11th IEEE International795

Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC),796

pages 346–352, 2008.797

31 D. Hardy, B. Rouxel, and I. Puaut. The Heptane Static Worst-Case Execution Time Estimation798

Tool. In J. Reineke, editor, 17th International Workshop on Worst-Case Execution Time799

Analysis (WCET 2017), volume 57 of OpenAccess Series in Informatics (OASIcs), pages800

8:1–8:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.801

32 A. Hoppe, J. Becker, and F. L. Kastensmidt. High-speed hardware accelerator for trace802

decoding in real-time program monitoring. In 2021 IEEE 12th Latin America Symposium on803

Circuits and System (LASCAS), pages 1–4, 2021.804

33 T.-Y. Huang, J.-S. Liu, and D. Hull. A method for bounding the effect of dma i/o interference805

on program execution time. In 17th IEEE Real-Time Systems Symposium, pages 275–285,806

1996.807

34 M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski. Safety-aware integration of hardware-808

assisted program tracing in mixed-criticality systems for security monitoring. In 2021 IEEE809

27th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 292–305,810

2021.811

35 R. Kirner and P. P. Puschner. Discussion of misconceptions about WCET analysis. In812

J. Gustafsson, editor, Proceedings of the 3rd International Workshop on Worst-Case Execution813

Time Analysis, WCET 2003 - a Satellite Event to ECRTS 2003, Polytechnic Institute of Porto,814

Portugal, July 1, 2003, volume MDH-MRTC-116/2003-1-SE, pages 61–64. Department of815

Computer Science and Engineering, Mälardalen University, Box 883, 721 23 Västerås, Sweden,816

2003.817

36 A. Kritikakou, T. Marty, and M. Roy. Dynascore: Dynamic software controller to increase818

resource utilization in mixed-critical systems. ACM Trans. Des. Autom. Electron. Syst., 23(2),819

oct 2017.820

37 A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange. Run-time control to821

increase task parallelism in mixed-critical systems. In 2014 26th Euromicro Conference on822

Real-Time Systems, pages 119–128, 2014.823

38 A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal, and D. G. Pérez.824

Distributed run-time WCET controller for concurrent critical tasks in mixed-critical systems.825

In Proceedings of the 22nd International Conference on Real-Time Networks and Systems,826

RTNS ’14, page 139–148, New York, NY, USA, 2014. Association for Computing Machinery.827

W. Chen et al. 11:23

39 D. Kuzhiyelil, P. Zieris, M. Kadar, S. Tverdyshev, and G. Fohler. Towards transparent828

control-flow integrity in safety-critical systems. In International Conference on Information829

Security, pages 290–311. Springer, 2020.830

40 C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim.831

Analysis of cache-related preemption delay in fixed-priority preemptive scheduling. IEEE832

Transactions on Computers, 47(6):700–713, 1998.833

41 J. Lee, H. S. Chwa, L. T. X. Phan, I. Shin, and I. Lee. Mc-adapt: Adaptive task dropping in834

mixed-criticality scheduling. 16(5s), sep 2017.835

42 D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. Edf-vd scheduling of836

mixed-criticality systems with degraded quality guarantees. In 2016 IEEE Real-Time Systems837

Symposium (RTSS), pages 35–46, 2016.838

43 D. Lo, M. Ismail, T. Chen, and G. E. Suh. Slack-aware opportunistic monitoring for real-time839

systems. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium840

(RTAS), pages 203–214, 2014.841

44 C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-time scheduling:842

Framework, modeling, and algorithms*. Real-Time Systems, 23(1):85–126, Jul 2002.843

45 T. Lugo, S. Lozano, J. Fernández, and J. Carretero. A survey of techniques for reducing844

interference in real-time applications on multicore platforms. IEEE Access, 10:21853–21882,845

2022.846

46 M. Lv, Z. Gu, N. Guan, Q. Deng, and G. Yu. Performance comparison of techniques on847

static path analysis of wcet. In 2008 IEEE/IFIP International Conference on Embedded and848

Ubiquitous Computing, volume 1, pages 104–111, 2008.849

47 M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi. A survey on static cache analysis for850

real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05:1–05:48, Jun. 2016.851

48 C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A Survey of Timing852

Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv., 52(3), June853

2019.854

49 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time855

cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time and856

Embedded Technology and Applications Symposium (RTAS), page 45–54, 2013.857

50 H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-related preemption858

delay. In Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Soft-859

ware Codesign and System Synthesis, CODES+ISSS ’03, page 201–206, New York, NY, USA,860

2003. Association for Computing Machinery.861

51 M. Nicolella, D. Hoornaert, S. Roozkhosh, A. Bastoni, and R. Mancuso. Know your enemy:862

Benchmarking and experimenting with insight as a goal. In 2022 IEEE Real-Time Systems863

Symposium (RTSS), RTSS 2022, 2022.864

52 M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and R. Mancuso. Rt-bench: An865

extensible benchmark framework for the analysis and management of real-time applications.866

In Proceedings of the 30th International Conference on Real-Time Networks and Systems,867

RTNS 2022, page 184–195, New York, NY, USA, 2022. Association for Computing Machinery.868

53 A. Papadopoulos, E. Bini, S. Baruah, and A. Burns. Adaptmc: A control-theoretic approach869

for achieving resilience in mixed-criticality systems. pages 14:1–14:22, Dagstuhl, July 2018.870

LIPICS.871

54 J. Ren and L. X. Phan. Mixed-criticality scheduling on multiprocessors using task grouping. In872

2015 27th Euromicro Conference on Real-Time Systems (ECRTS), pages 25–34, Los Alamitos,873

CA, USA, Jul 2015. IEEE Computer Society.874

55 G. Schwaricke, R. Tabish, R. Pellizzoni, R. Mancuso, A. Bastoni, A. Zuepke, and M. Caccamo.875

A real-time virtio-based framework for predictable inter-vm communication. In 2021 IEEE876

Real-Time Systems Symposium (RTSS), pages 27–40, 2021.877

ECRTS 2023

11:24 Low-overhead Online Assessment of Timely Progress as a System Commodity

56 H. Shah, K. Huang, and A. Knoll. Timing anomalies in multi-core architectures due to the878

interference on the shared resources. In 2014 19th Asia and South Pacific Design Automation879

Conference (ASP-DAC), pages 708–713, 2014.880

57 Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng,881

C. Hauser, C. Kruegel, and G. Vigna. SoK: (State of) The Art of War: Offensive Techniques882

in Binary Analysis. In IEEE Symposium on Security and Privacy, 2016.883

58 S. Sinha, R. West, and A. Golchin. Pastime: Progress-aware scheduling for time-critical884

computing. arXiv preprint arXiv:1908.06211, 2019.885

59 P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-warp: A system-wide framework for886

memory bandwidth profiling and management. In 2020 IEEE Real-Time Systems Symposium887

(RTSS), pages 345–357, 2020.888

60 J. Stankovic, C. Lu, S. Son, and G. Tao. The case for feedback control real-time scheduling. In889

Proceedings of 11th Euromicro Conference on Real-Time Systems. Euromicro RTS’99, pages890

11–20, 1999.891

61 D. Tarapore, S. Roozkhosh, S. Brzozowski, and R. Mancuso. Observing the invisible: Live892

cache inspection for high-performance embedded systems. IEEE Transactions on Computers,893

71(3):559–572, 2022.894

62 P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to improve isolation895

in multicore real-time systems. In 2016 IEEE Real-Time and Embedded Technology and896

Applications Symposium (RTAS), pages 1–12, 2016.897

63 P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to improve isolation898

in multicore real-time systems. In 2016 IEEE Real-Time and Embedded Technology and899

Applications Symposium (RTAS), pages 1–12, 2016.900

64 S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.901

SD-VBS: The san diego vision benchmark suite. In 2009 IEEE International Symposium on902

Workload Characterization (IISWC), pages 55–64, 2009.903

65 Xilinx. Zynq UltraScale+ Device Technical Reference Manual, 2023.904

66 H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory905

allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time and906

Embedded Technology and Applications Symposium (RTAS), page 155–166, 2014.907

67 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth908

reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE909

19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55–64,910

2013.911

68 M. Zini, G. Cicero, D. Casini, and A. Biondi. Profiling and controlling i/o-related memory912

contention in cots heterogeneous platforms. Software: Practice and Experience, 52(5):1095–913

1113, 2022.914

	1 Introduction
	1.1 Overview of Proposed System Design for MB-TPA

	2 Related Works
	2.1 Software-based Monitoring and Progress Assessment
	2.2 Run-time Monitoring via Hardware

	3 Background
	4 System Model and Assumptions
	4.1 System-level Assumptions
	4.2 Application-level Assumption

	5 Methodology for Milestone-Based Timely Progress Assessment
	5.1 Intuition of Key Challenges and Solutions
	5.2 Trace Blackout Window
	5.3 Milestone Graph Construction (Step 1 and 2)
	5.4 Milestone Graph Refinement with Concrete Runs (Step 3)
	5.5 Timed Milestone Graph Generation (Step 4)
	5.6 Online Timely Progress Assessment (Step 5)

	6 Use Cases for MB-TPA
	7 System Instantiation and Implementation Details
	7.1 Constructing MB-TPA with ETM

	8 Evaluation
	8.1 Progress Assessment Performance
	8.2 Evaluation of MB-TPA Use Cases

	9 Conclusion

