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Abstract—Real-time systems are required to respond
to their physical environment within predictable time.
While multi-core platforms provide incredible compu-
tational power and throughput, they also introduce new
sources of unpredictability. For parallel applications
with data shared across multiple cores, overhead to
maintain data coherence is a major cause of execu-
tion time variability. This source of variability can
be eliminated by application level control for limiting
data caching at different levels of the cache hierarchy.
This removes the requirement of explicit coherence
machinery for selected data. We show that such control
can reduce the worst case write request latency on
shared data by 52%. Benchmark evaluations show that
proposed technique has a minimal impact on average
performance.

Index Terms—hardware/software co-design, worst-
case execution time, cache coherence, memory con-
tention

I. Introduction
The last decade has witnessed a profound transfor-

mation in the way real-time systems are designed and
integrated. At the root of this transformation are the ever
growing data-heavy and time-sensitive real time applica-
tions. As scaling in processor speed has reached a limit,
multi-core solutions have proliferated. Not only does this
add a new dimension to scheduling, but the fundamental
principle that worst-case execution time (WCET) of ap-
plications can be estimated in isolation has been shaken.

In multi-core systems, major sources of unpredictability
arise from contention over shared memory resources. Re-
source partitioning techniques present a suitable approach
to mitigate temporal interference between cores [1]. These
solutions, however, are well suited only for systems where
data is not exchanged between cores.

Modern platforms generally feature a multi-level cache
hierarchy, with the first cache level (L1) comprised of
private per-core caches. When multiple threads access
the same memory locations, it is crucial to ensure the
coherence of different copies of the same memory block in
multiple L1 caches. Dedicated hardware circuitry, namely
the coherence controller, exists to maintain this invari-
ant. Because maintaining coherence requires coordination
among distributed L1 caches, it introduces overheads.

Cache coherence introduces two main obstacles for real-
time systems. First, hardware coherence protocols are
a preciously guarded intellectual property of hardware

manufacturers. As such, scarce details are available to
study the worst-case behavior for coherent data exchange.
Second, coherence controllers are designed to optimize
throughput and not worst-case behavior.

This paper proposes a new approach to achieve pre-
dictable time access to coherent data. The key intuition
is that if data accessed by multiple cores is cached only in
cache levels visible to all cores that access this data, all
accesses to the data are served by the same cache and data
coherence is trivially satisfied. Section II describes this
further. Control over caching is provided to the developer
and/or compiler. The contribution of this work is a
novel solution for predictable access time to shared data
by elimination of variability induced by cache coherence
mechanisms. A longer preprint of this work can be found
here [2].

II. Solution Overview

The main idea is to allow application developers or
compilers to use their knowledge of the application to
choose between the trade-offs of worst-case vs. average use
access time with fine granularity. The choice of cacheabil-
ity determines which level of caches can the data be cached
in and which levels of cache data cannot be cached. Data
locations for which strong worst-case latency guarantees
are required would be selectively cached in shared levels.
Data coherence is achieved as all accesses go to the
same cached copy of such data. Coherence overheads and
variability are avoided.
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Fig. 1. Generalized multi-socketed multi-cluster processor.

Consider a hypothetical system as shown in Figure 1.
For each core (C) consider a set M which consists of all
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memory blocks that are in its data pipeline. A memory
block can be a specific cache ($) or DRAM. For example:

M(C0) = {L1$0, L2$0, L3$0, DRAM} (1)
M(C1) = {L1$1, L2$0, L3$0, DRAM} (2)
M(C7) = {L1$7, L2$3, L3$1, DRAM} (3)

We propose that for any cache line which is assessed by
only a subset of cores, the cache line be stored/cached on
only the intersection of the sets M of these cores. Consider
a cache line accessed by Core 0 and Core 1. This cache line
can be stored in L2 Cache 0, L3 Cache 0 and DRAM but
not in L1 Cache 0 or L1 Cache 1.

M(C0) ∩ M(C1) = {L2$0, L3$0, DRAM} (4)

Consider another cache line that is accessed from Core 0
and Core 7. Based on our proposal this data block should
not be cached at all and be stored in DRAM only.

M(C0) ∩ M(C7) = {DRAM} (5)

Under these restrictions, explicit mechanisms to maintain
data coherence are not required. The restrictions should
be expressed at application level, possibly as granular as
a cache line, so hard real time applications can leverage
predictable access time to shared data, while non real time
applications running on the same system can enjoy the
higher throughput of hardware managed cache coherence
as they are not affected by the occasional spikes.

In reality, the closest existing support is cacheability
control for two cache levels expressed at memory page
granularity in ARVv8-A ISA, as further described in Sec-
tion IV-B. The implementation and evaluation are based
on an ARVv8-A processor simulator, Figure 5, and limited
to two cacheability levels.

III. Related Work
Multi-core systems have enabled multi-threaded real-

time workloads. Cache contention among parallel tasks
is a major cause of inter-core interference and execu-
tion time variability [3]. Mitigation approaches include
selective caching [4] and cache partitioning [5]. But strict
resource partitioning among cores is effective only for
independent tasks with scarce data sharing. In MC2 [6],
the authors acknowledge that data-sharing between tasks
is inevitable in mixed criticality multi-core systems. Our
work focuses on tightening and simplifying the analysis of
the WCET bound by making shared data accesses immune
to temporal effects of cache coherence controllers.

The problems introduced by data sharing in real-time
signal processing applications were studied in [7], which
demonstrate that the overhead from cache coherence pro-
tocols can severely diminish the potential gains from par-
allelism in multi-core systems. To address these problems
the works [7] and [8] disallow concurrent access of shared
data, but that only works at task level granularity and may
force idle times on processor. Predictable MSI [9] uses a

TDMA coherence bus and a modified coherence protocol
to remove variability. The solution is invisible to software
but imposes slowdown on all memory accesses and requires
major changes to hardware coherence controllers. MC2 [6]
avoided coherence effects by making the shared memory
uncacheable or restricting tasks with shared memory ac-
cesses to run on the same core. The scheduling option is
restrictive and like [7] may force processor idling. Extra
accesses to uncached memory, i.e. main memory, are slow
and can increase the WCET.

Our proposed solution does not impose any scheduling
restrictions on the application and does not burden it to
maintain coherence. It provides the developer freedom to
choose which data to cache where and tradeoff average and
worst-case performance. Our solution can be implemented
without any changes to hardware coherence controllers
and works with any coherence protocol. Minimal changes
to the cache controller’s logic are required.

IV. Background
This section provides background knowledge on cache

coherence and memory types in existing processors.

A. Cache Coherence
In traditional cache architectures, it is fundamental that

the contents of private levels of caches are kept coherent
across multiple cores. A hardware cache coherence con-
troller is present for this purpose. It ensures that any
valid copies of a cache line contain the same data. Cache
coherence controllers work by assigning additional states
to cache lines. MSI cache coherence protocol [10] with its
states and transitions is shown in Figure 2.

Shared state cache lines contain valid data that can be
read by the processor. Other caches may have the same
cache line in Shared state. Modified state cache lines can
be used to read or write data. Other caches cannot contain
this line in any valid state. Invalid state is the initial state
and identifies an unused cache line. A cache line transitions
between these state based on Self vs. Other load/store
(LD/ST) events, as shown in Figure 2. Here, Self refers
events generated by the the core under analysis. Evictions
are cache line replacements. Other refers to messages to
handle events generated by other cores.

B. Memory Types
A vast majority of modern multi-core embedded systems

are implemented using ARM architectures. We focus on
the latest major version ARMv8-A, extensively used in
current platforms. This includes recent versions of Nvidia
Tegra, Qualcomm Snapdragon and Samsung Exynos,
among others. There are 100+ mobile and embedded SoC
compliant with ARMv8-A Instruction Set Architecture
(ISA). In this architecture, a uniform physical memory
address space describes traditional memory resources (e.g.
DRAM space), as well as configuration space for on-chip
and external devices.
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Fig. 2. MSI States and Transitions

In order to adopt the correct caching policy for any given
memory region, the hardware allows specifying a set of
meta-data, or memory type, for each memory page. The
memory type specification informs the hardware of how
load/store operations within a given memory range should
be handled. Memory type attributes are encoded in each
virtual memory page table descriptor. In setting up virtual
memory, the OS is responsible for encoding the correct
memory type in the page table entry (PTE) of any portion
of memory being accessed.

ARMv8-A standard allows defining cacheability in the
memory type, i.e., whether or not a memory location
should be cached or not. There exist two cacheability
attributes: inner cacheability and outer cacheability. If a
memory region is marked as inner (resp., outer) cacheable,
its content can be cached in the inner (resp., outer) cache
levels. Our general solution would require an expansion
of the notion of cacheability levels, one for each cache
level. In this work, we focus on a memory types possible
within the current ISA [11]. Specifically, Table I defines
the memory attributes used throughout the paper. The
default memory type is Normal Cacheable. This type of
memory is cacheable at all levels of caches. The other
frequently used memory type is Uncacheable. This memory
type is typically used to describe I/O memory. We define a
new memory type: Inner Non Cacheable, Outer Cacheable
(INC-OC) and also address kernel support in Section
VI-A2. This type of memory is accessed by the processor
cores only. It is cached in all shared (outer) cache levels
but not cached in any caches private (inner) to any cores.
While ISA support exists, hardware implementations treat
INC-OC as Uncacheable memory. X86 and MIPS ISA
do not support granular cacheability control for different

cache levels and are hence not considered in this work.

V. Motivation
Cache coherence mechanisms are troublesome for hard

real time applications. The reasons are explored in this
section.

A. Coherence Complexity
Hardware cache coherence simplifies the development

of general purpose multi-threaded software. Many ap-
plications are served well by the transparent handling
of data coherence by the hardware. But for real-time
applications this creates another uncontrolled source of
unpredictability in their worst-case execution time. Cache
coherence protocols in SoCs are defined by vendors with
only the main stable states [12]. There are a plethora of
transient states in coherence state machines and many
low level details that impact the overall coherence state
machine operation [13]. This makes any analysis on ex-
isting cache coherence controllers difficult. Hard real-time
systems cannot be certified if they suffer from this kind
of unknowable behavior and execution variability. Our
approach of caching data only in selected cache levels
removes the cache coherence controller from the shared
data access process.

B. Coherence Cost
Cache coherence introduces a new dimension and source

of latency to cache behavior. Consider a 2 core processor
with 2 cache levels, each core has a private L1 cache and
a L2 cache that is shared between both cores. In this
example, the core attached to L1 Cache1 initiates a store
operation. This cache does not have the data block for
the Store, but L1 Cache2 has the data block in Modified
state. Cache2 has to invalidate its cache line and write
back the dirty data to the shared L2 cache. The L2 cache
can then send the data to L1 Cache1 which can finally
execute the Store. L1 Cache1 now contains the cache line
in Modified state. These series of events can lead to long
latency in executing a single memory access. We refer to
this situation as a Dirty Miss in this paper. Figure 3
illustrates this. The latency to handle a Dirty Miss can
far exceed the latency for a L2 cache hit.

C. Private vs Shared Access
In this section we discuss the difference between access-

ing Shared vs Private data on two real platforms. First, a
4 core ARMv8-A Cortex-A53 processor, and second a 14
core Intel Xeon E5-2658 processor.

TABLE I
Memory Types

Name Cacheability Description
Normal Cacheable Inner Cacheable, Outer Cacheable Data caching allowed in all caches
Uncacheable Inner Non-Cacheable, Outer Non-Cacheable Data caching not allowed
INC-OC Inner Non-Cacheable, Outer Cacheable Data caching allowed in Shared caches only
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Fig. 3. Transitions of a Dirty Miss

We developed custom benchmarks to study the effect
of cache coherence on real platforms. They measure the
average latency to complete a Load or Store to data
already present in L1 caches. All cores do the same
operations simultaneously. The resulting average latency is
a combined effect of single access latency, parallelization,
bandwidth contention and opportunistic hardware opti-
mization like prefetchers. Figure 4 shows the comparison
for private where each core accesses dedicated memory
ranges only vs shared data accesses. The accesses can be
reads, writes followed by reads or locks. The Lock latency
is the average latency to acquire and release a spinlock.
Spinlock implementation is below and uses gcc built-in
atomics. Once acquired, locks are immediately released.
Private locks are accessed only by one core and is included
only as a reference point. Shared locks are accessed by all
cores but since the locks are immediately released minimal
time is spent spinning on the lock itself.

l o ck : whi l e ( sync lock test and set(&lck , 1 ) ) {} ;
unlock : sync lock release (& l ck ) ;

Listing 1. Spin Lock and Unlock code snippets
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Fig. 4. Private vs Shared Access Latency

While exact overheads of cache coherence are hard to
measure on real platforms, it is evident that the latency
to access data is dependent on whether it is being shared
across different cores. The Load/Store measurements rep-
resent latency differences near full memory bandwidth
and hence the effect of coherence itself is diminished.
Locks on the other hand require that the underlying
micro-ops/instructions complete in order. Locks are hence
affected more by the overheads of maintaining coherence.

VI. Evaluation
The implementation and evaluation are based on

gem5 [14] hardware simulator. A system as shown in
Figure 5 is realized in the simulator. The implementation
and raw results are here1.

Fig. 5. ARM Cortex A-53 equivalent used for evaluation.

A. Implementation
1) Application: mmap is modified to accept additional

flags that are used by the kernel to determine the
cacheability of allocated pages. For example:
buf = mmap(0 , s i z e , PROT READ | PROT WRITE,

MAP SHARED | MAP INCOC, fd , o f f s e t ) ;

Listing 2. Sample memory allocation for INC OC memory type

2) Kernel: For an OS to provide the cacheability control
to the userspace application, two components are required:
first, APIs to allow applications to choose the memory
type, as shown above. Second, page table entries need
to be set up with the right value as defined by the ISA
to use the INC-OC memory type. We implemented both
these components for Linux ARM64. Linux kernel defines
6 memory types in arch/arm64/include/asm/memory.h.
The memory type field is 3 bit wide and hence two more
memory types can be defined without significant changes.
We defined one of the unused values as a new memory
type INC-OC. The kernel changes can run on any ARMv8-
A compliant platform and set the memory type bits for
INC-OC as defined in the ARMv8-A ISA, but the eventual
handling depends on the underlying hardware.

3) Caches: The cache controllers behave differently for
Normal and INC-OC memory type.

Normal Memory: The coherence for Normal Memory
type is maintained with the MSI protocol. Other protocols

1https://gitlab.engr.illinois.edu/rtesl/inc-oc
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can also be used. This cache coherence mechanism exists
in modern multicore systems and need not be modified.

INC-OC Memory: If a memory request is marked as
Inner Non-Cacheable the request is directly forwarded to
the L2 cache, bypassing the L1 cache hierarchy completely.
Since INC-OC data blocks are never cached in the private
L1 caches, multiple copies of the same data can not
exist in caches, therefore, no extra logic is required to
maintain coherence. Another change is to correctly handle
Load/Store exclusive (LDXR/STXR) instruction pair in
L2 Cache.

B. Worst Case Analysis
Evaluation I: Using a controlled execution mode of the

gem5 simulator [9], the worst case scenario for a memory
request is evaluated. A write request to the same address
is generated by all 4 cores, simultaneously. The address
was written to by one of the cores previously so the
corresponding cache line is in the dirty state in one of the
private caches. Figure 6 shows the timeline of the flow of
first write request and additionally the time to completion
of all write requests.

Observation: The total time to process the dirty miss
is 52% shorter for INC-OC memory. For all 4 write
requests the total time was reduced by 74%. At per
request level INC-OC memory type has a large reduction
in worst case access time.
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Fig. 6. Worst case write request contention

Evaluation II: Custom benchmarks are run within
Linux running over gem5 hardware simulator. Figure 7
shows the results of running the custom benchmarks dis-
cussed in Section V on the simulation setup.

Observation: Latency to acquire locks reduces by 85%
by the use of INC-OC memory type. Load and Store time
for INC-OC memory types increases. The forced ordering
of locking primitives makes the Lock benchmark sensitive
to latency only and hence coherence effects are observable.
In case of loads and stores the combined effect of band-
width and parallel handling of coherence of individual lines
makes INC-OC average access latency higher.

C. Average Performance Analysis
Evaluation: Run time for randomly selected SPLASH2

[15] benchmarks. For Normal all memory used is normal

cacheable. For INC-OC all shared memory locations that
can be written to by different cores are allocated as INC-
OC memory type. Figure 8 shows normalized results.

Observation: INC-OC memory type support does not
cause a general slowdown of the application. Note that
gem5 simulator aims to have deterministically repeatable
execution. Consequently the observed execution time vari-
ability is less than 1%.
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Fig. 8. SPLASH2 Benchmark evaluation.

VII. Future Work
In this work we assume that an application programmer

manually selects cacheability for each memory allocation
that requires limited cacheability. This creates manual
overheads and a higher cost of adoption of this process into
application development. So in future work we will present
a compiler extension for INC-OC. A compiler extension
can statically analyze the application, identifying memory
locations that are accessible by different cores in parallel.
The cacheability of these memory locations can then be
directly modified by compiler. Use of INC-OC would
become a compiler option while continuing to support
manual annotations by application developers.

VIII. Conclusion
This paper presents a solution for memory access time

variability caused by cache coherence mechanisms. INC-
OC memory type bypasses private caches, hence avoiding
coherence overheads and reducing memory request worst-
case access latency.
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