
MemPol: Policing Core Memory Bandwidth
from Outside of the Cores

Alexander Zuepke§ Andrea Bastoni§ Weifan Chen† Marco Caccamo§ Renato Mancuso†
§ Technical University of Munich, {alex.zuepke|andrea.bastoni|mcaccamo}@tum.de

† Boston University, {wfchen|rmancuso}@bu.edu

Abstract—In today’s multiprocessor systems-on-a-chip (MP-
SoC), the shared memory subsystem is a known source of tempo-
ral interference. The problem causes logically independent cores
to affect each other’s performance, leading to pessimistic worst-
case execution time (WCET) analysis. One of the most practical
techniques to mitigate interference is memory regulation via
throttling. Traditional regulation schemes rely on a combination
of timer and performance counter interrupts to be delivered
and processed on the same cores running real-time workload.
Unfortunately, to prevent excessive overhead, regulation can only
be enforced at a millisecond-scale granularity.

In this work, we present a novel regulation mechanism from
outside the cores that monitors performance counters for the
application core’s activity in main memory at a microsecond
scale. The approach is fully transparent to the applications on
the cores, and can be implemented using widely available on-
chip debug facilities. The presented mechanism also allows more
complex composition of metrics to enact load-aware regulation.
For instance, it allows redistributing unused bandwidth between
cores while keeping the overall memory bandwidth of all cores
below a given threshold. We implement our approach on a host of
embedded platforms and carry out an in-depth evaluation on the
Xilinx Zynq UltraScale+ ZCU102 platform using the SD-VBS.

I. INTRODUCTION

Homogeneous multi-core systems became mainstream in
the real-time embedded community about a decade ago.
From a predictability standpoint, these platforms came with
formidable challenges that have been the focus of a host of re-
search works [1]. But in many ways, such systems are already
obsolete. Modern embedded multiprocessor systems-on-a-chip
(MPSoC) embrace heterogeneity. This is necessary due to
the increasing adoption of data-intensive artificial intelligence
(AI) algorithms in embedded and safety-critical domains.
CPUs, GPUs, TPUs, on-chip programmable logic (FPGA),
and smart network interfaces (NICs) are some examples of
top-tier processing elements in current-generation MPSoCs.
Xilinx’s UltraScale+ and Versal [2], [3] or NVIDIA’s Jetson
AGX Xavier and Orin [4], [5] are among the most recent
examples of this trend.

Unfortunately, the explosion in heterogeneity has exacer-
bated the existing challenges related to the management of
shared memory hierarchy resources. One such challenge is
quality of service (QoS) driven regulation of main memory
bandwidth consumption from heterogeneous processing ele-
ments (PE). Software regulation of the memory bandwidth
based on monitoring of performance counters (PMC) has
received significant attention [6], [7] thanks to its wide appli-

cability to a broad range of MPSoC that are normally equipped
with performance counter units (PMU).

PMC-based regulation, however, comes with important
compromises. Most prominently, it is inherently CPU-centric,
because it relies on the ability to install and process PMC-
generated interrupts. Secondly, by design, it does not allow
to implement complex regulation policies accounting for both
per-PE activity and global system behavior. Worse yet, it is
challenging to define complex software regulation policies that
account for more than a single performance metric. This con-
trasts with the wide range of performance metrics exported by
modern platforms at multiple levels of their complex memory
hierarchy—e.g., at the level of PE [2], [8], interconnect [9],
and memory controller [10], [11]. Third, it forces to integrate
additional system-level software components at the OS [6] or
hypervisor level [10], [12], with the corresponding engineering
and performance overheads.

This paper stems from the question: Can memory band-
width regulation be enforced following a drastically different
approach? And, ideally, one that can achieve fine-grained
regulation, acceptably low overheads, and customizable reg-
ulation policies capable of capturing multiple nuances in the
performance of complex memory hierarchies.

In light of this goal, we propose MemPol: a novel approach
for memory bandwidth regulation that targets the aforemen-
tioned objectives. By exploiting the heterogeneous computing
elements of MPSoCs, MemPol adopts a low-overhead, polling-
based design that enables microsecond-scale memory band-
width regulation and monitoring. MemPol moves away from
interrupt-based regulation and relies on debug primitives to
control bandwidth consumption with minimum intrusiveness.
Furthermore, MemPol allows defining complex regulation
functions that combine contributions of multiple performance
counters. Thus, we make the following key contributions:
• A microsecond-scale memory bandwidth monitor based

on periodic polling of performance counters from “out-
side” of the cores. MemPol does not cause performance
degradation of the applications executing on the cores.

• A low-overhead memory bandwidth regulator that throt-
tles monitored cores using built-in on-chip debug facili-
ties without causing memory perturbations.

• Per-core memory bandwidth regulation using an on-off
controller design.

• The possibility to define software regulation profiles with
functions based on multiple PMC metrics.

• A combination of per-core (local) regulation and global
regulation of all cores to redistribute unused bandwidth
between cores, while keeping the overall memory band-
width below a given threshold.

MemPol’s regulation logic can be fully implemented outside
of the core-complex. Our regulator enables the unconstrained
use of the most powerful cores of a platform for application-
related workloads by dedicating e.g., energy-efficient, real-
time oriented cores to the management of the regulation logic.
Because MemPol leverages debug primitives, it can be ex-
tended to pause/resume the activity of PEs other than CPUs—
albeit our initial prototype is focused on CPU regulation.

As a proof of concept, we implemented MemPol on a Xilinx
Zynq UltraScale+ ZCU102 [2] platform that features four Arm
Cortex-A53 application cores and two Arm Cortex-R5 real-
time cores. MemPol is deployed on one of the Cortex-R5 cores
and regulates the application cores with 6.25 µs granularity.
Although questionably suitable for certified environments, we
have validated the practical feasibility of our debug-based
methodology (see Sec. IV-B) on multiple Arm-based boards
such as NXP S32G274 [13], Raspberry Pi 4 [14], and NXP
LX2160A [15]. Our evaluation showcases the ability of Mem-
Pol to enforce complex regulation policies, such as propor-
tional bandwidth redistribution, by monitoring a combination
of local and global bandwidth consumption. By instantiating
MemPol with legacy policies, we also compare its performance
overhead with state-of-the-art PMC-based regulation.

The rest of this paper is structured as follows. Sec. II
discusses limitations of MemGuard designs and proposes
alternatives. Sec. III presents the new regulator design, Sec. IV
its implementation, and Sec. V its evaluation. Sec. VI discusses
related work, and Sec. VII concludes.

II. BACKGROUND AND MOTIVATION

This section summarizes the key aspects of PMC-based
regulation—with focus on its most common variant, Mem-
Guard—and details the most important limitations of the
approach that constitute the motivation for our search for a
different approach to memory bandwidth regulation.

MemGuard regulates the maximum number of memory
transactions that cores are allowed to perform over a pre-
defined period of time (i.e., their memory bandwidth). Cores
are assigned a memory budget that is consumed when cores
perform memory transactions and that is periodically re-
plenished. Cores are idled when the budget is depleted. Its
implementation relies on three main features: (1) a memory
bandwidth monitor; (2) a mechanism to deliver regulation and
replenishment interrupts; and (3) a mechanism to idle cores.

Memory bandwidth is monitored using performance coun-
ters. Depending on platforms capabilities, implementations of
MemGuard have used PMCs from cores’ PMUs [7], [16] or
from the DRAM memory controller [10], [11]. Since overuti-
lization of memory controllers is detrimental to predictabil-
ity [10], hard real-time systems dimension the memory budget
allowed for regulated cores using the principle of maximum
sustainable bandwidth. That is the maximum bandwidth that

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 200 400 600 800 1000

S
lo

w
d
o
w

n
 (

ra
ti
o
)

MemGuard Regulation Period [µs]

timer and PMU interrupts
only timer interrupts

Fig. 1. Impact (slowdown) of MemGuard’s timer and regulation overheads
on a memory-intensive application as a function of the replenishment period.
Results are in line with other work [7], [11] and extended beyond 100 µs.

a memory controller can sustain under worst-case memory
workload, e.g., row misses in the same bank, without experi-
encing overutilization. When DRAM controller performance
counters are not available, determining this value requires
know-how of the target platform and non-trivial experimental
setups [16], [17].

MemGuard relies on the capabilities of the PMU to deliver
a regulation interrupt to a core upon budget depletion. When
such an interrupt is received, the core idles by either schedul-
ing a CPU-intensive high-priority task [7], [11], or by stalling
the core at the hypervisor level [10], [16]. One timer interrupt
periodically replenishes the budget and possibly unblocks the
regulated core.

Note that regulation at hypervisor level can only provide a
coarse regulation at core level, while regulation at OS level can
enable more fine-grained regulation at task level. However, the
latter also requires changes to the operating system. Although
MemPol could be extended to achieve tighter intergration with
the operating system and enable per-task regulation, in this
work, we focus on the lower-level mechanisms to implement
bandwidth regulation, and assume per-core regulation. We
defer further integration with the OS to future work.

A. MemGuard Limitations

Interrupt overheads. MemGuard delivers interrupts to a core
to signal both regulation and replenishment. Such an interrupt-
based approach generates an overhead that increases with the
frequency of the interruptions, i.e., with shorter replenishment
periods, or with smaller budget assignments. Interrupt over-
heads pose severe constraints on the enforcement of both small
memory budgets and short regulation periods.

As an example, Fig. 1 reports the overheads of timer
and regulation interrupts in our setup for the version of
MemGuard that we have used in our experimental comparison
(see Sec. V). The figure shows the slowdown of a memory-
intensive application1 as function of the replenishment period.
The budget is measured as the number of L2 cache refills.
Fig. 1 separately shows the impact of timer and regulation
(PMU) interrupt, and timer interrupts only. As shown, for

1bandwidth from the IsolBench testsuite (https://github.com/CSL-KU/
IsolBench).

https://github.com/CSL-KU/IsolBench
https://github.com/CSL-KU/IsolBench

short regulation periods (32 µs), MemGuard is affected by
extremely high overhead—up to 2.4 slowdown ratio. These
effects are in-line with previous studies [7], [11] that have
shown around 10% overheads for periods of around 100 µs.

Inherent pessimism. Although interrupt handlers normally
have minimum memory footprint, they generate memory trans-
actions that are reflected in the very same metrics monitored by
MemGuard. Precisely accounting for this interference is com-
plex, resulting in pessimistic worst-case bandwidth thresholds.

Single monitoring dimension. To reduce implementation
complexity and the number of interrupts, MemGuard monitors
only one memory consumption metric—e.g., cache write-
backs, cache refills, or memory controller utilization—at a
time.2 Store instructions on the cores result in higher memory
controller utilization than load instructions, because they cause
write-backs. Therefore, if only cache refills are monitored, the
worst-case scenario consists of a 1:1 ratio between refills and
write-backs [10]. But assuming so leads to overall memory
under-utilization. At the same time, regulation only based on
cache refills might not correctly take into account write-heavy
phases that do not generate linefills (see Sec. V-B).

Coarse regulation. Access to memory often results in bursts
of cache refills and transactions. To avoid excessive idling of
regulated cores and to smooth out the impact of such bursts,
MemGuard’s budgets and periods must be set to relatively
large values. Although beneficial to reduce the impact of
interrupt overheads, regulating over large periods results in
prolonged memory bursts [10] and in an uneven distribution
of memory bandwidth within the period. This complicates the
adoption of, e.g., automotive techniques [19] that use offsetting
to distribute the peak load of read-execute-write [20], [21]
workloads over successive periods. Moreover, as mentioned
in Sec. I, it can cause accelerators to receive less bandwidth
than their assigned quota.

B. An Alternative Regulation Design

Interrupt overheads and a non-flexible single-dimension
monitoring lead to severe compromises for MemGuard-based
systems. In particular, regulating using core-managed inter-
rupts (either for polling [10], [11] or regulation [7], [18])
cannot eliminate the overheads reported in Fig. 1.

An alternative to avoid interrupting useful computation on
the regulated cores is to exploit the heterogeneity of MPSoCs
and monitor the PMU counters from outside the core cluster,
e.g., using one of the many real-time cores available on such
platforms. However, while, e.g., on Arm platforms, per-core
performance counters are also accessible from outside of a
core (see Sec. IV-A), per-core PMU interrupts can only be
delivered to other cores on the same complex.3 Currently,
therefore, the only suitable design to perform PMC-based
regulation from the outside is to combine polling of PMU
counters with a control action to throttle (i.e., idle) the cores.

2In [18], cache refills and write-backs are considered in separated regula-
tions, but their memory contributions cannot be combined together.

3For GICv3-based systems, Arm recommends using local PPI interrupt 23.

Core 3

L1D L1I

Shared L2

Core 2

L1D L1I

Core 1

L1D L1I

Core 0

L1D L1I

PMU Dbg PMU Dbg PMU Dbg PMU Dbg

Bandwidth
Controller

Memory Controller

Interconnect GPUDMA

Fig. 2. MemPol architecture. Applications cores c0 to c3 are regulated by an
external controller logic that accesses the application cores’ PMU counters as
memory-mapped devices and that halts the cores via their debug interfaces.

To fully prevent interrupt overheads, the control action should
also be done from the outside and must not involve any
type of notification to the to-be-regulated cores. Furthermore,
a poll-based design enacts the simultaneous use of multiple
performance counters to perform regulation, while keeping
overheads constant.

Sec. III presents MemPol, a poll-based regulation design
that operates from outside the cores and regulates multiple
monitoring dimensions with low overhead.

III. MEMPOL – REGULATION FROM OUTSIDE THE CORES

The first objective of MemPol is to remove any overheads
from the cores to be regulated. This is achieved with a
design that operates from the outside of the target cores and
specifically (1) monitors the last-level cache (LLC) activity
by polling the cores’ PMU counters, and (2) uses a core-
independent interface (e.g., the CoreSight debugging interface,
see Sec. IV-A) to halt cores when they exceed their given
memory budget. The controlling logic of MemPol can be
implemented on one of the application cores, on a smaller
companion core, e.g., Cortex-M and Cortex-R cores, or even
in an FPGA. Fig. 2 presents the architecture of MemPol.

The second objective of MemPol is to enable a multi-
dimensional regulation based on the combined contribution
of multiple PMU counters, without impacting overheads. In
particular, we consider the accumulated read and write activity
of a core, i.e., the sum of last-level cache misses and write-
backs (Sec. III-A). Since the controller polls PMU counter
values, within a polling period, cores can generate a high
number of transactions—thus potentially overshooting their
assigned budget—that can be only accounted for in the next
polling instant. To contrast overshooting effects, MemPol has
a short polling period P in the microsecond range (Sec. III-B).

Compared to MemGuard, MemPol realizes a different regu-
lation logic that does not periodically replenish cores’ budgets.
Instead, regulation is enacted every polling period P via an
on-off controller logic (Sec. III-C) that can idle cores for time
intervals as short as P . As programs show different behav-
ior during their execution, i.e., memory-intensive phases vs.
computation-intensive phases, we limit the burstiness of mem-
ory accesses using both a sliding window method (Sec. III-D)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000
 0

 20

 40

 60

 80

 100

 120

 140
M

e
m

o
ry

 A
c
c
e

s
s
e

s
 [

6
4

 B
 C

a
c
h

e
lin

e
s
 i
n

 6
.2

5
 µ

s
]

%
 S

u
s
ta

in
a

b
le

 B
a

n
d

w
id

th

Time [µs]

MemPol (raw)
MemPol (avg)

MemGuard (raw)
50% bandwidth

Fig. 3. Comparison of the regulation behavior of MemPol (polling at 6.25 µs,
sliding window size 50 µs) and MemGuard (regulation period 1 ms) on
ZCU102 regulating a worst-case memory reader at 50% sustainable memory
bandwidth. In both cases, PMU counters are sampled every 6.25 µs. For
MemPol, the average over 200 µs is also shown for better visualization of
its resulting regulation. In the given example, both mechanisms achieve the
same regulation results over longer time spans. MemPol just regulates faster.

and a combined strategy to account for non-memory-intensive
phases (Sec. III-E). Overall, cores can experience multiple
on/off transitions during the length R of the sliding window,
but can also idle for periods longer than R due to overshooting
under small bandwidth-regulation (Sec. III-F).

As an example of the low-overhead, high-resolution capa-
bilities enabled by the MemPol design, we implement two reg-
ulation strategies that operate at microsecond scale: (i) a local
per-core controller that regulates a core’s memory bandwidth
w.r.t. a given local per-core budget independently for each
core, and (ii) a global controller that redistributes unused
bandwidth to demanding cores, but keeps the overall band-
width of all cores below a given global budget (Sec. III-G).
Contrary to the complex interactions among cores that would
be needed to realize a global controller under MemGuard, our
global controller relies on the poll-based regulation and only
requires minimal additions compared to the local one. Fig. 3
gives an overview of the fine-grained actions performed by
MemPol in comparison to the coarse-grained ones used by
MemGuard. (See Sec. V-A for details.)

A. Regulation Cost Model

Assuming a system comprising a set of cores C, we model
a core ci’s performance counters for read and write accesses as
functions over time PMUr

i (t) resp. PMUw
i (t), which return

non-decreasing integer values that relate to memory accesses.
We introduce the coefficients αr and αw to account for
different impacts that reads and writes have on the saturation
level of the memory subsystem.4 We then sample the PMC
values every P time units and aggregate the memory activity as
a monotonic function Ai(t) = αrPMUr

i (t) + αwPMUw
i (t).

The memory bandwidth that can be extracted from the mem-
ory controller highly depends on the memory access patterns
and can deviate between best-case and worst-case scenarios
by an order of magnitude or more. Previous experiments
have shown that in best-case conditions like linear memory
accesses the cores are the limiting factor, while in worst-case

4For example, in flash memory, reading is much faster than writing.

conditions like continuous row-misses the memory controller
becomes a bottleneck [10]. Given our real-time focus, the
cost model for regulation is based on the sustainable memory
bandwidth Bsustainable, i.e., the minimum bandwidth that can
be extracted by all cores in parallel in worst-case scenarios. We
can therefore assign a fraction of the sustainable bandwidth to
each core ci as Bi,

∑
j∈C Bj ≤ Bsustainable. The maximum

allowed number of aggregated accesses to stay within the
budget limits during time P is Abudget

i = Bi ∗ P .

B. Overshooting

In MemGuard, a PMU triggers an interrupt whenever a
core exceeds its budget. Instead, a polling controller samples
PMCs periodically and can only detect budget overruns for the
previous period P . This might results in overshooting the tar-
get budget. Under real-time constraints, overshooting is even
exacerbated. In fact, the regulation is based on the sustainable
worst-case bandwidth and not on the real memory utilization
at the memory controller, which can handle peak best-case
bandwidths much higher than the ones used for regulation
(see Sec. IV-D for the ZCU102). We characterize the peak
bandwidth that can be accessed by a single core as Bpeak−core
and use the factor β = Bpeak−core/Bsustainable to express
overshooting in relation to Bsustainable. We further use the
factor βi = Bpeak−core/Bi to describe the overshooting of a
core ci in relation its configured bandwidth target Bi.

A second contributing factor to overshooting is delays in the
control path between observing that a core has exceeded its
bandwidth budget and the point where a core stops issuing
further memory requests. We denote this delay as D and
express the overshooting by a factor δ = D/P to the length
of the polling period P . The product βi(1 + δ) describes the
worst-case overshooting when a core ci accesses memory at
peak bandwidth and exceeds its budget at the beginning of P .

C. On-Off Controller as Bandwidth Limiter

To regulate a core ci at time t > t0, MemPol derives a set-
point spi(t, t0) = Ai(t0)+ b t−t0P cA

budget
i based on the core’s

memory accesses Ai at time t0 and its configured budget.
Using an on-off controller, MemPol halts a core if Ai(t) >
spi(t, t0), and let the core run (again) if Ai(t) ≤ spi(t, t0).
At each P , the core’s set-value budget is increased by Abudget

i .

D. Sliding Window Technique to Control Burstiness

Real-time programs tend to access memory in burst. For
example, after long idle or computation phases with few
memory accesses, a program might access data again to
prepare for the next iteration. The yellow gradient line in Fig. 4
depicts such a burst. Since the on-off controller from Sec. III-C
uses as point of reference t0 = 0, it includes the non memory-
intensive phase (green gradient line in Fig. 4) of the core. This
would allow the core to run and access memory even during
the burst at time t = 8, which is instead potentially detrimental
for the real-time guarantees of other cores.

We therefore cap the budget of a core by “forgetting” the
core’s unused bandwidth and limit the core’s burstiness with a

t
1 2 3 4 5 6 7 8

current
budget gradient
(set-point curve)
relative to start

of sliding window

window size w

109
t-wP t t+2

previous
budget gradient
(set-point curve)

relative to t
0

0

wAbudgetA
cc

es
se

s

t
0

Fig. 4. Sliding window technique. At time t=8, the burst (yellow gradient)
is within a previous budget gradient from time 0 (green gradient), but not
within the current budget gradient at the start of the sliding window at time
5 (blue gradient). Based on its recent history in (t − wP, t) (red box), the
core will be rate-limited for at least two periods in (t, t+2). See Sect. III-D.

Algorithm 1: Controller implementation (Sec. III-E)
1 input:
2 Abudget

i C budget, number of memory accesses
3 w C history size, equal to size of sliding window
4 αr , αw C weight-factors for reads and writes

5 init:
6 hist[0..w−1] = αr ∗ pmcr + αw ∗ pmcw C history data
7 i = 0 C position in history data, 0..w−1
8 tlrt = w C time since last rate-limited, initially not
9 spvlrt = undef C set-point value at start of rate-limiting

10 loop:
11 if tlrt < w then C rate-limited mode
12 tlrt = tlrt + 1 C age rate-limiting
13 spv = spvlrt + tlrt ∗ Abudget

i C spv from start of r.-lim.
14 else C non rate-limited mode
15 spv = hist[i] + w ∗ Abudget

i C spv from start of sl. win.

16 val = αr ∗ pmcr + αw ∗ pmcw C read PMCs
17 delta = val - spv C signed delta value, integer overflow
18 if delta > 0 then C PMC above set-point value, throttle
19 tlrt = 0 C (re-)start aging of rate-limiting
20 spvlrt = spv C further budgeting based on spv
21 hist[i] = spvlrt C update history, rate limited
22 throttle() C halt core if running
23 else C PMC below set-point value, resume
24 hist[i] = val C update history with current value
25 resume() C resume core if halted

26 i = (i + 1) MOD w C next position in history data

sliding window of w polling periods. At time t, we use t−wP
as start of the window, and derive a new budget gradient (the
blue gradient line in Fig. 4). We then move the window to the
right each polling period (the red box in Fig. 4).

E. Resulting Combined Control Strategy

MemPol’s controller combines strategies III-C and III-D
depending on the behavior in the previous w polling periods.
Not rate-limited. A sliding window (Sec. III-D) tracks the
behavior of a core ci if at time t is has not exceeded its budget
wAbudget

i for at least the last w polling periods. In each period
P , the reference point t0 of the budget gradient is moved to
the current start of the sliding window.
Rate-limited. The first time core ci exceeds its given budget
wAbudget

i at time t, the reference t0 of the sliding window is

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25

B
lo

c
k
in

g
 T

im
e

 [
µ

s
]

Overshooting Factor at 6.25 µs Polling Period

10%
15%
20%
25%
30%
35%
40%

Fig. 5. Overshooting in relation to Bsustainable by a certain factor (x axis)
and the resulting blocking time (y axis) for different bandwidth levels (%)
in a regulation at 6.25 µs. Lower bandwidth levels observe higher blocking
times. The maximum observed overshooting in relation to Bsustainable on
the ZCU102 is factor 15.1 (dotted vertical line), see Sec IV-D.

frozen at t0 = t − wP , and the on-off controller (Sec. III-C)
regulates ci until its budget returns below the budget gradient
rooted in t0 for at least w polling periods.

Alg. 1 presents the resulting controller implementation,
which stores in hist[] the last w values of Ai(t) and tracks in
tlrt (aging counter) the last time that the budget was exceeded.
tlrt also defines the current control mode (0..w−1 rate-limited,
w not rate-limited). While in rate-limited mode, the variable
spvlrt tracks the set-point value of the budget gradient.

The controller starts in not rate-limited mode and initializes
the history data with current PMC values (L. 6–9). In each
iteration of the control loop, a current set-point value spv is
calculated depending on the current controller mode. In rate-
limited mode, the controller ages tlrt and derives spv (L. 11–
13) from the variable spvlrt set at the start of rate-limiting
(L. 20). Otherwise, spv is set to the history value at the start of
the sliding window (L. 15). Afterwards, the controller samples
the current PMC value (L. 16). If the PMC value is above
spv, the controller enters rate-limiting mode (L. 19–22): it sets
tlrt = 0 to keep the controller in rate-limited mode for at least
the next w loops and it throttles the core. The current spv is
copied into spvlrt and defines the base for further budgeting.
spv is also stored in the history data to keep the burst bounded.
Once active, if rate-limited mode is entered multiple times, the
budget gradient established by spvlrt remains constant. When
PMC values drop below spv, the controller resumes the core
and updates the history data (L. 23–25).

F. Setting Regulator’s Budgets

Under MemPol’s regulation strategy, the amount of time that
a core ci is throttled depends on “how-much” it overshoots its
budget Bi, which is accounted for in βi. The resulting worst-
case blocking time of ci is therefore βi(1+δ)P . Fig. 5 visual-
izes such blocking times as function of the overshooting factor
normalized to Bsustainable. For example, if core ci overshoots
Bsustainable by factor 10 (Bpeak−core = 10 × Bsustainable)
and has an assigned budget Bi of 10% of Bsustainable, it
will be halted for at least 100 polling periods. With a polling
period of 6.25 µs (see Sec. IV-D), this corresponds to 625 µs
blocking time. The maximum overshooting factor normalized

to Bsustainable observed in our experiments was β = 15.1 on
the ZCU102 (see Sec. IV-D).

Under MemGuard regulation instead, the blocking time is
constant and upper-bounded by the length of a replenishment
period. In practice, though, the blocking time of MemGuard
can be even higher than MemPol’s, since the typical regulation
period of MemGuard is 1 ms.

G. Combined Local Per-Core and Global Regulation

The logic presented in Sec. III-A–III-E implements local
per-core controllers that are independent of each other. How-
ever, the polling-based regulator can be easily extended to
implement a global controller that uses the same regulation
logic, but observes the sum of the memory accesses of all
cores and the sum of all budgets. We note that, contrary
to MemGuard-based regulation, the global controller can be
implemented alongside the local one and does not require
complicated interaction among cores.

The control decision of the global controller to halt or
run cores impacts the local per-core controllers as follows:
• per-core controller=run B run
• per-core controller=halt ∧ global controller=run B run
• per-core controller=halt ∧ global controller=halt B halt

The global controller overrides a per-core controller deci-
sion only if the previous bandwidth demand of all cores was
below the configured budget. Additionally, the global con-
troller updates per-core controller’s t0 to t, thus forcing cores
to acknowledge the actual used bandwidth and preventing
penalties due to the overriding forced by the global controller.
The redistribution scheme stops as soon as the bandwidth
demand increases.

H. Regulator Sliding Window Size Settings

The regulation model allows for different sliding window
sizes w and bandwidth settings B for the per-core and the
global controller. An assignment is valid as long as wglobal ≤
maxj∈C(wj) and

∑
j∈C Bj ≤ Bglobal.

Setting per-core wi value is particularly sensitive to the
burstiness of applications executing on core ci. Although an
actual value should be derived from the temporal behavior
of the regulated applications, Sec. III-D hints to the possible
compromise of limiting the budget during a burst to wiA

budget
i ,

and the time the regulator “forgets” previous bursts to wiP .
On the global-controller side, one would intuitively try to set

the wglobal to a very small value. But as the global controller
has no influence on the distribution of memory bursts on the
cores and the decisions of the per-core controllers, a small
wglobal value would not result in a better regulation than setting
wglobal to similar values as for the per-cores controllers.

In this paper, we opted to use the same w value for all
per-core and the global controller and leave an evaluation of
different w trade-offs for future work.

IV. IMPLEMENTATION

Before explaining the main components of MemPol, we
briefly summarize the relevant features of the Xilinx Zynq
UltraScale+ ZCU102 SoC [2] that has been used for our

prototype. The ZCU102 includes four Arm Cortex-A53 ap-
plication processor (AP) cores and two Arm Cortex-R5 real-
time processor (RP) cores. The AP cores are connected to
the full-power domain and feature private L1 caches and a
shared L2 cache (LLC). The RP cores are connected to the
low-power domain and have access to private tightly-coupled
memories (TCM). An Arm CCI-400 acts as a central cache-
coherent interconnect between low- and full-power domains
and the main DDR4 memory controller.

Arm defines a common infrastructure (CoreSight) for hard-
ware debugging of its cores [22]. CoreSight defines registers
of memory-mapped debug devices on a low-bandwidth APB
bus that can be accessed through a debug access port (DAP).
The CoreSight infrastructure is available on the ZCU102 and it
is also present on most boards featuring A57 and A72 cores.
To debug devices connected to CoreSight, the typical setup
comprises per-core debug interfaces, PMCs, trace interfaces,
cross trigger interfaces (CTI), and a shared cross trigger
matrix (CTM) [8], [23]. The CTI is normally used by an
external hardware debuggers to halt and resume cores, while
the debug interface provides access to the core’s internal state.
The CTM connects instead input and output signals from the
CTI and allows halting multiple cores on a debug event in
a synchronized manner. Similarly, information provided by
PMCs can also be controlled.

A. Exploiting Memory-Mapped Debug and PMU Registers

In the standard workflow to halt a core via the memory-
mapped CTI registers, a debugger triggers the debug request
input of the core. The core eventually enters debug halt state.
Before a new request can be sent, the debugger acknowledges
the previous debug request, then polls the CTI to ensure that
the previous request has been properly de-asserted. To resume
a core, a debugger must trigger a debug restart signal via the
CTI. The core automatically acknowledges this request.

MemPol mimics the behavior of a debugger and appro-
priately manipulates the CTI debug registers to stall and
restart cores. After initial programming, each halt and resume
request requires a single write transaction to the CTI’s registers
and the acknowledgment of previous debug requests. We
discovered experimentally that polling for previous requests
is not required if there is a sufficient delay between writes to
acknowledge and resume registers.

To monitor the PMCs, the PMU register interface provides
full access to all six performance counters of a core. After
initialization, reading a PMC requires a single read transaction.

The setup of CTI and PMU requires taking ownership of
the debug interface by disabling software lock registers and
then configuring the devices. The Arm architecture defines
an authentication interface of four signals for invasive / non-
invasive debugging in secure / non-secure execution state. Both
CTI and PMU require invasive resp. non-invasive debugging
of non-secure execution state (DBGEN, NIDEN) to be enabled.
Regulating secure applications is out of scope for this work.5

B. Accessing Debug and PMU Registers
Internal overhead: In our experiments, accesses to a core’s

memory-mapped PMU registers in a tight loop from a second
core show no measurable impact on the performance on the
first core. This allows for interference-free remote monitoring.

External overhead and applicability: The memory-mapped
CTI and PMU registers are connected through a low-
bandwidth APB bus that allows only one outstanding transac-
tion [25]. We measured the access time from the main cores to
CoreSight registers on multiple platforms and asserted the pos-
sibility to stop/resume cores using the debug interface. When
accessing CoreSight registers on the ZCU102, we measured
a mean overhead for reading/writing of 303/213 ns from the
A53 cores and of 274/216 ns from the R5 cores. Likewise,
we measured 450/257 ns on an NXP S32G274 [13] (Cortex-
A53), 135/122 ns on a Raspberry Pi 4 [14] (Cortex-A72) and
374/366 ns on an NXP LX2160A [15] (Cortex-A72). Note that
the full regulation has only been implemented and evaluated
on the ZCU102. Compared to using an uncached strongly-
ordered mapping, mapping registers as shared device (so cores
do not need to wait for transactions to complete), significantly
speeds up write operations. The reported measures have been
performed on systems that were otherwise idle during testing.
Instead, while stressing the memory subsystem in parallel to
the tests, we observed that latencies on our ZCU102 increase
up to 1146/643 ns for access from the A53 cores.6

C. MemPol Regulator
We implemented the regulator on the first Cortex-R5 core.

The regulator exposes a memory-mapped interface in the
TCM of its core. Following the design of hardware registers,
the interface comprises status and control registers. After
booting, a main loop polls the control registers and updates
status registers periodically. The interface also exposes the full
internal state of the four per-core controllers and the global
controller with history buffers of up to 128 entries. For tracing
purposes, we used the TCM of the second R5 core as a trace
buffer to record PMC values.

When enabled, the regulator first programs the last two
PMCs of each core (events 0x17 L2 data cache refill, 0x18 L2
data cache write-back), initializes the regulator, and starts the
control loop. In each iteration of the control loop, the regulator
(1) reads the two PMU counters of each of the four AP cores;
(2) takes control decisions for each core based on the per-core
and the global controller settings; (3) halts, resumes, or leaves
the core’s state unchanged; and (4) waits for the start of the
next control loop period.

5Monitoring and throttling in secure execution state (TrustZone) is enabled
by SPIDEN and SPNIDEN signals. This allows to separate secure from
non-secure workloads down to the hardware level, but also requires a security
concept for all components in an SoC. See [24] for further details on the
security impact of on-chip monitoring and debugging facilities. Note that
MemGuard faces similar challenges in setting up PMU counters to monitor
secure applications from a non-secure hypervisor or operating system.

6This hints to bottlenecks at the interconnect level between the A53 cores
and the CoreSight registers that we would like to investigate in future work.
Accessing the CoreSight registers from the R5 cores shows lower latencies, as
the transactions take a different path and stay in the SoC’s low-power domain.

To give cores sufficient time to acknowledge a previous
halt request before resuming, we spread the sequence of halt-
ing/resuming a core (three memory transactions with delays)
as either two CTI transactions in the halting case (trigger halt
+ trigger nothing) and two CTI transactions in the resume
case (acknowledge + trigger resume). If a core’s state is
unchanged, we perform two dummy writes to the CTI trigger
register. We further interleave each CTI access with accesses
to all other cores’ states. Such patterns ensure that cores
can fully halt (resp. resume) their activities in parallel to the
remaining execution of the control loop and the reading of
the PMU registers (in the next loop iteration). In fact, our
experiments showed that, after sending the halt signal, cores
do not immediately stop, but remain active for some time
in the presence of outstanding memory transactions. In an
experiment where an A53 core sends a halt signal to itself and
then monitors a timer to detect when it eventually halts, we
observed a maximum delay of 320 ns by adding read-modify-
write operations (store byte) to cold cachelines before and after
the halt request. The core was able to emit up to 8 further read-
modify-write operations after sending the halt. This number
matches the 8 outstanding linefills per core documented for the
L2 memory subsystem of the Cortex-A53 core complex [23].
Since all four cores can have outstanding transactions, we
assume the worst-case halt delay to be at most 1.5 µs. In our
experiments, we observed a delay of around 1 µs.

The implementation—standard 32-bit integer arithmetic and
multiplication—requires 7 KB Arm code (kept in TCM, with
2.6 KB code for formatted console output), 3 KB of data
(controller state in TCM) and a 1 KB stack (also in TCM).

Overall, the 16 transactions to CoreSight registers—i.e.,
eight to read PMU counters and eight to throttle cores—
dominate the execution time of the controller. Profiling showed
that the execution of the control loop takes between 4.8
to 5.2 µs. We experimentally observed that using a DSB

instruction at the end of the control loop reduces jitter, as
the R5 core flushes any outstanding writes to CTI registers
before starting a new round and reading from the PMU. In
our benchmarks, the control loop never reached the worst-
case overheads observed on the A53 cores in Sec. IV-B: we
hypothesize that the smaller amount of accesses and the DSB

at the end of the control loop prevent changes in the priority
of the traffic at interconnect level. Overall, we add a safety
margin to the observed values and set the period of the control
loop to 6.25 µs.

D. Cost Model on ZCU102

Using the USTRESS benchmark [10], we observe a sus-
tainable memory bandwidth of Bsustainable ≈ 1000 MB/s
(954 MiB/s) for both reading and writing on the ZCU102. In
the cost model of the controller, this translates to 97.656 cache-
lines of 64 B per 6.25 µs period with weight-factors αr =
αw = 1 for both reading and writing.7 Assuming instead

7The implementation uses a factor of α = 1000 and a budget of 97656
cachelines per loop to compensate any loss of precision in the decimal places.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000
 0

 50

 100

 150

 200

 250
M

e
m

o
ry

 A
c
c
e

s
s
e

s
 [

6
4

 B
 C

a
c
h

e
lin

e
s
 i
n

 6
.2

5
 µ

s
]

%
 S

u
s
ta

in
a

b
le

 B
a

n
d

w
id

th

Time [µs]

L2 refills (reads)
L2 write-backs (writes)

Average

Fig. 6. Polling regulation at 6.25 µs of a core at 50% sustainable memory
bandwidth. The core performs three series of four different memory access
patterns every 250 µs: four read patterns, four write patterns, then four modify
(read-write) patterns. The overall number of memory accesses is the same each
time, but peak-behavior increases within a series. 200 µs averages.

linear memory accesses, the peak memory bandwidth is
Bpeak−core,r = 4240 MB/s for reading and Bpeak−core,w =
8162 MB/s for writing. This results in an overshooting factor
β = max(Bpeak−core,r, Bpeak−core,w)/Bsustainable = 8.16,
or peaks of up to 797 cachelines in 6.25 µs.

Lastly, we assume a maximum poll-control delay D = 4 µs
in the P = 6.25 µs control loop, i.e., around 2.5 µs between
reading a core’s performance counters and signaling the debug
halt plus a delay of 1.5 µs until a core halts, resulting in
a control delay factor of δ = D/P ≈ 2

3 . The maximum
overshooting factor in relation to Bsustainable we expect the
controller to handle is therefore a factor of β(1 + δ) = 13.6.
Note that, since the exact moment when a core stops after
signaling debug halt is unknown, β is an approximation of
the overshooting. Our experiments showed peak outlier PMC
values of 695 refills, 893 write-backs, or 1479 for the com-
bined counter values, which results in factor βobserved = 15.1
slightly above the computed β.

V. EVALUATION

We evaluate MemPol on the ZCU102 platform. The regula-
tor runs bare-metal on the R5 core and is independent of the
operating system on the application cores. It is loaded during
system startup as part of the boot loader configuration, and it
remains inactive until the benchmarks configure its parameters
and start it. The regulator polls PMU counters every 6.25 µs
and using a default sliding window size w of 8 entries (50 µs).

We evaluate the details of MemPol’s regulation with a set of
experiments on a lightweight RTOS, which allows full control
of cores activities and of the physical memory layout. We have
implemented MemGuard on the RTOS for low-level compar-
isons with MemPol. Furthermore, we perform a comparison
of MemPol and MemGuard from [18] on Linux (PetaLinux
2021.1, Linux 5.4 kernel) using the San Diego Vision Bench-
mark Suite (SD-VBS) [26]. In the SD-VBS, we hook into
photonStartTiming() and photonEndTiming() to mea-
sure execution times and to precisely coordinate the start of the
regulation. The plots in this section show the aggregated core’s
L2 cache activity over time as memory accesses (number of

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000
 0

 20

 40

 60

 80

 100

 120

 140

M
e

m
o

ry
 A

c
c
e

s
s
e

s
 [

6
4

 B
 C

a
c
h

e
lin

e
s
 i
n

 6
.2

5
 µ

s
]

%
 S

u
s
ta

in
a

b
le

 B
a

n
d

w
id

th

Time [µs]

Core 0 @ 10%
Core 1 @ 20%
Core 2 @ 30%
Core 3 @ 40%

Average all cores

Fig. 7. MemPol regulates cores at different bandwidth levels: c0 worst-case
reader at 10%, c1 worst-case writer at 20%, c2 peak reader at 30%, c3 peak
writer at 40%. Polling 6.25 µs. 50 µs sliding window size. 200 µs averages.

cachelines) and as the percentage of the sustainable bandwidth.
Averages over t-100 µs to t+100 µs are shown as thick lines.8

A. Per-Core Regulation

We first present experiments of the per-core regulation based
on both read and write access measurements. The test applica-
tions generate different memory access patterns. The patterns
differ in the access type (loads, stores, or modifications of
full cachelines) and in the stress they cause in the memory
controller (worst-case accesses or linear accesses).

Fig. 3 shows a worst-case reader regulated by both Mem-
Guard and MemPol. In both cases, we can observe the
number of L2 cache refills matches the worst-case of ap-
prox. 97 cachelines per 6.25 µs. The worst-case readers use
PRFM PLDL1KEEP instructions to prefetch data to the L1 cache
instead of using normal loads. This removes any dependencies
in the core’s pipeline to wait for the loaded data.

Focusing on MemPol only, Fig. 6 shows different memory
access patterns changing every 250 µs on a core regulated at
50% of the sustainable bandwidth. Starting from the left, the
application first performs worst-case loads (each load causes
a bank switch) for 250 µs. In the subsequent ranges of 250 µs
each, the test performs 2, 4, and 8 memory accesses to the
same bank before switching bank. In the next four ranges,
the application repeats the same patterns, but with stores to
whole cachelines instead of loads, thus ensuring that cache-
lines bypass the cache (write-through). Finally, the application
does read-modify-write accesses to cachelines. The number of
memory accesses is the same in each test, but the latencies at
the memory controller differ. Fig. 6 shows three main trends.
(1) Linear memory accesses are handled faster than worst-
case ones. (2) As expected, higher overshooting corresponds
to longer idle times. (3) Buffering of write transactions causes
more frequent and higher spikes than reads. We also note that
a variation of the worst-case load pattern starting at 250 µs
generates higher overshooting than peak accesses at 750 µs.

Fig. 7 shows the behavior of MemPol in simultaneously
enforcing different bandwidth levels. Here, cores c0 and c1 at
10% (20%) levels perform worst-case reads (writes—to whole

8A moving average of 200 µs proved to be a good trade-off to show the
regulation trends even in case of overshooting.

 0

 50

 100

 150

 200

 250

 0

 50

 100

 150

 200

 250
(a) L2 refill

 0

 50

 100

 150

 200

 250

 0

 50

 100

 150

 200

 250
(b) L2 write-back

M
e

m
o

ry
 A

c
c
e

s
s
e

s
 [

6
4

 B
 C

a
c
h

e
lin

e
s
 i
n

 6
.2

5
 µ

s
]

%
 S

u
s
ta

in
a

b
le

 B
a

n
d

w
id

th

 0

 50

 100

 150

 200

 250

0 100000 200000 300000 400000 500000 600000
 0

 50

 100

 150

 200

 250
(c) L2 rf+wb

Time [µs]

Fig. 8. 200 µs averages of PMCs of a run of tracking in VGA resolution.
The graphs show (a) L2 refills, (b) L2 write-backs, and (c) combined L2 refills
and write-backs. MemGuard regulates based on (a), MemPol based on (c).

cachelines), while cores c2 and c3 at 30% (40%) levels perform
linear reads (writes). Overall, the cores meet their average
bandwidth targets, despite the visible overshooting of cores
c2 and c3. Note the quite regular distance between spikes for
the individual cores, and that the height of the spikes relates
to the memory access pattern.

B. Regulation based on L2 Data Cache Refill and Write-Back

As mentioned in Sec. II, the single monitoring dimension
used by MemGuard may lead to memory under-utilization and
may not correctly account for e.g., write-heavy behaviors. By
monitoring multiple dimensions at once, MemPol can instead
overcome these limitations as shown in this experiment that
measures the impact of L2 cache write-backs on the regulation
model (Sec. III-A). For this, we record the PMU counters for
a full unregulated run of the tracking SD-VBS benchmark.
Fig. 8 shows the sampled L2 cache refill and write-back
counters. After initial preparation (up to approx. 180 ms), the
benchmark starts to track objects in four consecutive images
for about about 100 ms each.

The bandwidth reported by the L2 cache refill counter
(Fig. 8 (a)) shows that the bandwidth stays mostly below the
25% mark during the execution, with one larger and four minor
spikes beyond the 50% mark. This is the data that MemGuard
uses for regulation. In contrast, when also monitoring the L2
cache write-back counter, Fig. 8 (b) shows that the benchmark
typically consumes between 10 to 15% of the bandwidth, but
causes many frequent write-peaks beyond the 200% mark.
Fig. 8 (c) shows the combined L2 cache counters that are used
by MemPol-regulation following the cost model in Sec. III-A.
We see that the overall bandwidth demand accumulates and
sometimes exceeds the 250% mark.

Compared to MemGuard, MemPol can precisely track the
write behavior and correctly account for the previous state of
the L2 cache. Instead, to correctly regulate, MemGuard must
make pessimistic assumptions on the write behavior, or must
use statistical information obtained by prior profiling [10].

C. Impact of Sliding Window Size

Fig. 9 compares three regulated runs of the tracking SD-
VBS benchmark at 20% sustainable bandwidth with different
settings for w focusing on the first write peak at around

 0

 50

 100

 150

 200

 0

 50

 100

 150

 200

w = 8 (50 µs)

 0

 50

 100

 150

 200

 0

 50

 100

 150

 200

M
e

m
o

ry
 A

c
c
e

s
s
e

s
 [

6
4

 B
 C

a
c
h

e
lin

e
s
 i
n

 6
.2

5
 µ

s
]

%
 S

u
s
ta

in
a

b
le

 B
a

n
d

w
id

th

w = 16 (100 µs)

 0

 50

 100

 150

 200

55000 60000 65000 70000 75000
 0

 50

 100

 150

 200

Time [µs]

w = 32 (200 µs)

Fig. 9. Three runs of tracking in VGA resolution regulated at 20%
sustainable memory bandwidth. The graphs detail the first write peak (Fig. 8
at around 45 ms) for different sliding window sizes of 50 µs, 100 µs and
200 µs. Larger sliding window sizes allow the benchmark to reach the peak
earlier, i.e., at around 60 ms (200 µs) instead of 63.8 ms or 65.5 ms (50 µs).

45 ms in the unregulated run Fig. 8. In the experiment,
smaller w causes larger slowdown (i.e., the spikes appear
later) than bigger w values. For example, at w = 8 (50 µs),
the execution is slowed down for up to 5.5 ms. This shows
that certain workloads are sensitive to the sliding window size
and require profiling to find acceptable settings. Obviously,
for small sliding windows the regulation is less tolerant to
periodically repeating spikes, as the margins to compensate
for the spikes in non-memory-intensive phases reduce.

D. Redistribution of Memory Bandwidth by Global Regulator

Fig. 10 shows the redistribution of unused memory band-
width of MemPol’s global regulator. Here, core c0 (regulated at
50%) alternates between memory access and idle phases, while
core c1 (regulated at 25%) always performs memory accesses.
When the global regulation is disabled (Fig. 10 (a)), the overall
bandwidth drops to 25% when c0 is idle. Instead, when the
global regulation is enabled (Fig. 10 (b)), c1 is allowed to use
any remaining bandwidth up to the global configured limit of
75%. In both cases, we can observe a slight overshooting of the
average global bandwidth when c0 returns from being idle, as
the local regulator for c0 lets the core consume the bandwidth
up to its budget. The global regulator cannot prevent this, as
it can only override the halt decision of the local per-core
regulator as described in Sec. III-G.

E. Comparing Regulation of MemPol and MemGuard

We compare the regulation of MemPol and MemGuard
using SD-VBS. For comparable results between MemPol and
MemGuard, we constraint MemPol to use only the L2 cache
refill counter instead of the more precise combined model
(Sec. V-B). We measure the execution time of the benchmarks
under regulation and co-scheduled with other benchmarks, and
we compare the results to unregulated executions in isolation.
After several initial runs, we observed that disparity, mser,
sift, stitch, and tracking provide the most noteworthy
result for this experiment. We use sliding window sizes of
50 µs, 100 µs, and 200 µs for MemPol, and compare them
to replenishment periods of 50 µs, 200 µs, and 1 ms for
MemGuard.

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000
 0

 20

 40

 60

 80

 100

 120

M
e

m
o

ry
 A

c
c
e

s
s
e

s
 [

6
4

 B
 C

a
c
h

e
lin

e
s
 i
n

 6
.2

5
 µ

s
]

%
 S

u
s
ta

in
a

b
le

 B
a

n
d

w
id

th

Time [µs]

Core 0 @ 50%
Core 1 @ 25%

Average all cores

(a) Global regulation disabled

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000
 0

 20

 40

 60

 80

 100

 120

M
e

m
o

ry
 A

c
c
e

s
s
e

s
 [

6
4

 B
 C

a
c
h

e
lin

e
s
 i
n

 6
.2

5
 µ

s
]

%
 S

u
s
ta

in
a

b
le

 B
a

n
d

w
id

th

Time [µs]

Core 0 @ 50%
Core 1 @ 25%

Average all cores

(b) Global regulation enabled

Fig. 10. MemPol bandwidth redistribution: Core c0 is regulated at 50% bandwidth and alternates memory access and idle phases every 750 µs. Core c1 is
regulated at 25% bandwidth and accesses memory all the time. Both cores perform worst-case reading. (a) The global regulator is disabled. (b) The global
regulator is enabled and redistributes unused bandwidth from c0 to c1 while c0 is idle, but keeps the overall bandwidth at 75%, which the sum of both cores’
configured bandwidth. Polling at 6.25 µs. 50 µs sliding window size. 200 µs averages.

0

1

2

3

Iso
la

tio
n

0

1

2

3

1×
 Is

ol
Be

nc
h

0

1

2

3

3×
 Is

ol
Be

nc
h

disparity/vga
20 %

disparity/vga
30 %

disparity/vga
40 %

mser/vga
20 %

mser/vga
30 %

mser/vga
40 %

sift/vga
20 %

sift/vga
30 %

sift/vga
40 %

stitch/vga
20 %

stitch/vga
30 %

stitch/vga
40 %

tracking/vga
20 %

tracking/vga
30 %

tracking/vga
40 %

Sl
ow

do
wn

 (R
at

io
)

MemPol 50 µs
MemPol 100 µs
MemPol 200 µs
MemGuard 50 µs
MemGuard 100 µs
MemGuard 200 µs
MemGuard 1000 µs

Fig. 11. Slowdown ratio in execution time of SD-VBS regulated at 20%, 30% or 40% sustainable bandwidth compared to unregulated execution as baseline
(first horizontal group). The slowdown is caused by memory bandwidth regulation (MemPol, MemGuard) and by implementation overheads (interrupt handling
in MemGuard, see Sec. II-A). The colored bars represent the relative mean overhead of 10 runs. The small vertical black lines show min/max. The benchmarks
run alone or in parallel with IsolBench on one or three other cores. We evaluate MemPol and MemGuard at different sliding window sizes / regulation periods.
MemPol regulates on L2 cache refill counters only, like MemGuard. MemPol’s global regulation is turned off.

In our first set of experiments (Fig. 11), global regulation
is disabled, and we evaluate the regulated benchmarks at
20%, 30%, and 40% of the sustainable bandwidth, which
are typical settings for one core in a four core setup. We
run the benchmarks in isolation (first horizontal group in
Fig. 11) and together with IsolBench on another core (60%
bandwidth) or on three other cores (3 x 20% bandwidth), and
we measure the slowdown ratio. As expected, overheads in
execution time compared to the unregulated baseline increase
for smaller regulation periods and lower bandwidths. In both
MemPol and MemGuard setups, mser is the most affected one
by the parallel execution with IsolBench, while, in general,
the number of co-runners has no significant impact on the
regulation. Overall, even when using only the L2 cache refill
counter, MemPol regulates comparably to MemGuard, with
MemGuard showing higher overheads at smaller regulation
periods due to the increased interrupt load.

In our second set of experiments (Fig. 12), we evaluate
the benchmarks executing in parallel on two cores with an
equal regulation of 20% and 30% (Fig. 11 shows that 20%
and 30% are the most interesting bandwidth settings). Here
we also enable MemPol’s global regulation9 and use 40%
resp. 60% for the global bandwidth. From the benchmarks,
we select disparity, sift, and tracking as co-runners,
as they run for a longer time. Similarly to Fig. 11, the regu-

9It does not make sense to evaluate bandwidth redistribution with memory
hogs like IsolBench.

lations of MemPol and MemGuard are in general comparable.
The global regulation never causes higher overheads, but its
benefits are strongly dependent on the benchmark combina-
tions (disparity and mser benefit the most). Interestingly,
MemPol’s global regulation helps disparity when run in
parallel to tracking, but not vice versa (bottom left vs. top
right), because tracking is compute-bound (see Fig. 9 (a)),
but disparity is memory-bound.

F. Discussion

The evaluation section has shown the potential of the
fine-grained regulation, flexibility, and low-overheads enabled
by MemPol. Additionally, even when considering only one
regulation dimension, MemPol achieves comparable or better
results than MemGuard. While MemGuard shows no control
delays and halts cores when they reach or exceed their
bandwidth limits, MemPol’s behavior is driven by both the
polling frequency in its control loop and delays in halting
via the debug interface. This leads to overshooting, which
is amplified by the difference between sustainable bandwidth
targets (needed by regulation in real-time systems), and the
peak bandwidth the memory controller can deliver in best-
case conditions. On the other hand, MemPol can consider a
wider range of metrics for regulation (compared to just a single
PMU counter in MemGuard’s case) and enables microsecond-
scale regulation that also help to mitigate the side effects of
overshooting and to bound blocking times of the cores.

0

1

2

3

di
sp

ar
ity

/v
ga

0

1

2

3

sif
t/v

ga

0

1

2

3

tra
ck

in
g/

vg
a

disparity/vga
20 %

disparity/vga
30 %

mser/vga
20 %

mser/vga
30 %

sift/vga
20 %

sift/vga
30 %

stitch/vga
20 %

stitch/vga
30 %

tracking/vga
20 %

tracking/vga
30 %

Sl
ow

do
wn

 (R
at

io
)

MemPol global 50 µs
MemPol global 200 µs
MemPol 50 µs
MemPol 200 µs
MemGuard 50 µs
MemGuard 200 µs
MemGuard 1000 µs

Fig. 12. Slowdown ratio in execution time of SD-VBS regulated at 20% and 30% sustainable bandwidth compared to unregulated execution as baseline.
The slowdown is caused by memory bandwidth regulation (MemPol, MemGuard) and by implementation overheads (interrupt handling in MemGuard, see
Sec. II-A). The colored bars represent the relative mean overhead of 10 runs. The small vertical black lines show min/max. The benchmarks run in parallel
with another instance of a benchmark with the same bandwidth settings on a second core. We evaluate MemPol and MemGuard at different sliding window
sizes / regulation periods. We also include results with MemPol’s global regulation enabled at 40% resp. 60% global bandwidth. MemPol regulates on L2
cache refill counters only, like MemGuard.

Although MemPol is a good starting point for novel reg-
ulation schemes based on polling, our investigation have
shown that non-polling-based regulators (e.g., MemGuard)
would benefit from a smarter PMU architectures that allow
aggregating the sum of multiple PMU counters for regulation.
However, such an improved PMU would still be limited, as it
does not include data of other IP blocks such as the memory
controller. Using polling, [11] shows that the aggregation of
data from multiple sources is necessary to reduce the heavy
pessimism in memory regulation caused by the spread in real
bandwidth behavior. In any case, it would be beneficial for all
types of regulators if hardware vendors provide PMU counters
with fast access for outside agents at any level in the memory
hierarchy and disclose information on how to use them.

With MemPol, we show a regulation that uses multiple PMU
counters (read and write regulation) and even considers com-
bined results of all cores for its global regulation. Furthermore,
instead of relying on the pessimistic sustainable bandwidth
metric, MemPol’s bandwidth redistribution of the global reg-
ulation can easily be extended to sample utilization of the
memory controller if available on the platform (e.g., [11]).
Note that MemGuard also supports bandwidth redistribution,
but its bandwidth reclaiming mechanism redistributes future
budgets that it predicts will remain unused based on the history
of per-core memory consumption. The approach offers no
guarantees that a donating core can reclaim its budget when
needed [7]. Compared to MemGuard with typical regulation
periods of 1 ms, the 50 µs setting for MemPol may lead to
a pessimistic control behavior for programs with memory-
intensive phases that exceed the configured budgets. On the
other hand, a low setting for w reduces the window for
temporal interference with other bus masters. This is a trade-
off that must be considered in the overall design, and requires
profiling of the regulated applications.

We currently implement MemPol in software on one of the
smaller real-time cores. However, the implementation is simple
enough to be realized in hardware or in an FPGA. Compared
to less flexible regulation approaches, (e.g., Arm CCI-400 [9],
which uses counters to bound bursts), MemPol requires storage
for the execution history in the last w polling periods. In
order to implement regulation at OS task level, window
sizes and budgets on each core should change dynamically.
The current implementation of the regulator supports such

dynamism by considering budget updates in the next cycle
of the control loop. However, penalties due to overshooting in
previous cycles cannot be eliminated. In this work, we have
not evaluated the impact of dynamically changing the sliding
window size w at run-time.

Currently, MemPol throttles cores via debug interfaces. Arm
documents the approach as a valid solution for self-hosted
debugging in the A53 and A72 manuals [23], [27]. In our
experiments, we did not observe any problems with, e.g.,
atomic synchronization or idle management of the cores.
However, debug interfaces seem to be second class citizens
w.r.t. safety features, e.g., the debug APB interface lacks ECC
on the R5 cores [28]. Another limitation is that the debug
interfaces provide no simple way for operating systems to
disable throttling in critical sections. An alternative to the
debug interface to throttle cores would be using regulation
interrupts and poll—from a light-weight interrupt handler—the
end of the throttling phase in a status register of the regulator.
Another possibility is to combine both mechanisms, e.g., use
the debug interface to throttle cores for short blocking times
and raise interrupts if longer blocking times are expected. This
would allow an OS to handle interrupts during longer throttling
phases, as incoming interrupts are queued in the interrupt
controller when a core is halted in debug state and delivered
when the core is released again. On Arm, the often unused
FIQ interrupt would be a good candidate for interrupt-based
throttling. While the ZCU102 platform provides means to send
interrupts to the application cores from the R5 cores, we did
not further evaluate this approach, as even a fast interrupt
handler requires support from the operating system and causes
memory accesses during execution. We leave as future work
the evaluation of interrupt-based throttling and the fine-grained
regulation at OS task-level. Finally, note that the lack of
control mechanisms for an OS to disable throttling during
critical sections and the inability to handle OS-level interrupts
during throttling are shared by all MemGuard implementations
at hypervisor level that we are aware of.

VI. RELATED WORK

The problem of regulating memory interference on complex
MPSoC platforms has received considerable attention and
several software and hardware approaches have been proposed.
While software-based approaches to memory regulation bene-

fit from greater flexibility and are widely applicable to existing
commercial-off-the-shelf (COTS) platforms, hardware-based
approaches are capable of higher control resolution and—
given their vantage point view of the system—can precisely
monitor and regulate memory traffic.

On the software side, the initial work on PMC-based regula-
tion (MemGuard) [6], [7] has been followed by multiple stud-
ies [12], [29], [30], including implementations of MemGuard
also at the hypervisor level to prevent modifications in the host
OS, thus allowing for improved applicability. Notably, in [18]
the MemGuard implementation for Linux10 was extended to
support separate regulation on read (cache-refills) or write
(write backs) memory traffic for each core.

Performance counters can only provide an approximation
of the load effectively generated on the interconnect and on
the DRAM memory controller and the discrepancies between
memory traffic generated by the CPUs and the utilization of
the memory DRAM controller have been outlined in [10],
[11]. In these works, actual memory utilization is determined
via performance counters exposed by the memory-controller.
Unfortunately, the internals of the memory controllers are
rarely made available by hardware vendors [31], and only a
limited subset of MPSoCs (mostly from NXP, e.g., [13], [32])
exposes some PMCs for the memory controller.

The work in [11] shares similarities with ours as the mem-
ory utilization is periodically sampled. Nonetheless, standard
MemGuard’s interrupts—and associated overheads—are used
to regulate cores and to trigger the sampling.

In addition to PMCs, modern MPSoCs provide other QoS or
monitoring features (e.g., [33]). The works of [10], [17], [34],
[35] have exploited such primitives to implement bandwidth
regulation. Although effective, integrated platform monitors
and regulators, e.g., [9], only offer a pre-defined set of regu-
lation possibilities, and—since they monitor at the platform
interconnect level—make it complex to attribute monitored
traffic to specific cores [10]. In parallel to PMC-based regula-
tion, other approaches [36], [37] base their regulation strategy
on worst-case memory budget estimations derived with offline
analysis of statically known workloads.

On the hardware side, to enable higher monitoring res-
olution, the works of [38], [39] develop custom hardware
components to implement bandwidth regulation directly at
hardware level, while [40] implements an FPGA module
to monitor and regulate different types of requests simul-
taneously. This proposal was also deployed on a prototype
RISC-V design [41]. Adaptations for the memory controller
have been proposed in [42]–[45] to reduce the worst-case
latency of memory requests under multicore contention. Time
Division Multiplexing hardware implementations have also
been proposed in [46]–[49] to improve predictability of the
memory interconnect level. On MPSoCs (e.g., [2]) that feature
an on-chip programmable logic, [50] proposed an architecture
to schedule individual memory transactions by redirecting

10https://github.com/mbechtel2/memguard.

CPU memory traffic through the FPGA, while an FPGA-based
closed-loop controller is proposed in [51].

Architecture-level features such as Arm’s MPAM [52] or
Intel’s RDT [53] aim to deliver improved (QoS) control
over the memory subsystem, but their availability on current
systems is still very limited. Furthermore, in the case of Arm
MPAM, all its control interfaces are defined as optional and it
is therefore unclear, which controls will be available in actual
implementations.

In addition to bandwidth regulation, cache partitioning tech-
niques [54]–[56] and bank-level partitioning [57] have been
also successfully used to mitigate core-interference at cache
and DRAM level respectively. Notably, hardware support for
cache partitioning is offered on recent MPSoC such as [5] as
part of Arm’s DynamicIQ [58].

An empirical characterization of memory interference for
different NVIDIA-based boards is presented in [59], [60].

VII. CONCLUSION

We presented MemPol, a novel approach for bandwidth
regulation of application cores in today’s MPSoCs. MemPol
enables low-overhead regulation by polling PMU counters
from an external processing unit, such as the R5 core on
the Xilinx UltraScale+ ZCU102, throttles cores using on-chip
debug facilities, and uses an on-off controller design with a
sliding window technique to control burstiness. MemPol can
regulate based on the simultaneous contribution of multiple
PMU counters and provides a combination of per-core regula-
tion and global regulation of all cores that allows redistributing
unused bandwidth between cores, while keeping the overall
memory bandwidth below a given global threshold.

Compared to state-of-the-art PMC-based regulations (e.g.,
MemGuard), MemPol: (1) has a more accurate cost model
that considers multiple PMU counter for regulation, (2) does
not generate timer or PMU interrupt overheads for applica-
tion cores, and (3) employs a fine-grained microsecond-scale
bandwidth regulation allows better cooperation with hardware-
based QoS schemes, e.g., in the Arm CCI-400 [9], and prevents
starvation of other bus-masters.

The shown implementation focuses on per-core regulation,
similar to MemGuard implementations found in hypervisors,
but can be extended towards regulation at task level as well
by including interrupt-based notification to the OS to enforce
throttling. We leave an implementation of this for future work.

The presented regulation mechanism is challenging in mul-
tiple ways. An on-off-based controller design has to cope
with overshooting of memory budgets, delays in the control
paths, and unknown behaviors of applications’ memory access
patterns at a microsecond scale. However, we see this work as
a starting point for further research in regulation mechanisms
from outside the cores.

ACKNOWLEDGMENTS

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant number CCF-2008799 and CNS-2238476.

https://github.com/mbechtel2/memguard

Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors
and do not necessarily reflect the views of the NSF.

Marco Caccamo was supported by an Alexander von Hum-
boldt Professorship endowed by the German Federal Ministry
of Education and Research.

REFERENCES

[1] T. Lugo, S. Lozano, J. Fernandez, and J. Carretero, “A Survey of
Techniques for Reducing Interference in Real-Time Applications on
Multicore Platforms,” IEEE Access, vol. 10, pp. 21 853–21 882, 2022.

[2] Xilinx, “ZCU 102 MPSoC TRM,” https://www.xilinx.com/support/ doc-
umentation/user guides/ug1085-zynq-ultrascale-trm.pdf.

[3] ——, “Xilinx Versal,” https://www.xilinx.com/products/silicon-
devices/acap/versal.html Accessed: 2022-05-07.

[4] NVIDIA, “NVIDIA Jetson AGX Xavier,” https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-agx-xavier/
Accessed: 2022-05-07.

[5] ——, “NVIDIA Jetson AGX Orin,” https://www.nvidia.com/de-
de/autonomous-machines/embedded-systems/jetson-orin/ Accessed:
2022-05-07.

[6] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013, pp.
55–64.

[7] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
Bandwidth Management for Efficient Performance Isolation in Multi-
Core Platforms,” IEEE Transactions on Computers, vol. 65, no. 2, p.
562–576, 2016.

[8] ARM, “Arm Architecture Reference Manual for A-profile architecture,”
https://developer.arm.com/docs/ddi0487/ Accessed: 2022-05-07.

[9] ——, “ARM CoreLink QoS-400 Network Interconnect Advanced
Quality of Service,” https://developer.arm.com/docs/dsu0026/ Accessed:
2022-05-07.

[10] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “E-WarP: A System-
wide Framework for Memory Bandwidth Profiling and Management,”
in 2020 IEEE Real-Time Systems Symposium (RTSS), 2020.

[11] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran, F. Rehm,
M. Pressler, A. Hamann, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Memory Utilization-Based Dynamic Bandwidth Reg-
ulation for Temporal Isolation in Multi-Cores ,” in 2022 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2022,
p. 133–145.

[12] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal
and spatial isolation in a hypervisor for ARM multicore platforms,” in
2018 IEEE International Conference on Industrial Technology (ICIT),
2018, pp. 1651–1657.

[13] NXP, “NXP S32G,” https://www.nxp.com/products/processors-
and-microcontrollers/arm-processors/s32g-vehicle-network-
processors/s32g2-processors-for-vehicle-networking:S32G2 Accessed:
2022-05-07.

[14] R. Pi, “Raspberry Pi 4,” https://www.raspberrypi.com/products/raspberry-
pi-4-model-b/ Accessed: 2022-05-07.

[15] NXP, “NXP LX2160A,” https://www.nxp.com/products/processors-
and-microcontrollers/arm-processors/layerscape-processors/layerscape-
lx2160a-lx2120a-lx2080a-processors:LX2160A Accessed: 2022-05-07.

[16] G. Schwaericke, R. Tabish, R. Pellizzoni, R. Mancuso, A. Bastoni,
A. Zuepke, and M. Caccamo, “A Real-Time virtio-based Framework
for Predictable Inter-VM Communication,” in 2021 IEEE International
Real-Time Systems Symposium (RTSS), 2021.

[17] A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and
F. J. Cazorla, “Leveraging Hardware QoS to Control Contention
in the Xilinx Zynq UltraScale+ MPSoC,” in 33rd Euromicro
Conference on Real-Time Systems (ECRTS 2021), ser. Leibniz
International Proceedings in Informatics (LIPIcs), B. B. Brandenburg,
Ed., vol. 196. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, pp. 3:1–3:26. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2021/13934

[18] M. Bechtel and H. Yun, “Denial-of-Service Attacks on Shared Cache
in Multicore: Analysis and Prevention,” in 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019, p.
357–367.

[19] J. Y. Moon, D. Y. Kim, J. H. Kim, and J. W. Jeon, “The
Migration of Engine ECU Software From Single-Core to Multi-Core,”
IEEE Access, vol. 9, pp. 55 742–55 753, 2021. [Online]. Available:
https://doi.org/10.1109/ACCESS.2021.3071500

[20] A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst, and D. Ziegen-
bein, “Waters industrial challenge 2017,” in 2017 Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS), 2017.

[21] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A Predictable Execution Model for COTS-Based Embedded
Systems,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2011, p. 269–279.

[22] ARM, “Arm CoreSight Architecture Specification,”
https://developer.arm.com/docs/ihi0029/ Accessed: 2022-05-07.

[23] ——, “Arm Cortex-A53 MPCore Processor Technical Reference Man-
ual,” https://developer.arm.com/docs/ddi0500/ Accessed: 2022-05-07.

[24] Z. Ning, C. Wang, Y. Chen, F. Zhang, and J. Cao, “Revisiting ARM
Debugging Features: Nailgun and Its Defense,” IEEE Transactions on
Dependable and Secure Computing, no. 01, pp. 1–16, 2021.

[25] ARM, “AMBA APB Protocol Specification,”
https://developer.arm.com/docs/ihi0024/ Accessed: 2022-05-07.

[26] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The San Diego vision
benchmark suite,” in 2009 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2009, pp. 55–64.

[27] ARM, “Arm Cortex-A72 MPCore Processor Technical Reference Man-
ual,” https://developer.arm.com/docs/100095/ Accessed: 2022-05-07.

[28] ——, “Cortex-R5 Technical Reference Manual,”
https://developer.arm.com/docs/ddi0460/ Accessed: 2022-05-07.

[29] N. Dagieu, A. Spyridakis, and D. Raho, “Memguard: A memory band-
with management in mixed criticality virtualized systems memguard
KVM scheduling,” in 10th Int. Conf. on Mobile Ubiquitous Comput.,
Syst., Services and Technologies (UBICOMM), 2016.

[30] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto,
“Bao: A Lightweight Static Partitioning Hypervisor for Modern
Multi-Core Embedded Systems,” in Workshop on Next Generation
Real-Time Embedded Systems (NG-RES 2020), ser. OpenAccess
Series in Informatics (OASIcs), M. Bertogna and F. Terraneo,
Eds., vol. 77. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020, pp. 3:1–3:14. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/11779

[31] F. Rehm, J. Seitter, J.-P. Larsson, S. Saidi, G. Stea, R. Zippo, D. Ziegen-
bein, M. Andreozzi, and A. Hamann, “The Road towards Predictable
Automotive High - Performance Platforms,” in 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), 2021, p. 1915–1924.

[32] NXP, “NXP S32V234SBC,” https://www.nxp.com/design/development-
boards/automotive-development-platforms/s32v-mpu-platforms/s32v2-
vision-and-sensor-fusion-low-cost-evaluation-board:SBC-S32V234
Accessed: 2022-05-07.

[33] ARM, “Quality of Service in ARM Systems: An Overview,”
https://community.arm.com/arm-community-blogs/b/soc-design-and-
simulation-blog/posts/quality-of-service-in-arm-systems-an-overview
Accessed: 2022-05-07.

[34] P. Houdek, M. Sojka, and Z. Hanzálek, “Towards predictable execution
model on ARM-based heterogeneous platforms,” in 2017 IEEE 26th
International Symposium on Industrial Electronics (ISIE), 2017, pp.
1297–1302.

[35] M. Zini, G. Cicero, D. Casini, and A. Biondi, “Profiling and controlling
I/O-related memory contention in COTS heterogeneous platforms,”
Software: Practice and Experience, vol. 52, no. 5, pp. 1095–1113, 2022.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.
3053

[36] A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and
M. Paulitsch, “Contention-Aware Dynamic Memory Bandwidth Isolation
with Predictability in COTS Multicores: An Avionics Case Study,” in
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), ser.
Leibniz International Proceedings in Informatics (LIPIcs), M. Bertogna,
Ed., vol. 76. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, p. 2:1–2:22. [Online]. Available: http://drops.
dagstuhl.de/opus/volltexte/2017/7174

https://drops.dagstuhl.de/opus/volltexte/2021/13934
https://doi.org/10.1109/ACCESS.2021.3071500
https://drops.dagstuhl.de/opus/volltexte/2020/11779
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3053
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3053
http://drops.dagstuhl.de/opus/volltexte/2017/7174
http://drops.dagstuhl.de/opus/volltexte/2017/7174

[37] J. Flodin, K. Lampka, and W. Yi, “Dynamic budgeting for settling
DRAM contention of co-running hard and soft real-time tasks,” in
Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems (SIES 2014), 2014, p. 151–159.

[38] Y. Zhou and D. Wentzlaff, “MITTS: Memory Inter-Arrival Time Traffic
Shaping,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 532–544.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.53

[39] F. Farshchi, Q. Huang, and H. Yun, “BRU: Bandwidth Regulation Unit
for Real-Time Multicore Processors,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2020, pp.
364–375.

[40] J. Cardona, C. Hernández, J. Abella, and F. J. Cazorla, “Maximum-
contention control unit (MCCU): resource access count and contention
time enforcement,” in Design, Automation & Test in Europe Conference
& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, J. Teich
and F. Fummi, Eds. IEEE, 2019, pp. 710–715. [Online]. Available:
https://doi.org/10.23919/DATE.2019.8715155

[41] N.-J. Wessman, F. Malatesta, J. Andersson, P. Gomez, M. Masmano,
V. Nicolau, J. Le Rhun, G. Cabo, F. Bas, R. Lorenzo, O. Sala, D. Trilla,
and J. Abella, “De-RISC: the first RISC-V space-grade platform for
safety-critical systems,” in 2021 IEEE Space Computing Conference
(SCC). IEEE, 2021, pp. 17–26.

[42] R. Mirosanlou, M. Hassan, and R. Pellizzoni, “DRAMbulism: Balancing
Performance and Predictability through Dynamic Pipelining,” in 2020
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2020, pp. 82–94.

[43] M. Hassan, H. Patel, and R. Pellizzoni, “PMC: A Requirement-Aware
DRAM Controller for Multicore Mixed Criticality Systems,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 4, may 2017. [Online].
Available: https://doi.org/10.1145/3019611

[44] P. K. Valsan and H. Yun, “MEDUSA: A Predictable and High-
Performance DRAM Controller for Multicore Based Embedded Sys-
tems,” in 2015 IEEE 3rd International Conference on Cyber-Physical
Systems, Networks, and Applications, 2015, pp. 86–93.

[45] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A predictable
SDRAM memory controller,” in 2007 5th IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2007, p. 251–256.

[46] F. Hebbache, M. Jan, F. Brandner, and L. Pautet, “Shedding the Shack-
les of Time-Division Multiplexing,” in 2018 IEEE Real-Time Systems
Symposium (RTSS), 2018, pp. 456–468.

[47] M. Jun, K. Bang, H.-J. Lee, N. Chang, and E.-Y. Chung, “Slack-based
Bus Arbitration Scheme for Soft Real-time Constrained Embedded Sys-
tems,” in 2007 Asia and South Pacific Design Automation Conference,
2007, pp. 159–164.

[48] Y. Li, K. Akesson, and K. Goossens, “Architecture and analysis of
a dynamically-scheduled real-time memory controller,” Real-Time Sys-
tems, vol. 52, no. 5, p. 675–729, Sep. 2016.

[49] A. Kostrzewa, S. Saidi, and R. Ernst, “Slack-based resource arbitration
for real-time Networks-on-Chip,” in 2016 Design, Automation Test in
Europe Conference Exhibition (DATE), 2016, pp. 1012–1017.

[50] D. Hoornaert, S. Roozkhosh, and R. Mancuso, “A Memory Scheduling
Infrastructure for Multi-Core Systems with Re-Programmable Logic,”
in 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021),
ser. Leibniz International Proceedings in Informatics (LIPIcs), B. B.
Brandenburg, Ed., vol. 196. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021, pp. 2:1–2:22. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2021/13933

[51] J. Freitag and S. Uhrig, “Closed Loop Controller for Multicore Real-
Time Systems,” in Architecture of Computing Systems – ARCS 2018,
M. Berekovic, R. Buchty, H. Hamann, D. Koch, and T. Pionteck, Eds.
Cham: Springer International Publishing, 2018, p. 45–56.

[52] ARM, “Arm Architecture Reference Manual Supplement. Memory
System Resource Partitioning and Monitoring (MPAM) for Armv8-A,”
https://developer.arm.com/docs/ddi0598/ Accessed: 2022-05-07.

[53] Intel, “Resource Director Technology,”
https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html Accessed: 2022-05-07.

[54] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core archi-
tectures,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013, p. 45–54.

[55] Xilinx, “Xilinx Xen Support with Cache-Coloring,”
https://github.com/Xilinx/xen/releases/tag/xilinx-v2020.2 Accessed:
2022-05-07.

[56] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna, “Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems,” in 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019, p.
1–14.

[57] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2014, p. 155–166.

[58] ARM, “Arm DynamIQ Shared Unit-AE Technical Reference Manual
Revision,” https://developer.arm.com/docs/101322/ Accessed: 2022-05-
07.

[59] N. Capodieci, R. Cavicchioli, I. S. Olmedo, M. Solieri, and M. Bertogna,
“Contending memory in heterogeneous SoCs: Evolution in NVIDIA
Tegra embedded platforms,” in 2020 IEEE 26th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2020, p. 1–10.

[60] R. Cavicchioli, N. Capodieci, and M. Bertogna, “Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms,” in 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2017, p. 1–10.

https://doi.org/10.1109/ISCA.2016.53
https://doi.org/10.23919/DATE.2019.8715155
https://doi.org/10.1145/3019611
https://drops.dagstuhl.de/opus/volltexte/2021/13933

	Introduction
	Background and Motivation
	MemGuard Limitations
	An Alternative Regulation Design

	MemPol – Regulation from Outside the Cores
	Regulation Cost Model
	Overshooting
	On-Off Controller as Bandwidth Limiter
	Sliding Window Technique to Control Burstiness
	Resulting Combined Control Strategy
	Setting Regulator's Budgets
	Combined Local Per-Core and Global Regulation
	Regulator Sliding Window Size Settings

	Implementation
	Exploiting Memory-Mapped Debug and PMU Registers
	Accessing Debug and PMU Registers
	MemPol Regulator
	Cost Model on ZCU102

	Evaluation
	Per-Core Regulation
	Regulation based on L2 Data Cache Refill and Write-Back
	Impact of Sliding Window Size
	Redistribution of Memory Bandwidth by Global Regulator
	Comparing Regulation of MemPol and MemGuard
	Discussion

	Related Work
	Conclusion
	References

