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Abstract—Consolidating hard real-time systems onto modern
multi-core Systems-on-Chip (SoC) is an open challenge. The
extensive sharing of hardware resources at the memory hier-
archy raises important unpredictability concerns. The problem
is exacerbated as more computationally demanding workload
is expected to be handled with real-time guarantees in next-
generation Cyber-Physical Systems (CPS). A large body of works
has approached the problem by proposing novel hardware re-
designs, and by proposing software-only solutions to mitigate
performance interference.

Strong from the observation that unpredictability arises from
a lack of fine-grained control over the behavior of shared
hardware components, we outline a promising new resource
management approach. We demonstrate that it is possible to
introduce Programmable Logic In-the-Middle (PLIM) between a
traditional multi-core processor and main memory. This provides
the unique capability of manipulating individual memory trans-
actions. We propose a proof-of-concept system implementation
of PLIM modules on a commercial multi-core SoC. The PLIM
approach is then leveraged to solve long-standing issues with
cache coloring. Thanks to PLIM, colored sparse addresses can be
re-compacted in main memory. This is the base principle behind
the technique we call Cache Bleaching. We evaluate our design
on real applications and propose hypervisor-level adaptations to
showcase the potential of the PLIM approach.

I. INTRODUCTION

The modern world and society is supported by safety-critical
Cyber-Physical Systems (CPS) with strict reliability and con-
fidentiality requirements: avionic systems, nuclear plant super-
visory systems, orbit controllers in satellites, space station life
support apparatuses, unmanned aerial vehicles (UAVs) flight
controllers, surgeon-machine interfaces in robotic surgery de-
vices, and driverless cars, to name a few. In the last decade,
we have entered a new era where bold new expectations
are set on the capabilities of a CPS. Following the push
for smarter CPS’s, embedded platforms have substantially
increased in complexity. Multi-core heterogeneous embed-
ded systems have become mainstream for high-performance
CPS’s. But complexity comes at the cost of a fundamental lack
of predictability. As a single backbone of memory resources
is shared by multiple processors, the unmanaged contention
introduces non-negligible temporal coupling between logically
unrelated applications on the same SoC. The design of (1) new
multi-core hardware platforms, and of (2) OS-level techniques
to regulate contention have been the two main directions
followed by this community to achieve performance isolation.

In this work, we outline a third possible direction. We
consider modern, commercially available SoCs that include

programmable logic (PL) and a traditional multi-core proces-
sor on the same chip. With this, we show that it is possible to
instantiate logic that acts as an intermediary between embed-
ded processors and main memory. By sitting between CPUs
and main memory, we achieve a new degree of control over
memory transactions. We call this approach Programmable
Logic In-the-Middle (PLIM). The PLIM approach opens up
new avenues to design and deploy resource management prim-
itives previously available only though hardware re-design. It
also creates new opportunities in the definition of OS-level and
hypervisor-level technologies that leverage PLIM modules to
improve performance management, self-awareness, and online
workload characterization.

In the rest of this paper, we first lay the fundamental
principles for the definition of PLIM modules. Then, we
demonstrate that PLIM can be used to re-think known man-
agement primitives and solve some of their long-standing
shortcomings. More specifically, we consider the problem of
shared cache partitioning via page coloring. Traditional page
coloring forces the allocation of sparse main memory regions.
Additionally, re-coloring of applications at runtime cannot be
readily performed without incurring large overheads. Thanks
to PLIM, these limitations can be lifted. In summary, this paper
makes the following contributions.
1) A novel approach, namely Programmable Logic In-the-

Middle (PLIM), to aid the consolidation of hard real-time
systems onto commercial multi-core SoCs that leverages
PL to enact shared resource management;

2) We demonstrate that under PLIM it is possible to obtain
an unprecedented level of inspection on the behavior of
last-level caches (LLC) and main memory;

3) We show that for real applications the overhead introduced
by the PLIM approach is not dramatic, justifying its
applicability for use in production;

4) We solve long standing shortcomings of page coloring.
Using PLIM one can prevent address fragmentation in
main memory and perform zero-copy re-coloring of live
applications or entire virtual machines (VM);

5) We implement and evaluate a full-stack design that includes
hardware modules and hypervisor-level adaptations to take
advantage of the newly available control over LLC parti-
tioning at runtime;

II. OVERVIEW

In this section, we provide a high-level overview of the
PLIM approach and provide the first key insight on how it
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can be used to perform flexible cache partition management.

A. The PLIM Approach on Commercial Platforms

This work considers commercially available SoCs that in-
tegrate a traditional embedded multi-core processor system
(PS) and a block of programmable logic (PL) with high-
performance PS-PL communication interfaces (HPI). The
PS includes full-speed processing cores, private and shared
caches, a main memory (DRAM) controller, and I/O periph-
erals. Contrarily to SoCs built entirely on programmable logic
— i.e., FPGA-only systems — the PS provides realistic per-
formance and makes the SoC suitable to be directly embedded
in production systems.

The premise of the proposed PLIM approach is that the
main purpose of the PL is not to execute application workload,
e.g., via accelerators. Rather it is used as an intermediary in
the memory traffic that flows between processors and main
memory. In this paper, we specifically focus on this role of the
PL as intermediary logic, albeit our design does not preclude
integrating traditional accelerators in the PL.

The key advantage of the PLIM approach is twofold. First,
PLIM enables a level of control over memory traffic that is
unprecedented for COTS systems. Second, it provides extreme
flexibility because (1) when needed at run-time, it is possible
to revert application traffic directly towards main memory, i.e.
bypassing the PL as we demonstrate in Section VI-E; and
(2) because thanks to partial dynamic re-programmable (DPR)
logic, the exact control logic in the PL can be replaced at run-
time. All in all, it is possible to exploit the benefits of PLIM
when needed without having to commit to it for the entire
lifespan of the system.

The basic mechanism that enables the PLIM approach is the
ability to intercept memory transactions originated from the
processors inside the PS, at the PL. In the PL, it is possible to
manipulate meta-data (e.g., source/destination addresses, QoS
bits), data (e.g., the payload of read/write operations), and
timing of each individual transaction. Transactions are then
forwarded from the PL again towards the memory controller
inside the PS. In this way, the content being accessed resides
in main memory, but it is possible to act on the characteristics
of the traffic that now traverses the PL. We refer to this basic
mechanism as Memory Loop-Back and discuss it in more
detail in Section III. The bottom line is that with the Memory
Loop-Back in place, it is now possible to add logic to enact
fine-grained memory profiling and management. It is natural
to wonder about the following questions. (1) What is the
overhead for transactions that are routed through the Memory
Loop-Back as opposed to reaching main memory directly?
We provide a study of the overhead introduced by the loop-
back in Section VI-B. (2) What type of management can be
enacted with PLIM? We propose, implement and evaluate a
first technique, namely Cache Bleaching, that leverages PLIM
to solve long-standing shortcomings of page-coloring based
cache partitioning. We briefly detail the intuition behind Cache
Bleaching below and provide a more in-depth description
Section IV. (3) How can memory traffic be dynamically

routed via/away from a PLIM module? In Section V, we
propose a hypervisor-level design and implementation capable
of selectively and dynamically re-routing memory traffic of
entire virtual machines (VMs).

B. Key Insights on Cache Bleaching

As a first case study on the PLIM approach, we consider
the problem of LLC space contention between co-running
application in a multi-core SoC. Cache partitioning has been
deemed as an effective solution towards mitigating LLC con-
tention [1], [2]. A typical software-only approach to perform
cache partitioning is cache coloring [3]. Cache coloring can be
used to partition any physically-indexed cache. This is done by
carefully assigning physical memory to applications — or to
entire VMs — that only maps to a subset of the available
cache sets1. Despite being one of the core techniques to
enforce performance isolation in hard real-time systems, cache
coloring comes with a number of important shortcomings.
Notably, it ties the amount of cache allocated to an application
to the quota of the main memory that can be allocated to the
same application. Moreover, the coloring selection is static
because a change at run-time would require massive data
movements, resulting in prohibitive overheads.

By leveraging PLIM, we can essentially redefine the mean-
ing of physical addresses. In other words, physical addresses,
as seen by the LLC, are different from those used to ac-
cess content in main memory. Thus, we are able to quickly
(re-)define colored physical mappings to perform LLC par-
titioning that results in the same contiguous main memory
content being accessed. The result is the ability to perform
zero-copy re-coloring at run-time. Because main processors
see colored memory, but the color information is stripped away
on the way to main memory, we call this technique as Cache
Bleaching. We detail a PLIM module called Bleacher that
implements Cache Bleaching in Section IV.

III. PLIM BASICS - MEMORY LOOP-BACK

We hereby discuss the underlying mechanism that enables
PLIM, i.e. the Memory Loop-Back. We provide the necessary
background, some insights on the design of the module, and
draw some conclusions about the overhead of PLIM on real
benchmarks.

A. Background on PS-PL SoCs

A few key concepts need to be introduced to understand how
it is possible to implement a Memory Loop-Back module. The
PLIM approach is feasible on commercial platforms comprised
of embedded non-configurable processing cores and main
memory, the PS; of a block of on-chip programmable logic,
the PL; and with high-performance bidirectional interfaces
between the PS and the PL, referred to HPI in this work.
Moreover, communication between SoC resources — e.g.
between the cache controller and main memory controller — is
carried out using some on-chip communication protocol. The

1For the reader not familiar with cache organization and coloring, we
provide the necessary background in Section IV-A
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Fig. 1. Loop-back through PL. Green line with the Translator in the middle
is a valid memory loop-back. Dashed red line results in an endless loop. Two
logic analyzer probes (ILA) are attached to monitor the bus segments.

same protocol is also used on the HPIs. For communication to
occur, an interconnected pair of ports is required. The port on
which communication transactions are initiated is called the
master port; the port from which transaction responses are
sent is called the slave port. An SoC will have a fixed number
of HPIs, each that can act as a master only, or as a slave
only. While the HPIs can only be used but not instantiated, it
is possible to instantiate any soft component in the PL that
has master/slave ports that can be connected to HPIs. An
overview with the basic blocks of a PS-PL SoC is provided
in Figure 1. A survey of the commercially available families
of PS-PL SoCs is provided in Table I. In the table, the PL
size is reported in terms of maximum and minimum number
of Logic Elements (LEs), Block RAM bits (BRAM), and DSP
Slices (DSP).

To make the description of our system easier to follow,
we briefly introduce the characteristics of the SoC we used.
A full system implementation was performed using a Xilinx
Zynq UltraScale+ MPSoC platform [4]. We use the Xilinx
ZCU102 Development Board, which embeds a Zynq Ultra-
Scale+ XCZU9EG SoC. The PS is comprised of a quad-core
ARM Cortex-A53 [5] cluster clocked at 1.5 GHz. Each core
has a private split L1 cache (32KB instructions + 32KB data)
and a shared 1 MB L2 cache, which is also the last-level cache
for the A53 cores. The PS also includes a dual-core ARM
Cortex-R5 cluster, which is not used in this work. Importantly,
the PS also includes a main memory controller connected
to a 4 GB block DDR4 DRAM. The PL is comprised of
a dynamically partially re-programmable FPGA fabric with
600,000 logic cells, 32.1 Mb of memory, and 2520 DSP slices.
There exist three HPIs mastered by the PS, called HPM1,
HPM2, and HPM3. There are five HPI interfaces to initiate
transactions from the PL into the PS, hence called slave HPIs.
We will consider only two of them, namely HPS1 and HPS2.

All the on-chip communication between functional blocks
is carried out using the Advanced eXtensible Interface (AXI)
protocol [6]. AXI supports two types of transactions, namely,
read and write transactions. Address information and payloads
for read and write transactions, and acknowledgements for
write transactions are each carried via a dedicated set of sig-

TABLE I
COMMERCIAL PS-PL PLATFORMS

Processing System (PL) Programmable Logic (PL)
SoC CPUs L1 / L2 Cache Freq. LEs BRAM DSP

Xilinx US+ CG
2x Cortex-A53
2x Cortex-R5

32+32KB I+D /
1 MB

1.3GHz
103K
600K

5.3Mb
32.1Mb

240
2520

Xilinx US+ EG
4x Cortex-A53
2x Cortex-R5

32+32KB I+D /
1 MB

1.5GHz
103K
1143K

5.3Mb
34.6Mb

240
1968

Xilinx US+ EV
4x Cortex-A53
2x Cortex-R5

32+32KB I+D /
1 MB

1.5GHz
192K
504K

4.5Mb
11Mb

728
1728

Intel Stratix 10 4x Cortex-A53
32+32KB I+D /
1 MB

1.5GHz
378K
10200K

30Mb
253Mb

648
5011

Xilinx Zynq-7000 2x Cortex-A9
32+32KB I+D /
1 MB

∼1GHz
23K
444K

1.8Mb
26.5Mb

66
2020

Xilinx Versal
2x Cortex-A72
2x Cortex-R5

48+32KB I+D /
1MB

2.5GHz
336K
2233K

5Mb
70Mb

472
2672

nals, called channels. As such the standard defines 5 channels:
(1) AR and (2) AW channels to transmit addresses for read
and write operations, respectively; (3) R and (4) W channels
for payload of read and write transactions, respectively; and
(5) B channel for acknowledgements of successful write
transactions.

Each on-chip resource that can be accessed as a slave, be
it a memory-mapped I/O device, real memory, or an HPI port
is assigned a range of addresses under which it responds. For
non-configurable components, there is a fixed memory map
with non-overlapping ranges of addresses under which each
resource can be accessed. Conversely, the address under which
PL components respond is programmable. For instance, when
a master (e.g. a processor) performs a read transaction, the
AXI master port will first use the AR channel with the address
of the resource to access, and a unique ID for the transaction in
flight. If the address is valid, the target resource will produce
a response via the R channel. Because requests/responses are
asynchronous, the produced response will have to carry the
same ID used by the request.

B. Memory Loop-Back Design

What is required to implement a memory route that leaves
the PS, enters the PL and flows back into the main memory
module inside the PS, i.e. what we called the Memory Loop-
Back?

It follows from the background section that each HPMx
port, say HPM1, is reachable under a well defined memory
range, say [SHPM1, EHPM1]. Whenever the PS produces a
read (resp., write) transaction with a physical address A in
this range, the HPM1 port initiates an AXI transaction towards
the PL. This activates the AR (resp., AW) channel where the
address field is populated with A. Similarly to an HPMx port,
the main memory controller in the PS is associated with its
own range of memory addresses [SMM , EMM ]. But of course
the ranges [SHPM1, EHPM1] and [SMM , EMM ] cannot be
overlapping. Similarly, the PL can initiate a transaction to-
wards main memory via any of the HPSx ports.

A first naı̈ve design for a Memory Loop-Back consists in
instantiating a direct route from any of the HPMx ports, to
any of the HPSx ports. This is depicted as a dashed line in
Figure 1, where HPM2 and HPS2 are used. This approach
does not work, however, because transactions that leave the
PS into the PL will have an address A ∈ [SHPM2, EHPM2].
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Fig. 2. Cycle-Accurate DRAM Response-Time monitoring using ILA. Translator adds Zero delay.

TABLE II
MEMORY MAP OR RELEVANT SOC RESOURCES

Resource Description Start Address End Address
High PS main memory, 0x00_0000_0000 0x00_7FFF_FFFF

DRAM lower 2 GB
Low PS main memory, 0x08_0000_0000 0x08_7FFF_FFFF

DRAM higher 2 GB
HPM1 HPI port 1 PS-mastered 0x10_0000_0000 0x17_FFFF_FFFF
HPM2 HPI port 2 PS-mastered 0x48_0000_0000 0x4F_FFFF_FFFF
HPM3 HPI port 3 PS-mastered 0x00_8000_0000 0x00_9FFF_FFFF

As they re-enter the PS via the slave port, the address will
still be A, which not only is not a valid address in the range
[SMM , EMM ] for main memory to respond, but it is still in
the range [SHPM2, EHPM2]. As such, a new transaction is
initiated on the HPM2, which restarts the cycle. The result is
an infinite loop of incomplete transactions that never produce
a response.

A functioning Memory Loop-Back implementation requires
minimal logic to manipulate the address of traversing transac-
tions at the PL. For this purpose, we introduce a Translator
block in the PL, as shown in Figure 1. The Translator defines
a slave port connected to HPM1 and a master port connected
to HPS1. Before relying requests/responses from the master
to the slave port and vice-versa, the Translator performs a
simple manipulation on the address bits on both the AR and
AW channels. First, the module buffers incoming transactions
on its slave port; then it sets the most significant 5 bits to
0 and forwards the transaction on its master port. Responses
from main memory are left untouched.

Example: Let us consider the actual address ranges
in the SoC of reference reported in Table II. The plat-
form uses 40-bits addresses. The range [SHPM2, EHPM2]
= [0x48_0000_0000, 0x4F_FFFF_FFFF] (32 GB),
while the range [SMM , EMM ] = [0x08_0000_0000,
0x08_7FFF_FFFF] (2 GB)2. Before forwarding the trans-
action on its master port, the Translator modifies bits 36-
40 by setting them to 0. As long as the incoming address
is in the range [0x48_0000_0000, 0x48_7FFF_FFFF],
the outgoing address will fall inside [SMM , EMM ].

We implemented the Translator module as a custom IP,
because, albeit simple, the described functionality cannot
be achieved with the publicly available IP components. We

2A second block of 2 GB is mapped at [0x00_0000_0000,
0x00_7FFF_FFFF].

provide a study of the overhead incurred due to transactions
being routed via the PL in Section VI-B.

C. Transaction-level Inspection

Albeit simple, the Memory Loop-Back provides us with a
unique opportunity to inspect the memory traffic generated by
an application running on the PS, and the response produced
by main memory. To understand the depth of the insights that
can be gathered in this way, we instantiated an Integrated
Logic Analyzer (ILA). The ILA is essentially a PL block
that can be attached to AXI segments to gather a trace of
transactions on the SoC that can be later visualized on a
host machine. Figure 2 shows the result of an ILA analysis
session for a read transaction leaving the PS with address
0x10_0000_0000, and being forwarded to main memory
with address 0x08_0000_0000. Not only it can be observed
that the transaction is the result of a cache miss, but it is
possible to compute the exact round-trip time from the moment
it leaves the PS until a response is returned from main memory
— highlighted at the bottom of the figure. At this level of
analysis, many additional attributes can be observed, such as
QoS bits set by the cache controller, memory cacheability,
originating processor (or other master), bus saturation condi-
tions, and so on. For clarity, additional signals are not shown
in Figure 2.

Being able to achieve such a high degree of inspection in a
COTS platform opens up important opportunities. In fact, the
important drawback of consolidating hard real-time systems
onto COTS multi-core platforms is a lack of knowledge on
the exact behavior of the platform, especially when it comes
to shared memory hierarchy components. Remarkably, with
the PLIM approach, one can perform direct observations on
components that had to be previously considered as black-
boxes. Moreover, in the next sections of this paper, we
demonstrate that PLIM modules can also enact interesting
management policies.

IV. CACHE BLEACHING

Having assessed the practicality of the PLIM approach,
we present a technique that leverages the PLIM approach
and solves long-standing shortcomings of cache partitioning
via page coloring. We first provide some background on
caches and coloring, then discuss its important shortcomings.
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Fig. 3. Bits 12-15 are color bits in considered SoC. There are 16 colors.

Lastly, we present our Cache Bleaching approach and how it
addresses the traditional issues with coloring.

A. Background on Caches and Coloring

Consider a multi-core embedded SoC that provides hard-
ware support for virtualization. A single physical addressing
space exists where main memory, HPI ports, and I/O devices
are mapped and reachable under a range of physical addresses
(PA). The memory map for components that are relevant to
our discussion is reported in Table II. Second, two stages of
memory virtualization are supported by the hardware. The
first stage corresponds to virtual addresses (VA), as seen by
user-space processes. These are translated into intermediate
physical addresses (IPA) by the Memory Management Unit
(MMU). The page tables with the mapping between VA and
IPA are entirely managed by an OS. The second stage of trans-
lation maps IPAs as seen by the OS into PAs. This mapping is
managed by a hypervisor, which operates at a higher privilege
level compared to the OS. If no hypervisor is active in the
system, then an IPA is translated directly and 1-to-1 to a PA.
If enabled, it is the responsibility of the hypervisor to maintain
second-stage page tables to allow IPA-PA translations. The
MMU handles first-stage and second-stage translations for
memory accesses originated by the processors. It follows that a
hypervisor can ultimately determine which physical addresses
are effectively accessible from applications and virtualized
OS’s. In the vast majority of platforms, the finest granularity
at which VA, IPA, and PA can be managed is 4 KB.

Modern embedded SoCs feature multi-level caches. A com-
mon cache hierarchy is the following: each processor has a
private coherent cache (L1); and all the processors share a
second level of cache (L2). The L2 cache is much larger in
size than the private L1. The L2 is often also the last-level
cache (LLC). Although this is the case for the SoC used in
our evaluation, what presented in this work directly applies to
SoCs with additional cache levels. A miss in LLC causes an
access to main memory. Generally, each level operates as a
set-associative cache with associativity W . A cache with total
size CS and associativity W is structured in W ways of size
WS = CS/W each. In the considered SoC, CS = 1 MB, W
= 16, and WS = 64 KB.

Caches do not store individual bytes. Instead, they store
multiple consecutive bytes at a time, forming a cache line
of LS bytes each. In our SoC, LS = 64 bytes. The number

of lines in a way is S = WS/LS , also called the number
of sets of a cache. Each set contains W lines, one per way.
When a cacheable memory location is accessed by a processor,
the value of its address determines which cache location to
look-up or allocate in case of a cache miss. Addresses used
for cache look-ups can be PAs or VAs. In shared caches
(e.g. L2/LLC), however, both index and tag bits are from
PAs. For this reason, they are said to be physically-indexed,
physically-tagged (PIPT) caches. The least-significant bits of
the PA encode the specific byte inside the cache line. For
instance, in systems where LS = 64 bytes, these are the last
log2 LS = 6 bits (bits 5-0) of a memory address. This group
of bits is called offset. The second group of bits in the memory
address encodes the specific cache set in which the memory
content can be cached. Since we have S possible sets, the next
log2 S bits after the offset bits select one of the possible sets.
These are called index bits, which in our SoC correspond to
PA bits 6-15. A PA has more bits than the ones used as offset
and index bits. The remaining bits, namely tag bits, are stored
alongside with cached content to detect cache hits after look-
up. A breakdown of PA bits for the SoC used in this work is
provided in Figure 3.

Recall that a 4 KB page is the finest granularity at
which an OS/hypervisor can manage VA/IPA/PA addresses.
For instance, each page spans through 64 cache lines when
LS = 64 bytes. If WS is larger than 4 KB, then multiple
pages with consecutive PAs can be simultaneously stored in
the same cache way. Take C as the number of pages that can
fit in a way, then any page in physical memory can be assigned
a color from 0 to C − 1. If a page with color Ci is cached,
its lines can never evict cache lines that belong to a page with
color Cj , as long as Ci 6= Cj . This principle is at the base of
color-based cache partitioning [1], [7]–[9]. In the SoC under
analysis, C = 16 and the PA bits that affect the color of a
page are bits 12-15 — see Figure 3.

B. Shortcomings of Cache Coloring

Albeit powerful, extensively studied and adopted, page
coloring comes with significant shortcomings.
Main Memory Waste: If page coloring is used to perform
cache partitioning, only a subset of C consecutive physical
pages can be assigned to an application/VM. For instance,
with C = 16, consider the creation of two differently sized
partitions for two VMs. VM-1 is assigned 2 colors, while
VM-2 is assigned 8 colors. With this scheme, out of every
16 pages with consecutive PAs, the first 2 are mapped to
VM-1 and the last 8 to VM-2. The fact that only a subset
of PAs can be allocated to each VM implicitly limits the
amount of main memory that each VM can address. If we
had 2 GB of main memory, in our example VM-1 could
only use 256 MB, while VM-2 1 GB. This is far from ideal
because larger LLC partitions should be allocated to VMs with
LLC sensitive applications; while smaller LLC partitions to
applications having a memory footprint too large to fit in LLC.
But large-footprint applications might not run with only 1/4
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of main memory. At the same time, 1/2 of main memory is
wasted on applications that require only a fraction of it.
Recoloring Overhead: Cache partitioning via coloring is a
lightweight operation if performed at boot or task creation
time. But once colored pages are in use, they contain instruc-
tions/data used by an application/OS to function. As such,
performing a runtime change in the partitioning scheme is a
costly operation because the content of a massive number of
physical pages needs to be relocated. And yet, dynamically
changing the size of cache partitioning is a useful operation
as a system undergoes mode changes — e.g. in case of a
criticality-level switch in a mixed-criticality system [10], or in
reaction to new mission-level objectives where the application
workload changes.

C. Address Bleaching

Performing address bleaching means to re-compact an ad-
dressing space to lose coloring information. In our design, this
operation is done in a PLIM module after cache look-up, but
before transactions reach main memory. The result is that a
shared cache can be partitioned using page coloring, albeit
the corresponding data in main memory are stored strictly
sequentially, i.e. without holes.

Consider a system with C total colors (and hence log2 C
color bits) and a colors-to-VM assignment of the form C =
[Cl, Ch]. For every C consecutive pages aligned at the C-
th page boundary, the VM is mapped pages with colors Cl

through Ch, with Cl, Ch ∈ {0, . . . , C − 1} and Cl ≤ Ch.
Example: Take C = 16 and the coloring specification C =
[2, 3]. A VM mapped starting from base B = 0x00 will be
given page frame numbers (PFN)3 0x02, 0x03, 0x12, 0x13,
0x22, and so on.

If the coloring specification C as well as the base address
B of the mapping is known and aligned to the C-th page
boundary4, it is possible to efficiently construct a contiguous
non-colored mapping starting by only reasoning on (1) the
base address B of the mapping; (1) the address A ≥ B
to be bleached; and (3) the coloring specification C. The
resulting bleached address is Ā and can be computed as
follows, considering B, A, and Ā expressed as PFNs.

Ā = A− ((A−B)/C)× (C − Ch − Cl + 1)− Cl. (1)

In Equation 1, ”/” and ”×” indicate integer division
and multiplication, respectively. From the example presented
above, if B =0x00 and A =0x22, then Ā=0x04, and indeed
A was the fifth page of the colored mapping.

Equation 1 is already efficient to compute in the PL because
it involves only integer operations. But the bleaching operation
can be optimized even further. In particular, when the coloring
specification is well-aligned, bleaching can be performed by
simply “dropping” a portion of the colored address bits. To
be well-aligned, the following must hold: (1) the number of

3The difference between a PA and a PFN is simply that the least significant
12 bits encoding the offset within a 4 KB page are omitted.

4The rules for bleaching can be trivially extended to consider base addresses
that are not C-th page-aligned, but for simplicity we keep this assumption.

Fig. 4. Bleacher performs de-coloring on AR and AW channels. Only AR is
magnified; AW is similar.

assigned colors (Ch − Cl + 1) is a power of 2; and (2) the
value of Cl is multiple of (Ch−Cl +1). When a specification
is well-aligned, then dropping the most significant log2(C)−
log2(Ch−Cl + 1) color bits will return the bleached address.

Example: The following are some cases of well-aligned
color specifications: [0, 3], [0, 15], [4, 11], [8, 11]. Among
these, consider specification [8, 11]. And once again, take
B = 0x00. Hence, the VM will be mapped at PFNs 0x08—
0x0B, 0x18—0x1B, 0x28—0x2B and so on. To recover
the bleached PFN Ā for A= 0x29, we can drop the most
significant 2 bits. The result is Ā= 0x09, and indeed A was
the 10-th page of the colored mapping.

D. Bleacher Design

We designed a PLIM module, namely the Bleacher to per-
form the optimized bleaching transformation discussed above.
Alike the Translator discussed in Section III, the Bleacher
module is placed between a HPMx and HPSx port. Moreover, it
exposes a memory-mapped configuration space through which
a hypervisor can specify the type of bleaching to perform. The
current implementation only supports well-aligned color spec-
ifications, and hence the only piece of configuration required is
the number of color bits to drop. In our prototype, the Bleacher
accepts a bitmask with as many bits as the number of colors
bits in the system — four, in the considered SoC. If any of
the bits of the mask is set to 0, the corresponding bits in the
address of a read/write AXI transaction arriving from the PS
is dropped. The exact operation performed by the Bleacher is
depicted in Figure 4. From a 40-bit address, an upper portion
α and a lower portion β are identified. Any bit between α
and β is dropped, and padding is inserted as needed. Finally,
the address is re-based to target high DRAM. The logic of
the Bleacher was implemented with highly parallel logic. The
resulting PLIM module introduces only two clock cycles of
delay in forwarding a transaction with the bleached address.

To exploit additional available parallelism, in our final
design, depicted in Figure 4 we instantiated two Bleacher
modules, attached to the pairs of ports HPM1 and HPS1
(Bleacher 1), and HPM2 and HPS2 (Bleacher 2). Having
two Bleachers also allow defining two independent color-
ing/bleaching schemes on each HPM port.
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Fig. 5. With the Bleacher (right), colored addresses are de-colored (bleached)
hence, previously scattered pages (left) become contiguous in DRAM

With the Bleacher in place, it is now possible to define
colored mappings that span through an addressing range well
beyond the available physical memory, but that always results
in contiguous accesses in main memory. This is exemplified
by Figure 5, where in terms of address transformation, it can
be noted that the Bleacher acts as a magnifying lens on the
physical addresses seen by the LLC. As such, the location of
pages in main memory is entirely decoupled from the way
they map in LLC, which is the ultimate goal of bleaching.
We evaluate a full system setup with colored/bleached VMs
in Section VI.

V. ZERO-COPY RECOLORING

The unique capability provided by the Bleacher (see Sec-
tion IV-D) is that the rule according to which bleaching
is performed can be changed instantaneously at run-time.
This is the premise for zero-copy re-coloring. We hereby
detail a prototype implementation of a partitioning hypervisor
(Jailhouse) capable of performing zero-copy re-coloring of
VMs.

A. Background on the Jailhouse Partitioning Hypervisor

In this work, we consider cache partitioning between con-
current VMs in a way that each VM is unaware of the par-
titioning. As such, we consider the case where page coloring
is performed at the second stage of memory translation, i.e.,
between IPAs and PAs (see Section IV-A). To enforce color-
ing in this way, one can leverage a lightweight partitioning
hypervisor. A similar approach has been followed in [7], [9],
[11], [12], that have considered Xvisor [13], KVM [14] and
Jailhouse [15], respectively.

For this work, we have used the open-source partitioning
hypervisor Jailhouse that already supports the definition of
colored mappings for VMs5. One of the main advantages
of Jailhouse is that it only partitions SoC resources — i.e.,
CPUs, memory regions, I/O devices — but it does not perform
any VCPU scheduling, and it allows VMs to interact with
(allocated) I/O devices directly. The Jailhouse hypervisor can

5The source code is available at https://github.com/siemens/jailhouse.git
under the branch wip/cache-coloring.

Fig. 6. The hypervisor maintains a default (DFL) IPA→PA mapping, as well
as multiple alternative ones (ALT1, ALT2, . . . ).

activate multiple VMs on non-overlapping sets of processors
— e.g., a Linux VM, a bare-metal VM. Each VM is un-
modified and sees a contiguous space of IPAs. At the second
stage, Jailhouse maps IPAs of different VMs to PAs with a
configurable color specification.

B. Alternative Mappings

In this work, we have extended the Jailhouse hypervisor to
support zero-copy re-coloring when operating in conjunction
with Bleacher modules in the PL.

The first extension required to support zero-copy re-coloring
is to support the definition of multiple sets of IPA→PA
mappings for the same range of IPAs. A traditional partitioning
hypervisor maintains a single set of multi-level paging struc-
tures to map IPAs to PAs for a VM. In these paging structures,
the top-level page is called the root-page. In order to install a
mapping, the Hypervisor installs a pointer to the root-page in
the MMU(s) of the processor(s) assigned to the VM.

We have extended Jailhouse to maintain multiple sets of
paging structures, and hence multiple root-pages. Each map-
ping different from the one used to bootstrap the VM is called
an alternative mapping, while the mapping used at bootstrap is
called default mapping. Note that in each alternative mapping,
some portions of the mapped IPA ranges do not change in
terms of corresponding PAs. In our setup, only one single
IPA range is mapped to alternative PAs, albeit there is no
limit on how many alternative mappings can be defined for
the same IPA range. For instance, Figure 6 depicts the case
where a VM is allocated two ranges of IPAs, of which one has
three alternative mappings. Our modified Jailhouse bootstraps
a VM using its default mapping. At the same time, it constructs
and maintains multiple paging trees, one for each configured
alternative mapping. The first level of each alternative mapping
is a page called the root-table.

C. Recoloring via Alternative Mappings and Bleaching

Being able to define alternative mappings and to perform
configurable address bleaching enables zero-copy re-coloring.
In a nutshell, consider a VM that is allocated 1 GB of main
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memory. This will correspond to a 1 GB range of IPAs. The
default mapping for these IPAs can be taken as a contiguous
range of PAs mapping directly to the main memory. At the
same time, one or more alternative mappings for the same
1 GB IPA range is maintained, such that (1) alternative
mappings have different coloring configurations; and (2) the
base physical address of the mappings are adjusted to be in
the range of the Bleacher module.

With the aforementioned setup in place, all it takes to re-
color a VM is (1) a switch of the root-table pointer in the
MMU(s); and (2) reconfiguration of the Bleacher module with
the new bit drop mask, as discussed in Section IV-D. We
implemented this capability in the modified Jailhouse that can
be triggered at run-time on a VM. More in detail the steps
to perform a runtime mapping switch are the following: (1)
suspend the target VM; (2) find root-page pointer of target
mapping; (3) Perform a clean and invalidate operation on
private and shared caches; (4) Invalidate the relevant entries
in the TLBs of the target processors; (5) Install new root-page
table pointer in the MMUs of the target processors; (6) Fetch
base and compute drop mask for target mapping; (7) Send the
drop mask for the new mapping to the Bleacher module; and
finally (8) Resume the target VM.

Let us take a concrete example, which is in line with the
setup used in our experiments. We consider a Linux VM that
is allocated 1.5 GB of main memory. This corresponds to
an addressing range of size 0x6000_0000. In the default
mapping, non-colored PS main memory is assigned starting
from address 0x08_1000_0000 (see Table II), ending at
page 0x08_6FFF_F000. This also corresponds to the range
of IPAs under which the VM sees the 1.5 GB aperture.

An alternative mapping is defined, referred to in Section VI
as CASE1, where a single cache partition (color) is assigned
to the VM. We use color specification C1 = [15, 15] and
use the Bleacher on HPM1. As such, the base of the mapping
is 0x10_1000_0000. But because only one page every
16 is mapped to a PA, the last mapped page starts at PA
0x16_0FFF_F000. Note that without the Bleacher and with
the same base address and coloring specification, the VM
would be limited to 1/16 of 1.5 GB, i.e., to 96 MB of memory.

With C1, the drop mask can be computed as 0x0 i.e.,
all the color bits (12-15) will be dropped at the Bleacher.
When the alternative mapping and drop mask are installed
by Jailhouse, the result of bleaching on the last mapped page
can be computed as follows. Consider the distance from the
base address 0x16_0FFF_F000 - 0x10_1000_0000 =
0x05_FFFF_F000. Next, bits 12-15 are dropped, so the non-
colored distance from the base is 0x00_5FFF_F000. Finally,
the address can be added to the base, and the top bits replaced
to target the higher 2 GB of PS DRAM (MM HI in Table II),
as done in the Translator (see Section III-B). The resulting
address sent to the main memory is 0x08_6FFF_F000, i.e.,
the same as in the default mapping.

It follows that the same exact content in the main memory
will be accessed, with the important difference that when going
through the alternative mapping, only one cache color will

be occupied by the VM. This demonstrates that zero-copy
recoloring can be performed. Moreover, it makes a second
important point. That is, by keeping an alternative mapping
that bypasses the PL, one does not have to commit to using any
of the PLIM modules. For instance, if the overhead introduced
by PLIM modules is too deemed too high, or no contention
on cache is expected at a certain point in time, it is always
possible to dynamically reroute a VM’s traffic directly to
main memory. We provide an evaluation of the overhead for
alternative mapping switching in Section VI.

VI. EVALUATION

We now conduct a set of experiments to understand different
aspects of the implemented design. We hereby try to answer
the following questions.

1) What is the overhead introduced by PLIM modules on in-
dividual transactions and on the runtime of applications?
This is investigated in Section VI-B.

2) Is performing coloring using our PLIM approach ben-
eficial for performance isolation? This question is ap-
proached in Section VI-C;

3) What is the overhead to perform zero-copy dynamic
recoloring? Section VI-D explores this aspect; and

4) Is it possible to dynamically manage the trade-off be-
tween performance and cache occupation via zero-copy
recoloring? This is discussed in Section VI-E.

5) What is the overhead in terms of FPGA resources and
additional power consumption of the presented PLIM
modules? This dimension is explored in Section VI-F.

A. Experimental Setup

We have performed a full system implementation on a Xil-
inx ZCU102 development system, featuring a Xilinx Zynq Ul-
traScale+ XCZU9EG SoC. We implemented our system with
two Bleacher PLIM modules responding under the PA address
ranges of HPM1 and HPM2, respectively — see Table II. Their
drop mask configuration interfaces are mapped under HPM3 at
0x8000_0000 and 0x9000_0000, respectively. We deploy
four VMs, each statically allocated to one of the four ARM
Cortex-A53 CPUs. VM1 runs an instance of Linux 4.9 and
it is used to run our benchmarks. We study the behavior of
all the San Diego Vision Benchmarks (SD-VBS) [16]. VM2-
4 run synthetic memory-intensive applications, a.k.a. mem-
bombs used to produce cache interference. Each mem-bomb
performs an infinite loop of write operations sequentially over
a buffer of a size larger than the LLC (1.5 MB).

We consider 6 different configurations for the VMs under
analysis, named CASE0 through CASE5. A summary of the
colored alternative mapping (and corresponding cache par-
titioning) used for each VM in each case is provided in
Table III. For each case and VM i, the table reports the
coloring specification Ci, and the resulting number of cache
partitions #P. As can be seen from the table, CASE0 is the
case where there is no isolation; in cases 1 through 4, the VM
under analysis has 1, 2, 4, or 8 dedicated partitions. Finally,
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TABLE III
EVALUATION CONFIGURATIONS

CASE
VM1 VM2
C1 #P C2 #P

0 0-15 16 0-15 16
1 15-15 1 14-14 1
2 14-15 2 12-13 2
3 12-15 4 8-11 4
4 8-15 8 0-7 8
5 0-15 16 15-15 1

CASE
VM3 VM4
C3 #P C4 #P

0 0-15 16 0-15 16
1 0-7 8 0-7 8
2 0-7 8 0-7 8
3 0-7 8 0-7 8
4 0-7 8 0-7 8
5 15-15 1 15-15 1
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Fig. 7. Overhead of PLIM on San-Diego Vision Benchmarks with different input sizes.

in CASE5 the VM under analysis has 16 partitions, of which
15 private and 1 shared with the other VMs.

B. Memory Loop-Back and Bleacher Overhead

Exploiting comprehensive information provided by the ILA,
we can observe the temporal response of each transaction at
the granularity of PL cycles. Figure 2 shows an ILA export,
triggered on a single read transaction. Note that this ILA has
two probes; one right after entering the PL and another before
going back into the PS (as shown in Figure 1). This way, an
AXI read transaction is captured twice, once when sending
the desired address to the DRAM via the AR channel and a
second time when data are delivered by the DRAM back to
the requesting core via the R channel.

The ILA’s second probe is instantiated on the HPS1 port
and receives the translated request immediately on the very
same clock. The DRAM controller then takes 25 cycles (about
83 ns) to produce a response. As confirmed by the behavior of
the signals on HPM1 and HPS1, the introduced Translator adds
no delay. For address bleaching, additional combinatorial logic
is required. In our current design, the Bleacher module intro-
duces 2 PL clock cycles of delay on each transaction. We also
observed an additional memory latency compared to the case
when transactions reach the DRAM without going through the
PL. A technical consultation with specialists at Xilinx revealed
that the extra delay is due to a transaction performing multiple
clock domain crossings (CDC) when going through the PL.
The CDC impacts each transaction multiple times. Consider
for instance a read transaction. The CDC is paid four times: (1)
when the AR command leaves the PS to enter the PL; (2) when
the AR command is relied to the DRAM from the Translator
block in the PL; (3) when the response on the R channel leaves
the DRAM to enter the PL; and (4) when the PL forwards
the response on the R channel back to the PS. While CDC
introduces a visible performance hit on some applications,
there are two main reasons leading us to believe that CDC
delays will decrease in future-generation PS-PL SoCs. First,
FPGA frequency increases naturally with newer generations.

As the frequency gap between CPUs and FPGA fabric shrinks,
the CDC delay also decreases. Second, next-generation PS-PL
SoCs are designed around the idea of a tighter collaboration
between non-configurable components and PL. For instance,
the announced Xilinx Versal SoCs [17] include heterogeneous
processing cores and high-speed DRAM memory controllers
surrounded by FPGA fabric to define scratchpads and data
engines. A low CDC delay is key for platforms like the Versal
and for future platforms that will follow the same paradigm.

Next, we study the actual impact of the added overhead
on real applications in Figure 7. We use the same SD-VBS
applications used in the rest of our evaluation. In the figure we
consider two cases. In both cases, the application under anal-
ysis executes alone in the system. In the first one (PS-SOLO),
however, no memory traffic re-routing is enacted. Conversely
in the second case (PLIM-SOLO), the application’s memory
traffic is routed through the PL and via a Translator block (see
Section III-B). Average, maximum and minimum observed
runtimes are reported in each bar. From the figure, it emerges
that apart from a small number of cases, real applications are
only slightly affected by the extra PL overhead. The reason
why some applications suffer a higher slowdown when their
memory traffic is routed through the PL is twofold. On the
one hand, some applications generate less DRAM traffic. On
the other hand, when no data dependencies exist between
a memory transaction and the subsequent instructions, the
micro-architecture is able to (partially) hide the extra delay
introduced by CDCs. This is done by reordering instructions
and data fetches. Therefore, applications that exhibit a memory
access pattern with a higher degree of data dependencies are
more sensitive to an increased per-transaction latency.

C. Performance Isolation

In order to study the effect of cache partitioning on the SD-
VBS applications, we compare a number of configurations.
As our performance baseline, we consider the PS-SOLO case,
where each application executes in the most favorable condi-
tions, i.e. alone in the system with no cache partitioning and
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Fig. 8. Impact of cache interference and partitioning via coloring on SD-VBS benchmarks.

without going through the PL. Next, in the PS-INTERF, each
benchmark contends for cache space with 3 mem-bombs active
on the other cores but with no partitioning and without going
through the PL. In all the remaining cases, memory traffic is
always routed through the PL. In the SOLO experiment each
benchmark is executed alone on the platform with full cache
assignment, i.e. we use configuration CASE0 where VM2-4
are kept idle. Next, we perform a run with full interference,
namely INTERF using configuration CASE0 with mem-bombs
active on VM2-VM4. While keeping the interfering VMs
active, we then go through the remaining cases 1 to 5 detailed
in Table III. The SD-VBS benchmarks come with multiple
input sizes. We performed the experiments on all the input
sizes, but report only the results for the intermediate sizes
where the benchmarks are LLC sensitive. These are cif,
qcif, sqcif, and vga. A more detailed description of the
available input sets is provided in [16]. The obtained results for
a subset of benchmarks are reported in Figure 8. The selection
of benchmarks reported in Figure 8 was done merely based
on how interesting are the obtained results. For completeness,
Figure 9 reports the reminder of the plots. Each cluster of
bars reports the averaged result of 30 runs, with one bar per
system configuration; the error bars report the maximum and
minimum execution times observed across all the runs. The
label at the bottom of each cluster reports which benchmark
the cluster refers to and on which input set the runs were
performed, in the format benchmark:input.

A few important remarks can be made about Figure 8.
First and non-surprisingly, different benchmarks are im-
pacted differently from partitioning. For instance, in the
cases disparity:cif, mser:cif, disparity:qcif,
and mser:qcif, assigning 1 private cache partition (CASE1)
as opposed to 4 (CASE4) drastically reduces the slowdown suf-

fered due to interfering workload from 2× to 1.5×, from 2.2×
to 1.4×, from 2.6× to 1.3×, and from 3.7× to 1.9×, respec-
tively. Therefore, zero-copy recoloring represents a powerful
capability that enables adjusting cache allocation in response
to changes in the application workload. Second, by comparing
the second bar of each cluster (FULLINTERF) with the sixth
(CASE4) and seventh bar (CASE5), it can be noted that LLC
interference can be mitigated by enacting cache partitioning
via the proposed Bleacher module, the most dramatic case
being mser:qcif. In this case, the benchmark suffers a
slowdown of 2.2× under contention, which, by restricting
the cache partition for the interfering workload (CASE5), is
reduced to 1.3×. At the same time, if a benchmark is mostly
bottle-necked by main memory bandwidth, then restricting the
number of partitions available to interfering workload does not
help and can have the opposite effect. The latter is the case
for disparity:sqcif and disparity:vga. Third, by
comparing the cases reported in Figure 9, we observe that
when an application is not LLC sensitive, assigning a not-too-
small cache partition — larger than one color — is enough to
isolate the benchmark. In fact, the slowdown observed under
CASE1 is due to this SoC featuring physically-indexed L1
caches [5] with a way size of 2 pages. Thus, assigning only
one partition leads to implicit partitioning of the private L1.

D. Recoloring Overhead
Here, we investigate the time overhead required to perform

an alternative mapping switch and necessary cache invalidation
to perform zero-copy recoloring. We measure the overhead of
the overall root-page table switching procedure with increasing
sizes of main memory allocated to a VM under analysis.
The result is reported in Figure 10. Each data sample is
the aggregation of 200 samples, with error bars capturing
the standard deviation of the measurements. As can be seen
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benchmarks that are not LLC cache sensitive.

0.25 GB 0.5 GB 0.75 GB 1 GB 1.25 GB 1.5 GB 2 GB
Size of VM Mapping

10

20

30

40

Ti
m

e 
(m

s)

Alternative Mapping Switching Time Overhead

Fig. 10. Alternate mapping time switching overhead for a target VM with
increasing amount of mapped main memory.

from Figure 10, the time required to perform the switch
is linear with the size of the mapping. This is because,
in ARMv8 family processors like the Cortex-A53, cache
cleanup&invalidation (C+I) can be carried out by providing
a cache way/set coordinate for the line to be invalidated, or
by providing a VA for which the corresponding PA needs
to be invalidated. In our implementation, we perform C+I
via VAs. This has the advantage of not invalidating cache
lines belonging to other VMs, and hence only impacting the
VM being recolored. Moreover, C+I through VAs is ensured
to be broadcasted to all the processors that may have dirty
local copies. In this sense, it is safer to perform compared to
way/set-based invalidation. The drawback of VA-based C+I is
that the hypervisor needs to loop through all the VAs assigned
to the target VM to complete the operation. It follows that what
depicted in Figure 10 is an upper-envelope of the switching
overhead without any optimization on the amount of memory
being invalidated. It can be drastically reduced by limiting
the invalidation to the portion of memory actually mapped
to applications, as opposed to the entire VM’s main memory.
Moreover, way/set invalidation can be used to significantly
speed-up the switch when it is known that no data is shared
between the target VM and the other VMs.
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Fig. 11. Dynamic performance control of the benchmark disparity on
input vga (top) and mser on input qcif (bottom) via runtime re-coloring.

E. Dynamic Performance Management

Support for alternative mapping switching provides the abil-
ity to dynamically adjusting the trade-off between performance
and LLC utilization of applications. Additionally, if traffic
management via PLIM is deemed unnecessary at runtime, it
is possible to exclude the PL route and direct memory traffic
of VMs directly to main memory. The same goes for cases in
which the overhead of going through the PL is unacceptable.
To evaluate this aspect, we perform the setup of a Linux 4.9
VM mapped to 1.5 GB of main memory and 6 total mappings
(1 default + 5 alternative mappings). The first mapping defines
a direct route to PS main memory; the second through the
fifth are colored mappings via the Bleacher module with 16,
8, 4, 2 and 1 cache partitions, respectively. We execute the
same benchmark continuously on the VM and rotate through
the mapping assignments at runtime, roughly every 8 runs
of the benchmark. The results for benchmarks disparity
(on input vga) and mser (on input qcif) are reported in
Figure 11 (top) and Figure 11 (bottom). From these results,
we conclude that zero-copy recoloring can, in fact, be used to
(1) study the sensitivity of applications to the quota of LLC
assigned; and (2) to manage applications’ performance online.

F. Area and Power Analysis

Table IV provides a breakdown of power consumption and
FPGA resources used to implement the designs discussed in
this paper. The first design considered in the table has a single
Bleacher module that includes a Translator block. The second
design only includes a Translator block. This block performs
just re-wiring of AXI channel signals. As such, it does not
consume any FPGA resources nor additional power. The last
design reported in the table is a full system with two Bleacher
modules. The design also includes a Xilinx SmartConnect [18]
interconnect to interface multiple PS master ports to the same
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TABLE IV
FPGA AREA AND POWER CONSUMPTION

Design Block Name Power (W) FFs LUTs

Bleacher+
Translator
(single)

PS 3.195 (81.32%) - -
Bleacher+Translator 0.009 (0.23%) 678 (0.12%) 519 (0.19%)
Total On-Chip 3.929

Translator Only
PS 3.198 (81.52%) - -
Translator 0.000 (0.00%) 0 0
Total On-Chip 3.923

Full System:
2x Bleacher+

Translator
1x SmartConnect

PS 3.199 (79.28%) - -
Bleacher+Translator 1 0.004 (0.10%) 652 (0.11%) 311 (0.11%)
Bleacher+Translator 2 0.004 (0.10%) 652 (0.11%) 311 (0.11%)
SmartConnect 0.101 (2.50%) 7326 (1.33%) 7043 (2.5%)
Total On-Chip 4.035

Bleacher. Overall, it can be noted that the power draw of the
Bleacher and Translator modules is negligible compared to the
power consumed by the PS subsystem. The quota of FPGA
resources consumed by PLIM modules is also a small fraction
of the available total.

VII. RELATED WORK

This work tackles the problem of achieving predictability
in multi-core SoCs via a co-design of software and hardware
techniques to enforce fine-grained control over shared hard-
ware resources. We hereby provide a brief survey of the most
closely related literature.
Hardware Re-design: a first category of works proposed
clean-slate re-designs of multi-core platforms to achieve better
and more predictable performance [19]–[21]. Other works
have focuses on individual components known to repre-
sent main sources of unpredictability. Hardware modifications
to implement different schemes cache partitioning schemes
were proposed in [22]–[27]. Advanced schemes that use
Zcaches [28] to implement more fine-grained partitioning
were proposed in [29], while utility-driven schemes were
explored in [30]. Cache designs that provide hard real-time
guarantees were explored in [22], [26], [31]. Hardware adap-
tations for cache locking have been studied in [32], [33].
Similarly, hardware-level modifications to DRAM controllers
targeting systems with constraints on tail latency have been
studied [34]–[40]. The work in [41] combines modifications
to caching strategies and DRAM controllers while reusing
traditional multi-core CPUs.

The core philosophy of the proposed PLIM approach is that
an improved level of inspection and control is possible by
directly intercepting data-flows between processors, memory
and I/O resources. In this sense, the work on class-of-service
based QoS architecture, namely CoQoS [42], comes close to
the PLIM approach. It proposes architectural modification to
tag data transactions. Tags are then used to perform fine-
grained management. QoS enforcement at the SoC level was
also proposed in [43]–[47]. A more encompassing work that
also considers I/O devices and the capability of defining a
control plane in software was proposed in PARD [48]. Un-
fortunately, hardware-based approaches are not immediately
applicable to COTS platforms. Compared to these works,

PLIM leverages existing hardware capabilities to define data-
flow based manipulation primitives.
Software-based Resource Management: software-based
techniques have been explored to reduce the pessimism in
the presence of non-deterministic hardware. Cache partitioning
and page coloring are often used to manage shared CPU
caches [8], [49]–[52]. In [53], different page colors are used
for applications’ and OS’s dynamic data. The work in [54]
mentions the possibility of performing cache bleaching by
physically re-wiring the CPU-to-DRAM signals so to drop
a subset of color bits. The approach was not implemented
and has two main limitations. First, it is limited to what we
defined as well-aligned color specifications; second, no run-
time reconfiguration is possible. Our PLIM-based approach
demonstrates the practicality of cache bleaching in PS-PL
SoCs and overcomes said limitations. Cache locking has been
largely investigated using a combination of (existing) hardware
support and software management [1], [55]–[62]. A technique
to perform deterministic cache content allocation in shared
caches with random replacement policy was presented in [9].
Similar mechanisms have targeted and integrated the software-
level management of multiple resources [10], [63]–[66]. On
platforms that feature scratchpads, a few works have proposed
techniques to leverage local memories to relieve contention in
main memory [67]–[69]. The work in [12] is the most closely
related because it defines a bus translator block to mitigate the
unacceptable memory waste introduced due to page coloring
on small-sized scratchpad memories.

Our work is also concerned with fine-grained observability
of memory traffic between processors and memory hierarchy.
In this sense, two closely related works are [70], [71]. In
the former, FPGA logic is connected to the trace port of
a target SoC to capture traces of instructions; in the latter
a simulated study was conducted on the ability of tracing
memory operations in partially re-configurable SoCs.

What sets this work apart from the literature surveyed
above is that (1) with the PLIM approach we postulate the
possibility of using programmable logic for inspection and
control of memory traffic between embedded processors and
main memory; (2) we demonstrate that PLIM can solve long-
standing issues with page coloring; (3) we provide a full
system design to enact PLIM on real applications.

VIII. CONCLUSION & FUTURE WORK

In this work we have explored the use of PL to imple-
ment management modules that sit in-between processors
and main memory. This approach, namely PLIM, enabled
an unprecedented level of control and inspection of memory
traffic in COTS SoCs. As a case study, we have proposed
and implemented Cache Bleaching: a strategy to solve long-
standing issues of page coloring based cache partitioning.

As part of our future work, we plan to leverage PLIM
to study application-aware memory scheduling primitives;
to enact online profiling and prediction of memory access
patterns; and to carry out anomaly detection and to enforce
complex security policies.
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