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Abstract
Multicore processors provide great average-case performance. However, the use of multicore processors for safety-

critical applications can lead to catastrophic consequences because of contention on shared resources. The problem
has been well-studied in literature, and solutions such as partitioning of shared resources have been proposed. Strict
partitioning of memory resources among cores, however, does not allow intercore communication.

This paper proposes a Communication Core Model (CCM) that implements the inter-core communication by bound-
ing the amount of intercore interference in a partitioned multicore system. A system-level perspective of how to realize
such CCM along with the implementation details is provided. A formula to derive the WCET of the tasks using CCM
is provided. We compare our proposed CCM with Contention-based Communication (CBC), where no private banking
is enforced for any core. The analytical approach results using San Diego Vision Benchmark Suite (SD-VBS) for two
models indicate that the CCM shows an improvement of up to 65 percent compared to the CBC. Moreover, our exper-
imental results indicate that the measured WCET using SD-VBS is within the bounds calculated using the proposed
analysis.

Keywords: High-Performance Computing, Communication, Inter-core, Multicore, Heterogeneous Systems,
Embedded Systems

1. Introduction

Commercial-off-the-shelf (COTS) multi-core processors have been developed by industry to meet the
ever growing processing requirements. These processors offer great average case performance, low power
consumption compared to multiple single cores as well as cost effective design. However, the use of multi-
core processors for safety-critical applications can lead to the unpredictable timing behavior of the task on
the core under consideration. This unpredictability in a multi-core processor is because of the contention on
the shared resources such as DRAM, LLC and the Memory controller by the other cores. The problem has
been well studied in the research community [1, 2, 3, 4, 5] and so far has been acknowledged in industry by
Federal Aviation Authority (FAA) [6].
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Researchers in [4] demonstrated that strict partitioning of the shared resources (LLC, bus bandwidth
and DRAM banks) in a multi-core environment is required to achieve predictable execution of the tasks
running on each core. A similar approach has been proposed by MC2 in [7] where predictability in a
multicore processor is ensured by implementing different isolation techniques for each criticality level. Strict
partitioning of the shared resources has been adopted by FAA in its recent CAST32A position paper [6].

The work in [8] describes how to implement inter-core communication for mixed-criticality tasks using
cache isolation and DRAM banks in a multi-core processor inside MC2 framework. However, in their pro-
posed model all the cores that need to communicate compete for the same DRAM bank. This is a problem
(as shown in evaluation of this paper) because it introduces significant amount of contention, making the
communication slow. We refer to the communication between all the cores using the same bank described
in [8] as CBC in this work. Another limitation of the work proposed in [8] is that they provide no the-
oretical bounds for their intercore communication mechanisms. To address these limitations, we propose
CCM model that minimizes the number of cores accessing the same bank to support intercore communica-
tion. Moreover, we also provide a mathematical expression to theoretically analyze the schedulability when
running tasks in our proposed CCM model.

Our work follow the partitioning approach described in [4] to propose and implement inter-core commu-
nication framework. When designing such a framework, our design philosophy is to minimize the number
of cores accessing a DRAM bank at any point in time to avoid communication slow-down. Our proposed
design is implemented using standard linux and POSIX based system calls. However, our implementation
is compatibility to any real-time OS that is POSIX compliant.

There are many ways to implement the inter-core communication and it depends on the amount of data
needed to be shared. For small communication messages, an intuitive approach is to use a portion of LLC
and avoid accessing the main memory [8]. However, the implementation of locking chunks of messages in
the LLC requires specific hardware support. This paper focuses on the scenarios where messages are large
and hardware support for locking1 LLC is not available. The main contributions of this paper include the
following:

• A novel CCM that bounds the amount of contention on the DRAM banks for implementing shared
memory communication inside the SCE framework is proposed.

• A mathematical expression on how to calculate WCET of a task under the proposed CCM is provided.

• Implementation details of the communication library (CommLib) and a communication task (CT)
based on the proposed CCM are provided.

• An extensive evaluation of the proposed CCM is provided is compared with CBC where the inter-core
communication is implemented without private banks.

The rest of this paper is organized as follows, Section 2 introduces the related work and background.
Section 3 introduces the system model and assumptions. Section 4 presents how to bound the inter-core
memory interference in SCE with the proposed CCM. Section 5 presents the delay analysis of the proposed
system. Section 6 describes the details about the implementation of the proposed library and communica-
tion server. Section 7 presents the analytical results of the CCM and the CBC approach and provides the
measurement-based results for CCM on the P4080 platform. Finally, Section 9 concludes our work.

2. Related Work and DRAM Background

This section is divided into various subsections. Section 2.1 describes the background related to the
DRAM memory controller and some of the previous works proposed by the research community to analyze
and predict the DRAM memory controller’s behavior. In particular, we describe the work proposed in [9]
that we use as a basis to analyze our proposed system model. Next, in Section 2.2 we describe the necessary
background and related work required for the understanding of this paper.

1In ARM Cortex-A9 platform, the cache locking feature is supported, but in ARM Cortex-A53 platform, this feature does not exist.
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2.1. DRAM Background and Related Work

Main memory such as DRAM is a shared resource in a multicore processor, which greatly affects the sys-
tem’s overall performance. DRAM memory controllers are designed to generate DRAM specific commands
to access data in the DRAM.

The DRAM controller and the DRAM module are connected through a command/address bus and a
data bus. The DRAM memory is generally organized into a set of ranks; each rank is divided into multiple
banks that can be accessed in parallel, provided that no collision occurs on either bus. Each bank has a
two-dimensional array of memory organized into rows and columns. An activate (ACT) command must be
issued to load the data in the row buffer to access the data in a row. Once loaded, all the read/write memory
requests (CAS) accessing the row buffer data will constitute a row hit. However, if a memory request targets
a different row, then the current buffer must be written back to the array with a pre-charge command (PRE)
first before the second row can be activated. A request that is a hit in the row buffer (open row access) takes
a much shorter time than that is a miss in the row buffer (close row access). The minimum time it takes to
complete open row access, and close row access is device-dependent. Once the DDR device for the system
is selected, the timing constraint values can be found on JEDEC standard documents, such as [10].

Scheduling algorithm in COTS memory controllers have been developed to offer low average-latency
and maximize the throughput. One of the most common scheduling algorithms is the First-Ready First-
Come-First-Serve (FR-FCFS) scheduling algorithm that prioritizes: (1) row-hit over row conflicts; (2) old
commands over newer commands in case of row conflicts. Another widely used scheduling algorithm is
round-robin.

In the real-time community, there has been a great effort to analyze the DRAM memory controller’s
behavior. The complexity of the COTS DRAM systems, however, has made such efforts difficult. To address
such complexity, researchers have chosen to design hardware (HW) real-time DRAM controllers [11, 12,
13, 14, 15, 16, 17] that are easier to analyze. The problem with these HW real-time DRAM controllers is that
they have lower performance than the COTS DRAM controllers. Moreover, these HW DRAM controllers
have yet to be adopted by the industry. Thus, there is a need to analyze the DRAM memory controller
accompanied by modern COTS processors.

To analyze COTS-based memory controllers’ memory behavior, some researchers have proposed to
model the main memory as a black box where each request from the memory controller takes a specific
amount of time, and memory requests from other cores are serviced in a round-robin or first-come-first-
serve (FCFS) basis. A variety of previous works addressing main memory as a black box include: [18,
19, 20, 21, 22]. However, the memory model assumed in these approaches is not safe for COTS multicore
platforms because it hides critical details necessary to place an upper bound on its timing [23].

Recently, the authors in [9] proposed a new approach for bounding memory interference. In their ap-
proach, they considered the timing characteristics of major resources in the DRAM system, including the
re-ordering effect of FR-FCFS and the rank/bank/bus timing constraints. Using this approach, the authors
showed that they obtain a tighter upper bound on the worst-case memory interference delay for a task when it
executes in parallel with other tasks. The presented technique combined two approaches: a request-driven
and a job-driven approach. The request-driven approach focuses on the tasks own memory requests, and
the job-driven approach focuses on interfering memory requests during the tasks execution. Combining two
approaches yields a tight upper bound on the worst-case response time of a task in the presence of memory
interference.

2.2. Background on Partitioning Shared Resources

In a multicore system, there are shared resources such as available bus bandwidth and DRAM banks.
These shared resources can be partitioned among the cores to avoid conflicts. Researchers in the real-time
community have introduced OS-based techniques to regulate access to the shared resources to bound the
inter-core interference. For example, memory regulation techniques such as [1] proposed to regulate the
amount of main memory access by each core in each regulation periods to reduce the interference on the
memory controller. Other researchers proposed to partition the shared resource to reduce the inter-core
interference channels. Techniques such as [3, 7] partition the DRAM banks in the shared main memory
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among cores. While other techniques such as [2, 24, 25] partitions the shared last level cache (LLC) to
prevent cache evictions caused by inter-core interference.

In this paper, we use approaches similar to MemGuard [1] and PALLOC [3] to partitioned the shared
resource in our system. However, the resource partitioning can also be achieved using the MC2 work in
[7, 8].

MemGuard is a memory bandwidth reservation mechanism that is implemented at the Operating System
(OS) layer. This mechanism aims to distribute the bandwidth available from the memory controller equally
among all the cores. It works periodically, and for each interval, e.g., 1ms, a fixed memory budget (Qp) is
assigned to each core. During each period, the hardware performance counter (PMC) on each core measures
the number of memory requests generated by the core. The PMC is programmed to generate an overflow
interrupt to the core once its assigned budget has been exhausted. Upon the reception of the overflow
interrupt, MemGuard stalls the core by dequeuing all the tasks running on that core. At the beginning of the
new period, a new budget assignment occurs. At the budget replenishment, previously dequeued tasks are
scheduled again.

DRAM memory module contains multiple resources (banks)that can be accessed in parallel. In COTS
multicore platforms, banks are typically shared among all the cores even though programs running on the
cores do not share memory space. To partition the banks and assign each bank to a particular core, we rely
on PALLOC. PALLOC allows partitioning of banks to avoid bank sharing among cores, thereby improving
isolation on COTS multicore platforms without requiring any special hardware support. On P4080, we see
a latency improvement of 1.6x times when we have different banks for each core.

3. System Model And Assumptions

3.1. Architectural/Hardware Assumptions

We assume a standard COTS-based multi-core processor with n cores. Each core in the system features
a private cache. There is also a shared last-level cache (LLC). We also assume that the underlying main
memory is a DRAM with B banks. CPUs access main memory through a shared interconnect. The platform
provides a mechanism to measure the number of memory requests issued by each core to the main-memory.
The platform is capable of counting aggregated read and write memory accesses. These assumptions are
meet by various COTS based embedded platforms such as P4080 from NXP that we use in our evaluation,
Intel Core2Quad Q8400 and many other platforms employ such hardware performance tools.

3.2. Proposed Model

Using the hardware assumptions described in Section 3.1, we specifically partition the shared DRAM
banks and the available memory bandwidth equally among all the cores. For simplicity, we partition the
resource equally among all the cores. A system designer can always assign uneven partitioning of the
shared resources depending upon the applications/workloads requirements. In our proposed CCM, out of n
multi-core processors one core is dedicated for inter-core communication. This core is referred to in rest of
the paper as Communication Core (CC). All the other cores are referred to as Application Cores (ACs). The
ACs are only allowed to access their dedicated DRAM banks, whereas the CC is capable of accessing all
DRAM banks. A block diagram of our proposed model is shown in Figure 1.

In our proposed CCM the CC is responsible for copying data from the bank of one AC to the bank on
another AC. The task responsible for this data movement is called communication task (CT). A summary
of the system parameters and their values used for evaluations in Sec. 7 is provided in Table 1. Within each
memory regulation interval, the CC is capable of accessing all the banks. There exist at most (n−1) · (n − 2)
communication sequences that need to be completed in one memory regulation period assuming all the ACs
need to communicate with each other. For each pair of communicating cores, we assume CC issues at most
tc memory requests to the sender’s private bank, and at most tc memory requests to the receiver’s private
bank. The total number of memory requests made by the CC to banks of ACs during one memory regulation
period is represented by Tc = 2 · (n − 1) · (n − 2) · tc.



Author / 00 (2020) 1–20 5

Fig. 1. Block Diagram

The CT is also responsible for communication between I/O devices and ACs. We specifically note that
that the proposed CCM is in accordance with the design principles of Integrated Modular Avionics (IMA)
architecture. Originally, strict partitioning of shared resources in a multicore framework was designed to
support the use of the standard IMA architecture on each core. The (single core) IMA architecture uses Time
Division Multiplexing Access (TDMA) to run applications with different criticality in different partitions.
Within each partition, tasks are scheduled by generalized rate-monotonic algorithm [26]. In IMA standard,
the zero partition (I/O partition) is used to handle all the I/O and inter-partition message exchanges. Existing
work [27] further proposed to consolidate the zero partitions from each core into a specific core, called I/O
core, to manage the I/O accesses. It is natural to extend the I/O core architecture to implement inter-
core communication using the model as shown in Figure 1; here the CC takes the place of the I/O core,
being responsible for moving I/O data between I/O devices and all the other ACs as well as the inter-core
communication data between ACs.

More in details, using the CCM, one can handle the I/O data from I/O devices using the following two
approaches: i) either the communication core transfers data from/to device memory into its own private bank
and move it from/to the private bank of AC that needs it; ii) or the CC can directly transfer the data from the
I/O device to the bank of the application core that needs it. For simplicity, we consider the second approach,
shown as black arrows in Figure 1. When an AC needs to access an I/O device buffer, CC issues at most
tio memory requests from the TX buffer in the sender’s private bank (I/O output), and at most tio memory
requests to the RX buffer in the receiver’s private bank (I/O input). The memory transactions required to
move data to/from a device buffer to the private bank of ACs is represented by Tio = 2 · (n − 1) · tio.

In summary, in each memory regulation period, the CC performs up to Tc memory transactions for
inter-core communication, and up to Tio transactions for I/O transfers. The CC can then use the remaining
regulation budget (Qp − Tc − Tio) to execute tasks that access CC’s own private banks. These tasks include
OS related activities such as drivers, device bookkeeping and interrupt handling etc.

3.3. Motivating Example

In this subsection we provide a motivating example of our proposed model. The parameters used in this
example are similar to what has been included in the evaluation section. Consider a system of eight cores
(n = 8). Here one core is dedicated for communication purpose. The remaining seven cores are ACs. All
the cores have their own DRAM bank. Let us assume that the minimum guaranteed bandwidth rate provided
by the memory controller is computed experimentally using the approach in [1] and is found to be 1.2GB/s.
If we split the bandwidth equally among the cores then each of the core will get 153MB/s. Let us assume
that we have memory regulation implemented at the granularity of 1 ms. Given the minimum guaranteed
bandwidth of each core is 153MB/s, each core is assigned a Qp of 2520 memory transactions per memory
regulation period. Since the memory transactions are generated by the misses in the LLC, the transaction
length is equal to the cache line size. The cache line size for the P4080 platform considered in our evaluation
is 64 bytes. We assume same cache line size for this example.
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Table 1. System Parameters
System Parameters Symbol Value
Number of Cores n 8
Number of ACs n − 1 7
Memory Regulation Period P 1 ms

For simplicity of this example, we assume that the whole memory budget is available to CC i.e. Tc = Qp

and Tio = 0. These 2520 memory transactions will be divided equally between all the pairs of ACs. This
gives us per-pair communication budget of tc = Tc/(2 · (n − 1) · (n − 2)) = 30 memory transactions. This
translates to data size of 1920 bytes per memory regulation period. By assigning tc = 30 memory transac-
tions for one AC-pair, we can say that during each memory regulation period the maximum packet size that
can be successfully transferred from the bank of one application core to the bank of another application core
is 1920 bytes. In this example we assumed Tc = Qp. However, in an actual OS implementation Tc is always
less than Qp. This is because some of the budget assigned to the CC is used for OS bookkeeping (such as
I/O activity, interrupts handling etc) activities. We empirically measure this overrhead in our evaluation.

3.4. Application Task Model

We consider a partitioned and fixed priority scheduling policy, where each core has a set Γ of N periodic
application tasks, {τ1, ...., τN}, each with different priority whereby τ1 has the highest priority and τN has
the lowest priority. Each task τi can be represented as τi = {Corei,Hi, ei,Ti}. Where Corei is the core, τi is
assigned to. Hi is the worst-case number of main memory accesses of τi. ei is the worst-case execution time
of the task measured in isolation, i.e., when no interference tasks are present and no memory regulation is
enforced. The amount of communication data that a task needs to send to another task is included in Hi. Ti is
the period of the task. The deadline of a task is equal to its period. Table 2 summarizes the task parameters.

An AT is a task deployed on an AC. It accesses only the private DRAM bank assigned to it. It only
shares DRAM banks with ATs on the same core and the CT.

Table 2. Task Parameters
Description Symbols
Core to which τi has been assigend Corei

Number of main memory requests of any job of task τi Hi

Solo execution time ei

Period (and deadline) Ti

4. Bounding Interfering Memory requests in the proposed system

The maximum number of memory requests that each core can issue in a memory regulation period is
Qp. However, as discussed in [9, 3], interfering memory requests that access the same bank (intra-bank
interference) as the task under analysis produce more delay and lead to more pessimistic WCET, compared
to memory requests that access different banks (inter-bank interference). In this section, we describe how
to bound the interfering intra-bank (Aintra) and inter-bank memory requests (Ainter) in a memory regulation
period according to the proposed CCM described in Section 3.

In order to calculate the total interference caused by the CC and all the ACs to the AC under analysis
during a memory regulation period, we apply the following approach: first, we calculate the total interfer-
ence caused by CC; second, we calculate the interference caused by all the ACs; and finally, we sum the two
interferences to get the total interference.
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4.1. Interference Caused By CC
The amount of inter-bank and intra-bank interference caused by the CC in the CCM can be summarized

as follows:

• The intra-bank interference (Aintra) caused by CC when moving I/O data to(input)/from(output) the
bank under analysis. This intra-bank interference can be accounted as 2 · tio.

• The inter-bank interference (Ainter) caused by CC when moving I/O data to(input)/from(output) other
(n − 2) ACs. This (Ainter) can be accounted as 2 · (n − 2) · tio.

• The intra-bank interference (Aintra ) caused by CC when moving communication data to(receive)/from(send)
the bank under analysis. This (Aintra ) can be accounted as 2 · (n − 2) · tc.

• The inter-bank interference (Ainter ) caused by CC by moving communication data to(receive)/from(send)
other ACs is 2 · (n − 2) · (n − 2) · tc. This is due to the fact that CC accesses each private bank of an
AC for at most 2 · (n − 2) · tc transactions, and there are (n − 2) banks belonging to other ACs that can
cause inter-bank interference to the AC under analysis.

• The inter-bank interference (Ainter ) caused by leftover CC budget after depletion of I/O and commu-
nication budget. This can be written as Qp − 2 · (n − 1) · tio − 2 · (n − 1) · (n − 2) · tc

The total intra-bank and inter-bank interference caused by CC can be obtained by summing the various
terms, as expressed in Equation 1 and Equation 2 below. Note that the total memory interference caused by
CC during a memory regulation interval is the sum of Equation 1 and Equation 2 and is equal to the memory
regulation budget (Qp).

Aintra
CC = 2 · tio + 2 · (n − 2) · tc (1)

Ainter
CC = Qp − 2 · tio − 2 · (n − 2) · tc (2)

4.2. Interference Caused By Other ACs to AC under Analysis
In our proposed model, all the ACs only access their own bank with a memory regulation budget of Qp.

This means that the only interference introduced by all other ACs to the AC under analysis is inter-bank
interference ( Ainter).

The total intra-bank and inter-bank interference caused by all the ACs to the AC under analysis are
expressed in Equation 3 and Equation 4, respectively.

Aintra
AC = 0 (3)

Ainter
AC = (n − 2) · Qp (4)

4.3. Total Interference Caused to AC under Analysis
To obtain the total intra-bank interference caused by CC and the ACs to the AC under analysis, we

simply add Equation 1 and Equation 3 to obtain Equation 5. Whereas, the total inter-bank interference can
be obtained by adding Equations 2 and 4 to obtain Equation 6.

Aintra = Aintra
CC + Aintra

AC = 2 · tio + 2 · (n − 2) · tc (5)

Ainter = Ainter
CC + Ainter

AC = (n − 1) · Qp − 2 · tio − 2 · (n − 2) · tc (6)

From Equation 5 we can see the value of Aintra is dependent on the system parameters tio and tc and that
it is only a fraction of the overall memory regulation budget. This shows that the proposed CCM indeed
reduces the intra-bank memory interference, compared to the CBC where we cannot use bank privatization
while supporting inter-core communication in a strictly partitioned system.
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In the CBC configuration, where intercore communication is implemented with no bank privatization.
In the worst case we can have all cores issuing memory requests to the same bank. This results in a much
higher intra-bank interference count as shown in Equation 7 and Equation 8.

Aintra
CBC = (n − 1) · Qp (7)

Ainter
CBC = 0 (8)

5. Response Time Analysis

The response time of a task or group of tasks in a memory regulated system is inflated compared to
solo execution time because of: 1) memory contention caused by tasks on other cores; and 2) stall induced
by memory regulation. During each memory regulation period, a core either makes Qp memory accesses,
exhausting all of its budget and being stalled, or it does not exhaust its full budget.We define a memory
regulation period in which a core exhausts its full Qp budget and is stalled because of regulation as a stall
period; whereas, a period in which a core does not utilize its full memory regulation budget is defined as a
contention period. During a regulation period, the faster a core exhausts its Qp budget the more regulation
delay it suffers. Hence, in the worst case we can assume that the core immediately performs Qp memory
accesses at the beginning of the period and is stalled for the entire period (P).

To compute the response time of the task in our proposed CCM model, we first measure the solo exe-
cution time of the task in isolation. The cores in our model are out-of-order; in the best case, the memory
access latency can be hidden from the processor because in absence of data dependencies, the CPU pipeline
will not stall waiting for the completion of a memory load. (i.e., the instruction level parallelism of the
task is high). When measuring the execution time of task in isolation, it is not known how many memory
requests generated by the task were reordered and overlapped with CPU instructions.

To obtain a safe upper bound to the total response time, one can simply assume that all memory requests
had zero latency when measured solo, while all requests experience full memory latency: there is no MSHR
available, or no instruction that can be reordered to hide the latency of this memory request, and access close
rows when considering interference from other cores.

In order to compute the response time analysis of a task in the proposed CCM we thus proceed as
follows:

1) Similar to [28], for each task τ j, we define a pure computation time c j as the execution time of the
task minus the minimum latency for the H j memory requests of the task. As discussed above, the minimum
latency is zero, therefore the pure computation time equals to the measured execution time (c j = e j).

2) Then, when considering the tasks that execute in the busy interval, we add an extra latency term P for
each stall period (since they are just stalled for the whole period, without computation in the worst case). For
memory requests issued in contention periods, we instead add a latency term that represents the maximum
cumulative latency of all such requests (including the effects of contention). Let us call RL the total latency
for stall periods, and CL the total memory latency (including contention effects) for contention periods. We
also define the total memory latency as ML = RL + CL.

We can then perform response time analysis [29] of independent periodic tasks by computing a level-i
busy interval as follows: Let Ri be the response time at the previous iteration. We define:

• H̄i =
∑
∀ j, j≤i H j · d

Ri
T j
e as the total number of memory requests performed by all tasks on core under

analysis that arrive in the interval Ri (including task under analysis).

• c̄i =
∑
∀ j, j≤i c j · d

Ri
T j
e as the total computation performed by all tasks on core under analysis that arrive

in the interval Ri (including the one under analysis).

We then compute Ri for the next iteration as:

Ri ← P + c̄i + ML(Ri, H̄i), (9)
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and continue to iterate until convergence, or Ri > Ti. Note that we are summing the total computation with
the overall latency. We also need to add, however, an extra term P to account for the fact that the critical
instant might start right after the memory regulation budget has been exhausted (by previous tasks not in the
busy interval). The challenge is how to compute ML at each iteration, which we discuss in Section 5.2. As
reported in the equation, we will show that ML is a function of the length of the busy interval Ri, and the
total number of memory requests H̄i.

Figure 2 gives an example of the breakdown of a measured WCET of a task in a memory regulated
system. In Figure 2 we can see that the measured WCET can be broken down into 4 stall periods (blue
and green blocks) and 5 contention periods (red blocks). Note that all the periods except the last one must
take up an entire memory regulation period. The last memory regulation period of a task may finish before
the end of the memory regulation period. Inside a contention period, the task executes and suffers memory
latency due to contention. The first regulation period (blue block) represents the initial stall term due to the
memory regulation budget being already exhausted when the task under analysis is activated. The sum of the
last three stall periods (green blocks) in Figure 2 is the RL of the example task. The sum of all the memory
latency (light blue blocks) within each of the 5 contention periods in Figure 2 is the CL of the example task.
The total memory latency (ML) is the sum of RL and CL.

Fig. 2. Breakdown of measured WCET for a generic task with term of stall periods, contention periods

5.1. Contention Latency
Before detailing how to derive the total memory latency ML, we need to discuss the contention latency

CL. In general, the contention latency is a function of the number of memory requests, as well as the DRAM
device being used, the behavior of the DRAM controller, and the employed latency analysis, as discussed
in Section 2.1. In this paper, we adopt the Job-Driven delay analysis proposed in [9]. We discuss only
Job-Driven delay because the Request-Driven delay analysis leads to extremely pessimistic bounds for out-
of-order execution cores [30]. Based on [9], contention latency is a function of three parameters:the number
of memory requests issued by the core under analysis (which we denote with J), the interfering memory
requests issued from other cores targeting the bank accessed by the core under analysis (Iintra), and the
number of interfering memory requests issued by other cores targeting banks that the core under analysis
does not access (Iinter). Thus, we write CL(J, Iintra, Iinter) to denote an upper bound on the cumulative
memory latency of J requests of the core under analysis. We now show how to derive CL(J, Iintra, Iinter)
based on the analysis in [9]. It is important to note, however, that any memory analysis able to derive
such a function could be used instead, without any change to the rest of the analysis. Hence, our general
framework is independent of the specific characteristics of the DRAM controller being used, as long as
inter-bank requests cause less interference than intra-bank requests.

Based on the observations in [9], the worst case access latency for a close-row memory access, due to
row conflict caused by a previous access to the same bank, can be expressed as Lcon f . Since conflicting
accesses to the same bank cannot proceed in parallel, an interfering intra-bank memory access can at most
cause Lcon f delay to the core under analysis. An inter-bank memory interference can at most cause Linter =

LPRE
inter+LACT

inter +LRW
inter delay to the core under analysis. Where LPRE

inter, L
ACT
inter , and LRW

inter can be dreived fromDRAM
device timing constraints, as discussed in [9].
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Assume there are Iintra interfering memory accesses to banks that the core under analysis can access, and
there are Iinter interfering memory accesses to banks that the core under analysis cannot access. Then, the
time taken by the core under analysis to perform J memory accesses with an FR-FCFS scheduling algorithm
is bounded by:

CL(J, Iintra, Iinter) = (J + Iintra) · Lcon f + Iinter · Linter. (10)

First we consider the case where Iinter = 0. The worst case memory latency for a system with out-
of-order processors is when there is no reordering and overlapping instructions available in the micro ar-
chitecture so that the memory latency cannot be concealed from the processor. As the authors of [9] ob-
served, every intra-bank memory request suffers a worst case latency of Lcon f due to bank conflict; Hence,
CL(J, Iintra, 0) = J · Lcon f + Iintra · Lcon f is the time it takes for a DRAM bank to serve J + Iintra memory
requests when all the consecutive accesses are row-conflicts and the memory latency is not optimized by
out-of-order processors.

Then, we consider the case when there are Iinter > 0 inter-bank memory accesses. Based on the inter-
bank interference delay derived in [9], each inter-bank memory interference causes at most Linter additional
delay to a memory transaction accessing another bank because of the timing constraints defined in the
specifications [10]. Therefore, Iinter inter-bank memory accesses create at most Iinter · Linter memory delay.

By combining the two cases, we derive Equation 12.
The value of Lcon f and Linter are related to the DRAM device timing parameters. When a specific DRAM

device instance is selected, these values can be treated as constants. Throughout this paper we use DDR-
1333H as the selected device, based on the timing constraints defined in [10], we have Linter = 37.5ns,
Lcon f = 58.5ns. We refer interested readers to [9] for the details on how to derive the value of Lcon f and
Linter from the DRAM timing constraints.

5.2. Latency Computation

Based on the function CL(J, Iintra, Iinter), we now detail how to determine ML(Ri, H̄i). Given a response
time (Ri), the number of memory regulation periods that the tasks in the busy interval extend on (excluding
the first one that is fully stalled due to previous tasks) is equal to K = d(Ri − P)/Pe. As explained earlier
in this section, out of these K periods, some are regulation, and some are contention. Let us call Kreg the
number of regulation periods, and Kcont the number of contention ones. Since we do not know the number
of such intervals that results in the worst case latency (ML), we will treat Kreg and Kcont as variables and
use them to write an optimization problem with the objective of maximizing ML. Clearly, it must hold by
definition: Kreg + Kcont = K.

Similarly, we can split the memory requests of the tasks in the busy interval between requests in regu-
lation periods and contention periods. Let us call H̄reg

i and H̄cont
i the requests in regulation and contention

periods, respectively. We then also have by definition: H̄reg
i + H̄cont

i = H̄i. Furthermore, since we need to
have Qp memory requests for each regulation period, it must also hold: H̄reg

i = Kreg · Qp. That implies:
Kreg ≤ bH̄i/Qpc, and H̄cont

i = H̄i − Kreg · Qp.
We can now derive the latency. Given Kreg regulation periods, the regulation latency is simply: RL(Kreg) =

Kreg · P. For the contention latency, note that since we have Kcont contention periods, there are a total of
Iintra = Aintra ·Kcont and Iinter = Ainter ·Kcont intra-bank and inter-bank memory requests, respectively (based
on Equation 5, 6 derived in Section 4). We can plug in the values we obtained in the CL function to obtain
a contention latency: CL(H̄cont

i , Aintra · Kcont, Ainter · Kcont). Finally, summing the regulation and contention
latencies yields Equation 11:

ML(Ri, H̄i) = RL(Kreg)+CL(H̄cont
i , Aintra·Kcont, Ainter·Kcont) = Kreg·P+CL(H̄i−Kreg·Qp, Aintra·(K−Kreg), Ainter·(K−Kreg))

(11)
Finally, we need to discuss the contention latency CL. In general, the contention latency is a function

of: 1) how many memory requests the core under analysis makes during contention periods, which is H̄cont
i ;

2) the number of memory requests made during contention periods by other cores.
In this paper, we adopt the Job-Driven delay analysis proposed in [9] as the CL function. We discuss

only Job-Driven delay because the Request-Driven delay analysis leads to pathologically pessimistic bound
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for out-of-order execution cores [30]. Based on [9], the CL is a function of three parameters: the number of
memory requests issued by the core under analysis (J), the interfering memory requests issued from other
cores targeting the bank that core under analysis accesses (Iintra), and the number of interfering memory
requests issued by other cores targeting the banks that core under analysis does not access (Iinter).

Based on the observations in [9], the longest time it takes for a close row memory access with conflict
can be expressed as Lcon f . An intra-bank memory interference can at most create Lcon f delay to the core
under analysis. An inter-bank memory interference can at most create Linter = LPRE

inter + LACT
inter + LRW

inter delay to
the core under analysis.

Assume there are Iintra interfering memory accesses to the banks that the core under analysis can access,
and there are Iinter interfering memory accesses to the banks that the core under analysis cannot access.
Then, the time taken by the core under analysis to perform J memory accesses with a work-conserving
FR-FCFS scheduling algorithm is bounded by the CL function as expressed in Equation 12,

CL(J, Iintra, Iinter) = J · Lcon f + Iintra · Lcon f + Iinter · Linter (12)

First we consider the case where Iinter = 0. The worst case memory latency for a system with out-of-
order processor is when there is no reordering and overlapping instructions available in the micro archi-
tecture so that the memory latency cannot be concealed from the processor. As authors in [9] observed,
every interfering intra-bank memory request can cause at most Lcon f memory delay; Hence, CL(J, Iintra, 0) =

J · Lcon f + Iintra · Lcon f is the time it takes for a DRAM bank to serve J + Iintra memory requests when all the
consecutive accesses are row-conflicts and the memory latency is not optimized by out-of-order processors.
This is the bound for memory access time when only one bank is accessed during the busy interval.

Then, we consider the case when there are Iinter > 0 inter-bank memory accesses. Based on the inter-
bank interference delay proposed in [9], each inter-bank memory interference causes at most Linter delay
to a memory transaction accessing another bank because of the timing constraints defined in the specifica-
tions [10]. Therefore, Iinter inter-bank memory accesses create at most Iinter · Linter memory delay.

By combining the two cases, we derive equation 12.
The value of Lcon f and Linter are related to the DRAM device timing parameters. When a specific DRAM

device instance is selected, these values can be treated as constants. Throughout this paper we use DDR-
1333H as the selected device2, based on the timing constraints defined in [10], we have Linter = 37.5ns,
Lcon f = 58.5ns. Readers are encouraged to refer to [9] for the details on how to derive the value of Lcon f and
Linter from the DRAM timing constraints.

In summary, at each iteration performed to compute the task response time we need to solve the follow-
ing optimization problem to determine ML:
Maximize (over variable Kreg):

Kreg · P + CL(H̄i − Kreg · Qp, Aintra · (K − Kreg), Ainter · (K − Kreg)) (13)

Subject to:

0 ≤ Kreg ≤ min
(
K,

⌊ H̄i

Qp

⌋)
(14)

For a general CL function, one could try all possible values of Kreg subject to constraint in Inequality
(14) and find the one that maximizes Equation 13. However, when employing the CL in Equation 12, the

problem can be simplified: Note that in this case Equation 13 is equivalent to: Kreg ·

(
P − (Qp + Aintra) ·

Lcon f − Ainter · Linter

)
+ (H̄i + Aintra · K) · Lcon f + Ainter · K · Linter. Hence, if P − (Qp + Aintra) · Lcon f − Ainter · Linter is positive, then

ML is maximized by taking the maximum value Kreg = min
(
K,

⌊
H̄i
Qp

⌋)
; otherwise, by taking the minimum

Kreg = 0.

2This is the DDR device used in the evaluation platform P4080.
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6. Implementation

For proof-of-concept, we implement our CommLib using POSIX APIs on Linux because of its ease
to use, open source and easy portability. We know that Linux is not real-time OS. However, for proof-of-
concept it is a fair choice. Our implementation is still valid for any POSIX compliant real-time OS. As
explained that for I/O data either the CC directly transfers data from/to device memory into its own private
bank and move it from/to the private bank of AC that needs it; or the CC can directly transfer the data from
the I/O device to the bank of the application core that needs it. In this paper, we are not concerned about
the movement of I/O data and communication between the CC and ACs. The rest of this section describes
inter-core communication between ACs using proposed CCM.

As depicted in Figure 3(a), when a task running on one AC wants to send data to another task running
on a different AC, it writes the data to sending (TX) buffer in its private DRAM bank. In the Figure 3(a), the
TX buffer that stores outgoing messages from ACi to ACj is named TX i j. It should be noted that all the
tasks on an AC sending data to the other receiving (RX) tasks on a particular destination AC would write
to same TX buffer. For instance, Figure 3 shows that AC1 has separate TX buffers to send to different ACs.
The situation is symmetric on the other cores. The main reason for having separate TX buffers per AC pair
is to reflect the fact that we assign tc for each AC pair.

For the receiver task there is a separate RX buffer for each pair of communicating ATs. We name the
RX buffer that stores the incoming messages from AT k to AT j as RX k j. The data from the TX buffer is
copied into the RX buffer of a destination AT in another AC using the CC, as depicted in Figure 3(b). The
TX and RX buffers are non-cacheable to the ACs. In the next subsection, we provide the details of how the
TX buffer and RX buffers are implemented.

Fig. 3. Message Flow Diagram

The TX/RX buffers are created/implemented in the private banks of ACs using POSIX shm create(). The
CT as a part of the initialization process creates these buffers. The buffers are mapped to the ATs running
on ACs using mmap(). All ATs that need to send inter-core messages to receiving ATs need to access the
corresponding TX buffer in their dedicated bank as shown in Figure 3. The receiving ATs access their local
RX buffers to read any data produced by ATs on a different core. In order for the ATs running on the ACs
to access TX/RX buffers we have implemented a shared library, named CommLib.

We assume that there is a system configuration file, provided by the system administrator, that specifies
all the possible inter-core communication channels, message sizes, and periods, between the ATs in the
system. Based on parameters recorded in the system configuration file, the TX/RX buffers are created and
initialized with appropriate size so that the buffers will never overflow as long as all ATs use the library
according to the parameters recorded in the configuration file. When the CT and the ATs that use the
CommLib initialize, they read the same configuration file to obtain the names of the buffers they interact
with, and stores the list of buffers along with other metadata in their own local data structure. The ATs



Author / 00 (2020) 1–20 13

use CommLib to write/read data to/from the TX/RX buffers. The CT running on CC has access to all the
TX/RX buffers. As discussed in Sec. 3, all the TX and RX buffers are mapped to be non-cacheable. In our
implementation, we make the buffers non-cacheable by modifying the mmap() system call so that we can
make the tasks in our system always access the TX/RX buffers as non-cacheable.

As described in earlier subsections, an inter-core communication budget (tc) is assigned for each pair,
therefore we implemented a TX buffer for each AC-pair in our proposed CCM. The TX buffer is shared by
the CT and all the ATs running on the same AC that want to send data to a specific AC. Hence, access to the
shared data structure needs to be protected to avoid race conditions. To reduce the long blocking times for
tasks accessing the TX buffer, we propose the use of two circular buffers, as the Message Schedule Queue
and the Outgoing Message Queue shown in Figure 4. Using two circular buffers results in less blocking. In
fact in this case, it is enough to acquire a mutex only for the amount of time required to update the metadata
of the TX buffer, rather than for the entire duration of a send operation. The Outgoing Message Queue in
Figure 4 is used to store the actual TX packet data sent. The sent data is written to a free memory location
pointed in the next free entry in the queue (nextFreeBufPtr). The data written to the nextFreeBufPtr location
can be less than or equal to the packet size supported by our CCM as described in Figure 4.

Fig. 4. Per AC-Pair TX Buffer and Per AT-Pair RX Buffer

The pseudo code of the send API that takes txTaskID, rxTaskID, pointer to the txData and size is shown
in Algorithm 1. Based upon the txTaskID and rxTaskID passed in the send API, an array of metadata holding
information about all the TX buffers that the current AT may access, and their corresponding metadata are
searched to find the correct TX buffer (txBufferPtr) to which the send data must be written to, as shown in
line 2 of Algorithm 1. Once the correct TX buffer has been identified the task tries to acquire the mutex.
There can be multiple ATs that call send and try to write to the same TX buffer. Therefore, synchronization
is required in the form of a mutex lock.

Once a lock has been acquired the send procedure saves the current nextFreeBufPtr in the temp variable,
increments the nextFreeBufPtr, and releases the lock. The sent data is then copied to the address pointed
by temp (see lines 5 through 9 in Algorithm 1). After data copy has been completed via the temp pointer,
the address in the temp, along with other metadata such as txTaskID, rxTaskID and size, have to be stored
into the Message Schedule Queue. The Message Schedule Queue is also shared between all the ATs that
access the same TX buffer. As such, the send procedure acquires a lock on the metadata of the Message
Schedule Queue. The metadata of the Message Schedule Queue are rdPtr and wrPtr. The only metadata
that needs locking as a part of the send call is wrPtr. After a lock has been acquired on the metadata of the
Message Schedule Queue the temp pointer is written at the wrPtr, wrPtr is then incremented and the lock
is released (line 10 to 13 in Algorithm 1). The CT only reads wrPtr to determine if the queue is full, it never
updates the value of wrPtr, therefore it does not have to acquire the mutex. Note that in our implementation,
the critical sections contain only an update for the shared pointers. Therefore, the blocking time between
ATs due to synchronization is short and is independent of the packet size. In addition, no synchronization
between the CT and the ATs is required.

For the RX API, we create per AT-pair RX buffers so that the interference among all the receiving tasks
can be minimized. Each RX buffer is only shared between the CT and a single receiving task. Therefore,
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a Incoming Message Queue with a rdPtr and a wrPtr is implemented. Since only the RX AT updates the
rdPtr, whereas the CT only updates the wrPtr, there is no mutex required at the RX buffer.

The pseudo code of the receive API is shown in Algorithm 2. Similar to the send API, the receive API
searches all the RX buffers linked to this task as shown in line 2 of Algorithm 2. Upon match, it checks if
there is new data in the RX buffer by comparing the rdPtr and wrPtr pointers as shown in Figure 4. Since
we design the receive to be non-blocking, in case no new data is found in the receive buffer, the call returns
-1 as shown in line 3 and 4 of pseudo code in Algorithm 2. Each receiving task has its own Incoming
Message Queues, no synchronization is required. Lines number 5 through 7 in Algorithm 2 describe this.
When there is an incoming message in the queue, it is read into the buffer pointed by rxData passed to the
receive API. The rdPtr of RX buffer is incremented. The number of bytes being read is returned.

Note that both the send and the receive interact with the buffers on the caller AT’s private bank, no
inter-bank memory interference is introduced by these functions.

The CT running on CC has its per AC-pair communication bandwidth replenished every memory reg-
ulation period (P). It then iterates over all the TX buffers in the private banks of all the ACs. For each TX
buffer, based on the sender and receiver information contained in the Message Schedule Queue, the CT is
responsible for copying the data: from the Outgoing Message Queue to the Incoming Message Queue of
corresponding RX buffer in the private DRAM bank of the RX core. When the Message Schedule Queue
is empty, or the communication bandwidth for this particular TX buffer is exhausted, the CT moves to the
next TX buffer. After all the TX buffers have been processed, the CT sleeps for the rest of the regulation
period.

send(txTaskID, rxTaskID, txData, size)
txBufferPtr : = findtxBuffer(txTaskID,rxTaskID) ;
if txBufferPtr.full() then

return -1 ;
lock(txBufferPtr);
temp : = txBufferPtr.nextFreeBufPtr ;
Increment txBufferPtr.nextFreeBufPtr;
unlock(txBufferPtr);
memcpy (temp, txData, size);
lock(txBufferPtr);
txBufferPtr.wrPtr.idx := temp ;
Increment txBufferPtr.wrPtr ;
unlock(txBufferPtr);
return size;

Algorithm 1: Pseudo Code For send API

receive(txTaskID, rxTaskID, rxData, size)
rxBufferPtr : =findrxBuffer(txTaskID,rxTaskID) ;
if rxBufferPtr.full() then

return -1; // No new data
memcpy(rxData, rxBufferPtr.rdPtr, rxBufferPtr.size);
Increment rxBufferPtr.rdPtr ;
size := rxBufferPtr.size;
return size;

Algorithm 2: Pseudo Code For receive API

7. Evaluation

This section provides a detailed evaluation of our proposed CCM and compares it with the CBC where
no private bank is enforced, as described in Section 4. We start by describing the experimental setup and
the benchmarks that we have used for evaluation. We then analytically show how different memory budget
assignments (Qp) impact the WCET. Next, we evaluate the communication bandwidth of the implemented
CT based on our platform. Using the analysis discussed in Section 5, we then compare and show the benefit
of CCM over the CBC approach for the considered benchmarks. Finally, we show that proposed analysis
for CCM provides a safe WCET bound.
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7.1. Experimental Setup and Benchmarks
Our experimental setup considers P4080 platform from Freescale that employs eight Power Architecture

e500mc cores operating at frequencies up to 1.5 GHz. Each core in the system has its dedicated 32 KB I/D
Level 1 cache and a 128KB Level 2 backside cache. A 2MB of shared Level 3 cache is also present. As
discussed in Section III, we cannot formally prove that the considered HW platform is timing composi-
tional; as is the case with most available COTS platforms, no precise micro architectural model is available.
Therefore, in the paper we rely on an experimental evaluation based on measurements to show that the de-
rived WCET provides safe bound. If such architectural model was available, we argue that the proposed
communication scheme and analysis could still be applied after deriving tasks parameters (Hi and ei) based
on static program analysis [31].

A Linux-3.0.6 operating system that supports resource partitioning is installed on the evaluation plat-
form. The task under analysis and all the stressing tasks are statically allocated to each core by sched seta f f inity().
Only one DDR controller is enabled. For the proposed CCM , PALLOC [3] is enabled and configured so
that all the ACs can only access one single private DRAM bank, while the CC can access all the DRAM
banks. We use MemGuard [19] to enforce memory regulation on every core in the system, and every core is
regulated by the same memory budget. memory regulation period is configured to 1ms. and the memory reg-
ulation budget is 2520 memory transactions for each core. The 2520 memory transactions per MemGuard
period correspond to a memory bandwidth of 153MB/s per core.

For the proposed CCM, we consider a system with a single CC and 7 ACs. The WCET is obtained by
using the equations derived in Section 5. The parameters used to compute WCET are listed in Table 1. The
worst case scenario for CCM is when the task under analysis runs on an AC, while there are 6 interfering
ACs, each issuing Qp memory requests towards its own DRAM bank during every memory regulation
period.

Whereas , a periodic CT is deployed on the CC and accesses private banks of each AC and gener-
ates communication memory traffic of Tc at every MemGuard regulation period. The CC is also using its
remaining memory budget to stress its own bank.

In order to evaluate the system, we use San Diego Vision Benchmark Suite (SD-VBS) [32]. We use the
on-chip event processing unit (EPU) provided by P4080 to profile the memory access counts (Hi) of each
task under analysis. We measured the solo run time (ei) and memory access count of the benchmarks with
ci f (352x240) input resolution on the evaluation platform. The memory regulation budget is set to a number
that is larger than the available bandwidth, so no regulation is enforced. The measured parameters are listed
in Table 3, the value is the maximum value observed of 200 instances on the platform.

Table 3. SD-VBS Benchmark Solo Measurements
Benchmark ei (ms) Hi Memory Access rate (1/ms)
disparity 318 4448615 13989
localization 244 668 3
mser 44 719914 16362
sift 521 2668107 5121
stitch 293 1588683 5422
svm 290 214138 738
texture synthesis 25 42342 1694
tracking 176 289821 1647

7.2. Task WCET with different Memory Regulation Budget Assignment
As discussed in Sec 5, in a memory regulated system, the WCET of a task is dependent on the memory

budget assigned to the core. When the memory budget is small, the task tends to suffer more memory
regulation and less memory contention from the interfering cores. Whereas, if the memory budget is large
the task tends to suffer memory contention from the interfering cores rather than regulation [33]. Depending
upon the characteristics of tasks, the optimal memory budget assignment for different tasks can be different.
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We analyzed the WCET of the tasks in SD-VBS benchmark with various memory budget assignment
for the proposed CCM. Figure 5 shows the WCET of three selected tasks with various memory budget
assignment. All the Qp assignment are a multiple of 84 because there are 42 communication pairs among the
7 ACs, and each transaction compose a read and a write memory access. In this experiment we assume Tc =

Qp for all the Qp assignment so that the number of intra-bank inter-core interference(Aintra) is maximized
and thus the bound is safe. Note that in real-world implementations, Tc = Qp cannot be achieved since the
CC might be using some of the memory transactions for its local computation and the OS related overhead.
More details are described in next subsection.

The inverted bell curves of disparity and tracking show that the WCET of the tasks under analysis
increase rapidly when the assigned memory budget is very small or very large. The budget assignment that
determines the shortest WCET is different for the two tasks that gives the smallest WCET are different.
disparity has smallest WCET when the memory budget is around 2520 while tracking has smallest WCET
when the system has memory budget around 1344. localization is a special case in Figure 5. It is extremely
computation intensive, the average memory access rate is 3 access per millisecond. The curve shows that it
provides the smaller WCET when memory budget is smaller, since it is very unlikely that it can exhaust the
memory budget and get regulated even with a extremely small memory budget.

Fig. 5. WCET with different memory regulation budget assignments

A memory budget assignment that produces relatively small WCETs can be found experimentally. For
example, authors in [34] discussed how to obtain better system performance by assigning uneven mem-
ory regulation budgets to different cores. The development of a near optimal memory budget assignment
algorithm is beyond the scope of this paper.

For our experimental and analytically results, we pick a per-core memory regulation budget (Qp) to
2520 which corresponds to the minimum guaranteed bandwidth as used in the previous research [28], and it
provides a reasonable WCET for the benchmarks we evaluated.

7.3. Throughput of the CT
Considering the system parameters in the Section 7.1 for the considered P4080 platform with CCM.

When assigning a Qp = 2520 to CC in our implementation some of the memory transactions are used by the
CC to manage the OS related overhead. Table 4 summarizes the distribution of Qp on the CC. With CT not
deployed on CC. We find out that on average 604 memory transactions on CC within a memory regulation
period are used to deal with OS related overhead. This indicates that in our implementation the maximum
value of Tc available to CT is Qp − 604 = 1916. In our evaluation, we pick a value of Tc = 1848 because it
is the exact multiple of 84 that does not exceed the maximum available Tc. Using a communication budget
of 1848, the actual amount of memory transactions used to move the data between different pairs of ACs are
1596. This means around 13.6 percent of memory transactions issued by CT are used in dealing with the
metadata. The memory transactions of 1596 per memory regulation period can move data at a rate of 389
Mbps between all pairs of ACs.

7.4. CCM and CBC
In this section, we compare the WCET of tasks deployed on the target P4080 platform with our proposed

CCM versus the one with CBC that does not employ private bank.
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Table 4. Budget Distribution on CC
Total Budget Assignment (Qp) 2520

Average OS Overhead 604
Communication Budget (Tc) 1848

Metadata Overhead (Percentage) 13.6

The WCET of tasks in the CCM is obtained by assigning a Memguard budget of Qp to all the cores.
For simplicity, all the cores are assigned a budget of Qp = 2520 in CCM. The six interfering ACs

with their assigned budget stress their private banks. Out of the total budget of Qp = 2520, CC uses a
communication budget of Tc = 1848 to move the data between all the pairs of banks used by ACs. Whereas,
the remaining memory budget of Qp − Tc = 672 is used by CC to access its own private bank. The WCET
of the task under analysis is measured on the seventh AC that runs different benchmarks from SD-VBS.

For CBC, the WCET is obtained by considering the following worst case. The task under analysis runs
in one AC, while 6 memory intensive interfering ACs stress the memory, each with all its memory budget.
The ACs are assigned the same Memory Budget (Qp = 2520 ) as in the CCM experiment. The CC is
assigned memory budget of 0 and stays idle. Since CC is not required in CBC scheme, we make it stay idle
to get a fair comparison between the two approaches.

Since there is no private bank enforced in the CBC, the worst case scenario corresponds to the case in
which, during the busy interval , the memory access of all the active cores are issued to the same DRAM
bank and all the interfering memory access are considered to cause intra-bank contention delay. From
Figure 6 can see that for all the benchmarks, CCM provides a smaller WCET compared to CBC, with an
average of 56% WCET reduction. For the localization benchmark, the WCET on CCM is reduced by 65%
compared to on CBC.

Fig. 6. WCET of tasks in CBC and CCM

7.5. Analytical bound and measurement

In this section we show that the proposed WCET bound for CCM is safe for the target platform. We
configure the PALLOC and MemGuard to the parameters as described in Section 7.1. For the 6 interfering
ACs, we run a memory intensive bandwidth [1] benchmark to stress the private banks of the ACs. We also
deploy a CommTask on the CC to periodically access the private DRAM banks of all ACs to stress the
memory controller with Tc = 1848 communication traffic at every regulation period.

The analytical and measured WCET of CCM normalized to solo runtime of the SD-VBS is shown in
Figure 7. The results in the Figure 7 show that the analyzed WCET safely bounds the execution time when
measured on the platform.
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Fig. 7. Analyzed and measured WCET

8. Discussion and Future Work

In this section, we list some of the limitations of our work. First of all, the CCM model divides the
memory bandwidth equally among all the ACs, this might not scale well as the number of cores increase.
This is something we plan to address in our future work. Another issue is the pessimism in the theoretical
bound we derived in this paper. The two major factors that contribute to the pessimism are: 1) We assume
all the DRAM access of the task under analysis in the worst case hit a closed row in the DRAM bank and
the latency is not optimized by the out-of-order micro-architecture, 2) We assume that the solo execution
time measured contains only CPU executions, all the memory access are optimized away by the out-of-
order processor. These assumptions helped greatly simplify our analysis and represent a conservative, safe
upper-bound on real behavior of the system. However, we believe that the bound can be further improved
by relaxing some of these assumptions. We also plan to integrate I/O and provide end-to-end system.

9. Conclusion

In this paper, we complete the strictly partitioned multi-core framework by bringing inter-core commu-
nication into the picture. For our evaluation, we considered two communication models that are CBC and
CCM. Compared to the CBC where all the cores can access all the DRAM banks, the CCM where at most
only two cores access any DRAM bank can help improve the worst-case system performance. This approach
provides tighter upper bounds on the inter-core interference that can be easily factored into schedulability
analysis. The presented results show the gain of CCM over the CBC. Moreover, our presented approach
and model gives system level prospective of how to move networked single core processors into a single
multi-core architecture without breaking the hard-real time requirements that need to be met within a single
core.
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