
SCE-Comm: A Real-Time Inter-Core
Communication Framework for Strictly Partitioned

Multi-core Processors
Rohan Tabish1+, Jen-Yang Wen1+, Rodolfo Pellizzoni2, Renato Mancuso3, Heechul Yun4, Marco Caccamo5,

and Lui Sha1
1University of Illinois at Urbana-Champaign, USA, {jwen11, rtabish, lrs}@illinois.edu

2University of Waterloo, CA, rpellizz@waterloo.ca
3Boston University, USA, rmancuso@bu.edu

4University of Kansas, USA, heechul.yun@ku.edu
5Technical University of Munich, USA, mcaccamo@tum.de+These authors have equal contribution

Abstract—Multicore processors provide great average case
performance. However, the use of multicore processors for
safety-critical applications can lead to catastrophic consequences
because of contention on shared resources. The problem has
been well-studied in literature and solutions such as partitioning
of shared resources have been proposed. Strict partitioning of
memory resources among cores, however, does not allow inter-
core communication.

In this paper, we propose Communication Core Model (CCM)
that implements the inter-core communication by bounding the
amount of intercore interference in a partitioned multi-core sys-
tem. A system-level perspective of how to realize such CCM along
with the implementation details is provided. We compare our
proposed CCM with Contention-based Communication (CBC)
model where no private banking is enforced for any core. For
evaluation, we consider San Diego vision benchmark suite (SD-
VBS). The results of the evaluation show that the CCM offers
56 percent improvement in worst case execution time (WCET)
when compared with CBC.

I. INTRODUCTION

Commercial-off-the-shelf (COTS) multi-core processors have
been developed by industry to meet the ever growing process-
ing requirements. These processors offer great average case
performance, low power consumption compared to multiple
single cores as well as cost effective design. However, the
use of multi-core processors for safety-critical applications
can lead to the unpredictable timing behavior of the task on
the core under consideration. This unpredictability in a multi-
core processor is because of the contention on the shared
resources such as DRAM, LLC and the Memory controller
by the other cores. The problem has been well studied in the
research community [14], [8], [13], [9], [5] and so far has
been acknowledged in industry by Federal Aviation Authority
(FAA) [1].

Researchers in [9] demonstrated that strict partitioning of
the shared resources (LLC, bus bandwidth and DRAM banks)
in a multi-core environment is required to achieve predictable
execution of the tasks running on each core. A similar approach
has been proposed by MC2 in [7] where predictability in
a multicore processor is ensured by implementing different
isolation techniques for each criticality level. Strict partitioning
of the shared resources has been adopted by FAA in its recent
CAST32A position paper [1].

The work in [4] describes how to implement inter-core
communication for mixed-criticality tasks using cache isolation
and DRAM banks in a multi-core processor inside MC2

framework. However, in their proposed model all the cores that
need to communicate compete for the same DRAM bank. This
is a problem (as shown in evaluation of this paper) because
it introduces significant amount of contention, making the
communication slow. We refer to the communication between
all the cores using the same bank described in [4] as CBC
in this work. Our proposed CCM model is for intended for
hard-real time applications. Whereas, the CBC based approach
is in [4] is designed for mixed criticality applications.

In this work, we follow the partitioning approach described
in [9] to propose and implement inter-core communication
framework. When designing such a framework, our design
philosophy is to minimize the number of cores accessing a
DRAM bank at any point in time to avoid communication slow-
down. Our proposed design is implemented using standard linux
and POSIX based system calls. We acknowledge that Linux is
not real-time. However, our implementation is compatibility to
any real-time OS that is POSIX compliant.

There are many ways to implement the inter-core communi-
cation and it depends on the amount of data needed to be shared.
For small communication messages, an intuitive approach is to
use a portion of LLC and avoid accessing the main memory [4].
However, the implementation of locking chunks of messages in
the LLC requires specific hardware support. This paper focuses
on the scenarios where messages are large and hardware support
for locking LLC is not available.

The main contributions of this paper include the following:
● A novel CCM that bounds the amount of interference

on the DRAM banks when implementing shared com-
munication in a strictly partitioned SCE frame work is
proposed.

● Implementation details of the communication library
(CommLib) and communication task (CT) using linux
and POSIX based APIs in proposed CCM are provided.

● An experimental evaluation of the proposed CCM is
provided and is compared with CBC.

The rest of this paper is organized as follows. Section II
introduces the related work and background. Section III intro-

2020 9th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 8-11 JUNE 2020, BUDVA, MONTENEGRO

978-1-7281-6949-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on September 15,2020 at 17:22:12 UTC from IEEE Xplore. Restrictions apply.

duces the system model and assumptions. Section IV provides
details on the implementation of the proposed CommLib and
CT. Section V presents the experimental results of the CCM
and the CBC approach on P4080 platform from NXP [2].
Finally, Section VI concludes our work.

II. BACKGROUND AND RELATED WORK

In this section we describe the necessary background and
related work that we used as the basis of partitioning shared
resources in a multi-core environment.

Multi-core systems have shared resources such as LLC, bus
bandwidth and DRAM banks. These shared resources can be
partitioned among the cores to avoid conflicts. In literature,
techniques such as [8], [12], [11], [3] have been proposed to
partition the shared last level cache (LLC), MemGuard [14]
to divide memory-controller bandwidth and PALLOC [13] to
partition the DRAM into multiple banks.

MemGuard is a memory bandwidth reservation mechanism
that is implemented at the Operating System (OS) layer.
The main purpose of this mechanism is to distribute (evenly
or unevenly depending upon application requirements) the
bandwidth available from the memory controller among all
the cores. It works periodically, and for each interval e.g.,
1ms, a fixed memory budget (Qp) is assigned to each core.
During each period, the hardware performance counter (PMC)
on each core measures the amount of memory requests or
memory transactionsthat are generated by the core. In the rest
of the paper we use the terms memory transactions or memory
requests interchangeably. The PMC are programmed to generate
an overflow interrupt to the core once its assigned budget has
been exhausted. Upon the reception of the overflow interrupt,
MemGuard stalls the core by descheduling all the tasks. At
the beginning of the new period, a new budget assignment
takes place, and the previously descheduled tasks are scheduled
again.

DRAM memory module contains multiple resources (banks)
that can be accessed in parallel. In COTS multicore platforms,
banks are typically shared among all the cores even though
programs running on the cores do not share memory space. In
order to partition the banks and assign each bank to a particular
core, we rely on PALLOC. PALLOC allows partitioning of
banks to avoid bank sharing among cores, thereby improving
isolation on COTS multicore platforms without requiring
any special hardware support. On P4080 we see a latency
improvement of 1.6x times when we have different banks for
each core [13].

III. SYSTEM MODEL AND ASSUMPTIONS

A. Architectural/Hardware Assumptions

We assume a standard COTS-based multi-core processor
with n cores. Each core in the system features a private cache.
There is also a shared last-level cache (LLC).

We also assume that the underlying main memory is a
DRAM with B banks. CPUs access main memory through
a shared interconnect. The platform provides a mechanism
to measure the number of memory requests issued by each
core to the main-memory. The platform is capable of counting
aggregated read and write memory accesses. These assumptions
are meet by various COTS based embedded platforms such
as P4080 from NXP that we use in our evaluation, Intel

Core2Quad Q8400 and many other platforms employ such
hardware performance tools.

B. Proposed Model
Using the hardware assumptions described in Section III-A,

we specifically partition the shared DRAM banks and the
available memory bandwidth equally among all the cores. For
simplicity, we partition the resource equally among all the cores.
A system designer can always assign uneven partitioning of the
shared resources depending upon the applications/workloads
requirements. In our proposed CCM, out of n multi-core proces-
sors one core is dedicated for inter-core communication. This
core is referred to in rest of the paper as Communication Core
(CC). All the other cores are referred to as Application Cores
(ACs). The ACs are only allowed to access their dedicated
DRAM banks, whereas the CC is capable of accessing all
DRAM banks. A block diagram of our proposed model is
shown in Figure 1.

Fig. 1. Block Diagram
In our proposed CCM the CC is responsible for copying data

from the bank of one AC to the bank on another AC. The task
responsible for this data movement is called communication
task (CT). A summary of the system parameters and their values
used for evaluations in Sec. V is provided in Table I. Within
each memory regulation interval, the CC is capable of accessing
all the banks. There exist at most (n−1)⋅(n − 2) communication
sequences that need to be completed in one memory regulation
period assuming all the ACs need to communicate with each
other. For each pair of communicating cores, we assume CC
issues at most tc memory requests to the sender’s private bank,
and at most tc memory requests to the receiver’s private bank.
The total number of memory requests made by the CC to banks
of ACs during one memory regulation period is represented
by Tc = 2 ⋅ (n − 1) ⋅ (n − 2) ⋅ tc.

The CT is also responsible for communication between I/O
devices and ACs. We specifically note that that the proposed
CCM is in accordance with the design principles of Integrated
Modular Avionics (IMA) architecture. Originally, strict par-
titioning of shared resources in a multicore framework was
designed to support the use of the standard IMA architecture
on each core. The (single core) IMA architecture uses Time
Division Multiplexing Access (TDMA) to run applications
with different criticality in different partitions. Within each
partition, tasks are scheduled by generalized rate-monotonic
algorithm [10]. In IMA standard, the zero partition (I/O
partition) is used to handle all the I/O and inter-partition
message exchanges. Existing work [6] further proposed to

2020 9th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 8-11 JUNE 2020, BUDVA, MONTENEGRO

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on September 15,2020 at 17:22:12 UTC from IEEE Xplore. Restrictions apply.

consolidate the zero partitions from each core into a specific
core, called I/O core, to manage the I/O accesses. It is natural
to extend the I/O core architecture to implement inter-core
communication using the model as shown in Figure 1; here
the CC takes the place of the I/O core, being responsible for
moving I/O data between I/O devices and all the other ACs as
well as the inter-core communication data between ACs.

More in details, using the CCM, one can handle the I/O data
from I/O devices using the following two approaches: i) either
the communication core transfers data from/to device memory
into its own private bank and move it from/to the private bank
of AC that needs it; ii) or the CC can directly transfer the
data from the I/O device to the bank of the application core
that needs it. For simplicity, we consider the second approach,
shown as black arrows in Figure 1. When an AC needs to
access an I/O device buffer, CC issues at most tio memory
requests from the TX buffer in the sender’s private bank (I/O
output), and at most tio memory requests to the RX buffer in
the receiver’s private bank (I/O input). The memory transactions
required to move data to/from a device buffer to the private
bank of ACs is represented by Tio = 2 ⋅ (n − 1) ⋅ tio.

In summary, in each memory regulation period, the CC
performs up to Tc memory transactions for inter-core commu-
nication, and up to Tio transactions for I/O transfers. The CC
can then use the remaining regulation budget (Qp − Tc − Tio)
to execute tasks that access CC’s own private banks. These
tasks include OS related activities such as drivers, device
bookkeeping and interrupt handling etc.

C. Motivating Example
In this subsection we provide a motivating example of our

proposed model. The parameters used in this example are
similar to what has been included in the evaluation section.
Consider a system of eight cores (n = 8). Here one core is
dedicated for communication purpose. The remaining seven
cores are ACs. All the cores have their own DRAM bank.
Let us assume that the minimum guaranteed bandwidth rate
provided by the memory controller is computed experimentally
using the approach in [14] and is found to be 1.2GB/s. If we
split the bandwidth equally among the cores then each of the
core will get 153MB/s. Let us assume that we have memory
regulation implemented at the granularity of 1 ms. Given the
minimum guaranteed bandwidth of each core is 153MB/s, each
core is assigned a Qp of 2520 memory transactions per memory
regulation period. Since the memory transactions are generated
by the misses in the LLC, the transaction length is equal to
the cache line size. The cache line size for the P4080 platform
considered in our evaluation is 64 bytes. We assume same
cache line size for this example.

For simplicity of this example, we assume that the whole
memory budget is available to CC i.e. Tc = Qp and Tio = 0.
These 2520 memory transactions will be divided equally
between all the pairs of ACs. This gives us per-pair com-
munication budget of tc = Tc/(2 ⋅ (n − 1) ⋅ (n − 2)) = 30
memory transactions. This translates to data size of 1920 bytes
per memory regulation period. By assigning tc = 30 memory
transactions for one AC-pair, we can say that during each
memory regulation period the maximum packet size that can
be successfully transferred from the bank of one application
core to the bank of another application core is 1920 bytes. In
this example we assumed Tc = Qp. However, in an actual OS

TABLE I
SYSTEM PARAMETERS

System Parameters Symbol Value
Number of Cores n 8
Number of ACs n − 1 7
Memory Regulation Period P 1 ms

implementation Tc is always less than Qp. This is because some
of the budget assigned to the CC is used for OS bookkeeping
(such as I/O activity, interrupts handling etc) activities. We
empirically measure this overrhead in our evaluation.

D. Application Task Model

We consider a partitioned and fixed priority scheduling policy,
where each core has a set Γ of N periodic application tasks,{τ1,, τN}, each with different priority whereby τ1 has the
highest priority and τN has the lowest priority.

The deadline of a task is equal to its period. Each AC deploys
multiple application tasks (ATs). All the ATs belonging to a
dedicated AC only access the private DRAM bank assigned to
them. However, this private bank can be accessed by the CT
running on the CC.

IV. IMPLEMENTATION

For proof-of-concept, we implement our CommLib using
POSIX APIs on Linux because of its ease to use, open source
and easy portability. We know that Linux is not real-time
OS. However, for proof-of-concept it is a fair choice. Our
implementation is still valid for any POSIX compliant real-
time OS. As explained that for I/O data either the CC directly
transfers data from/to device memory into its own private bank
and move it from/to the private bank of AC that needs it; or
the CC can directly transfer the data from the I/O device to
the bank of the application core that needs it. In this paper,
we are not concerned about the movement of I/O data and
communication between the CC and ACs. The rest of this
section describes inter-core communication between ACs using
proposed CCM.

As depicted in Figure 2(a), when a task running on one AC
wants to send data to another task running on a different AC,
it writes the data to sending (TX) buffer in its private DRAM
bank. In the Figure 2(a), the TX buffer that stores outgoing
messages from ACi to ACj is named TX i j. It should be
noted that all the tasks on an AC sending data to the other
receiving (RX) tasks on a particular destination AC would
write to same TX buffer. For instance, Figure 2 shows that
AC1 has separate TX buffers to send to different ACs. The
situation is symmetric on the other cores. The main reason for
having separate TX buffers per AC pair is to reflect the fact
that we assign tc for each AC pair.

For the receiver task there is a separate RX buffer for each
pair of communicating ATs. We name the RX buffer that stores
the incoming messages from AT k to AT j as RX k j. The
data from the TX buffer is copied into the RX buffer of a
destination AT in another AC using the CC, as depicted in
Figure 2(b). The TX and RX buffers are non-cacheable to the
ACs. In the next subsection, we provide the details of how the
TX buffer and RX buffers are implemented.

The TX/RX buffers are created/implemented in the private
banks of ACs using POSIX shm create(). The CT as a part of

2020 9th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 8-11 JUNE 2020, BUDVA, MONTENEGRO

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on September 15,2020 at 17:22:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Message Flow Diagram

the initialization process creates these buffers. The buffers are
mapped to the ATs running on ACs using mmap(). All ATs
that need to send inter-core messages to receiving ATs need to
access the corresponding TX buffer in their dedicated bank as
shown in Figure 2. The receiving ATs access their local RX
buffers to read any data produced by ATs on a different core. In
order for the ATs running on the ACs to access TX/RX buffers
we have implemented a shared library, named CommLib.

We assume that there is a system configuration file, provided
by the system administrator, that specifies all the possible inter-
core communication channels, message sizes, and periods,
between the ATs in the system. Based on parameters recorded
in the system configuration file, the TX/RX buffers are created
and initialized with appropriate size so that the buffers will
never overflow as long as all ATs use the library according
to the parameters recorded in the configuration file. When the
CT and the ATs that use the CommLib initialize, they read
the same configuration file to obtain the names of the buffers
they interact with, and stores the list of buffers along with
other metadata in their own local data structure. The ATs use
CommLib to write/read data to/from the TX/RX buffers. The
CT running on CC has access to all the TX/RX buffers. As
discussed in Sec. III, all the TX and RX buffers are mapped to
be non-cacheable. In our implementation, we make the buffers
non-cacheable by modifying the mmap() system call so that
we can make the tasks in our system always access the TX/RX
buffers as non-cacheable.

As described in earlier subsections, an inter-core commu-
nication budget (tc) is assigned for each pair, therefore we
implemented a TX buffer for each AC-pair in our proposed
CCM. The TX buffer is shared by the CT and all the ATs
running on the same AC that want to send data to a specific
AC. Hence, access to the shared data structure needs to be
protected to avoid race conditions. To reduce the long blocking
times for tasks accessing the TX buffer, we propose the use
of two circular buffers, as the Message Schedule Queue and
the Outgoing Message Queue shown in Figure 3. Using two
circular buffers results in less blocking. In fact in this case, it is
enough to acquire a mutex only for the amount of time required
to update the metadata of the TX buffer, rather than for the
entire duration of a send operation. The Outgoing Message
Queue in Figure 3 is used to store the actual TX packet data
sent. The sent data is written to a free memory location pointed

in the next free entry in the queue (nextFreeBufPtr). The data
written to the nextFreeBufPtr location can be less than or equal
to the packet size supported by our CCM as described in
Figure 3.

Fig. 3. Per AC-Pair TX Buffer and Per AT-Pair RX Buffer

The pseudo code of the send API that takes txTaskID, rx-
TaskID, pointer to the txData and size is shown in Algorithm 1.
Based upon the txTaskID and rxTaskID passed in the send API,
an array of metadata holding information about all the TX
buffers that the current AT may access, and their corresponding
metadata are searched to find the correct TX buffer (txBufferPtr)
to which the send data must be written to, as shown in line 2
of Algorithm 1. Once the correct TX buffer has been identified
the task tries to acquire the mutex. There can be multiple ATs
that call send and try to write to the same TX buffer. Therefore,
synchronization is required in the form of a mutex lock.

Once a lock has been acquired the send procedure saves the
current nextFreeBufPtr in the temp variable, increments the
nextFreeBufPtr, and releases the lock. The sent data is then
copied to the address pointed by temp (see lines 5 through
9 in Algorithm 1). After data copy has been completed via
the temp pointer, the address in the temp, along with other
metadata such as txTaskID, rxTaskID and size, have to be stored
into the Message Schedule Queue. The Message Schedule
Queue is also shared between all the ATs that access the same
TX buffer. As such, the send procedure acquires a lock on
the metadata of the Message Schedule Queue. The metadata
of the Message Schedule Queue are rdPtr and wrPtr. The
only metadata that needs locking as a part of the send call
is wrPtr. After a lock has been acquired on the metadata of
the Message Schedule Queue the temp pointer is written at
the wrPtr, wrPtr is then incremented and the lock is released
(line 10 to 13 in Algorithm 1). The CT only reads wrPtr to
determine if the queue is full, it never updates the value of
wrPtr, therefore it does not have to acquire the mutex. Note
that in our implementation, the critical sections contain only
an update for the shared pointers. Therefore, the blocking time
between ATs due to synchronization is short and is independent
of the packet size. In addition, no synchronization between the
CT and the ATs is required.

For the RX API, we create per AT-pair RX buffers so that the
interference among all the receiving tasks can be minimized.
Each RX buffer is only shared between the CT and a single
receiving task. Therefore, a Incoming Message Queue with
a rdPtr and a wrPtr is implemented. Since only the RX AT
updates the rdPtr, whereas the CT only updates the wrPtr,
there is no mutex required at the RX buffer.

2020 9th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 8-11 JUNE 2020, BUDVA, MONTENEGRO

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on September 15,2020 at 17:22:12 UTC from IEEE Xplore. Restrictions apply.

The pseudo code of the receive API is shown in Algorithm 2.
Similar to the send API, the receive API searches all the RX
buffers linked to this task as shown in line 2 of Algorithm 2.
Upon match, it checks if there is new data in the RX buffer by
comparing the rdPtr and wrPtr pointers as shown in Figure 3.
Since we design the receive to be non-blocking, in case no
new data is found in the receive buffer, the call returns -1
as shown in line 3 and 4 of pseudo code in Algorithm 2.
Each receiving task has its own Incoming Message Queues,
no synchronization is required. Lines number 5 through 7 in
Algorithm 2 describe this. When there is an incoming message
in the queue, it is read into the buffer pointed by rxData passed
to the receive API. The rdPtr of RX buffer is incremented.
The number of bytes being read is returned.

Note that both the send and the receive interact with the
buffers on the caller AT’s private bank, no inter-bank memory
interference is introduced by these functions.

The CT running on CC has its per AC-pair communication
bandwidth replenished every memory regulation period (P).
It then iterates over all the TX buffers in the private banks
of all the ACs. For each TX buffer, based on the sender
and receiver information contained in the Message Schedule
Queue, the CT is responsible for copying the data: from the
Outgoing Message Queue to the Incoming Message Queue
of corresponding RX buffer in the private DRAM bank of the
RX core. When the Message Schedule Queue is empty, or
the communication bandwidth for this particular TX buffer is
exhausted, the CT moves to the next TX buffer. After all the
TX buffers have been processed, the CT sleeps for the rest of
the regulation period.

Algorithm 1: Pseudo Code For send API
1 send(txTaskID, rxTaskID, txData, size)
2 txBufferPtr : = findtxBuffer(txTaskID,rxTaskID) ;
3 if txBufferPtr.full() then
4 return -1 ;
5 lock(txBufferPtr);
6 temp : = txBufferPtr.nextFreeBufPtr ;
7 Increment txBufferPtr.nextFreeBufPtr;
8 unlock(txBufferPtr);
9 memcpy (temp, txData, size);

10 lock(txBufferPtr);
11 txBufferPtr.wrPtr.idx := temp ;
12 Increment txBufferPtr.wrPtr ;
13 unlock(txBufferPtr);
14 return size;

Algorithm 2: Pseudo Code For receive API
1 receive(txTaskID, rxTaskID, rxData, size)
2 rxBufferPtr : =findrxBuffer(txTaskID,rxTaskID) ;
3 if rxBufferPtr.full() then
4 return -1; // No new data
5 memcpy(rxData, rxBufferPtr.rdPtr, rxBufferPtr.size);
6 Increment rxBufferPtr.rdPtr ;
7 size := rxBufferPtr.size;
8 return size;

V. EVALUATION

We start the evaluation by describing the experimental setup
and the benchmarks that we have used for evaluation. Next,
we evaluate the communication bandwidth of the implemented
CT based on our platform. Finally, we compare and show the
benefit of CCM over the CBC approach for the considered
benchmarks SD-VBS.

A. Experimental Setup and Benchmarks
Our experimental setup considers P4080 platform from

Freescale that employs eight Power Architecture e500mc cores
operating at frequencies up to 1.5 GHz. Each core in the system
has its dedicated 32 KB I/D Level 1 cache and a 128KB Level
2 backside cache. A 2MB of shared Level 3 cache is also
present.

A Linux-3.0.6 operating system that supports resource
partitioning is installed on the evaluation platform. The task
under analysis and all the stressing tasks are statically allocated
to each core by sched setaffinity(). For the proposed CCM,
PALLOC [13] is enabled and configured such that all the ACs
can only access a single dedicated DRAM bank; whereas,
the CT on CC can access all the DRAM banks. We use
MemGuard [15] with even budget assignment of 2520 memory
transactions and a memory regulation period of 1ms.

For the proposed CCM, we consider a system with a single
CC and 7 ACs. The parameters used to compute WCETare
listed in Table I. The worst case scenario for CCM is when
the task under analysis runs on an AC, while there are 6
interfering ACs, each issuing Qp memory requests towards
its own DRAM bank during every memory regulation period.
Whereas, a periodic CT deployed on the CC accesses private
banks of each AC and generates communication memory traffic
of Tc at every MemGuard regulation period. The CC is also
using its remaining memory budget to stress its own bank. The
I/O budget Tio is zero.

B. Throughput of the CT
In order to measure the throughput of the CT task running

on CC, we use the system parameters described in section V-A.
When assigning a Qp = 2520 to CC in our implementation
some of the memory transactions are used by the CC to manage
the OS related overhead. These overhead include bookkeeping
tasks of the linux OS. In our setup, we reconfigure the linux to
send all I/O device drivers interrupts to the CC. We then run
the measure the average overhead of these bookkeeping tasks
when nothing is running in the system. It should be noted that
for different OSes these overheads might be different. Here,
we just demonstrate how one can remove such overheads from
the total assigned budget, if they exist. Table II summarizes
the distribution of Qp on the CC. The results indicate that
the OS related overhead for bookkeeping tasks on our linux
configured P4080 platform during one memory regulation
period on average was 604 memory transactions. This indicates
that in our implementation the maximum value of Tc available
to CT is Qp − 604 = 1916. In order to evenly distribute the
remaining budget 1916 among all the 84 AC pairs, we find the
closest number that is multiple of 84 and assign that as the total
budget Tc = 1848 for communication. Using a communication
budget of 1848, the actual amount of memory transactions
used to move the data between different pairs of ACs are 1596.
This reveals that 13.6 percent of memory transactions issued
by CT are used in dealing with the metadata. The memory
transactions of 1596 per memory regulation period can move
data at a rate of 389 Mbps between all pairs of ACs.

C. CCM and CBC
In this section, we compare the WCET of the CCM with

the CBC. For each of these scenarios, the task on core under
analysis runs one of the SD-VBS benchmark over 10,000 times.

2020 9th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 8-11 JUNE 2020, BUDVA, MONTENEGRO

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on September 15,2020 at 17:22:12 UTC from IEEE Xplore. Restrictions apply.

TABLE II
BUDGET DISTRIBUTION ON CC

Total Budget Assignment (Qp) 2520
Average OS Overhead 604

Communication Budget (Tc) 1848
Metadata Overhead (Percentage) 13.6

WCET among 10,000 runs while the other cores run memory
intensive program is considered.

In CBC no private banking is enforced and there is no CC.
Therefore, if an AC wants to communicate with another AC.
It will read the data from its private bank and will directly
write it to the bank of other AC. Since all the ACs can directly
write to the bank of any other AC. The worse case for CBC
occurs when all the ACs are sending data to DRAM bank of
one AC. In order to have a fair comparison with CCM, we
use six stress cores and one core under analysis. All seven
ACs are accessing the same DRAM bank. All the cores are
assigned a Memguard budget of Qp = 2520.

As described earlier, in CCM the communication between
the ACs is accomplished using the CC. The worse case in CCM
happens when core under analysis runs the benchmark from its
private bank with six other ACs running the memory intensive
benchmark to stress their private bank and the CC moves data
between all pairs of the ACs. In this experiment all the cores
are assigned a budget of Qp = 2520. Some of the assigned
Qp budget on CC is used for bookkeeping. We experimentally
found it be 604. As described earlier that inorder to evenly
distribute the communication budget equally among all 84 pairs
we pick a total budget value of 1848 (a multiple of 84)for
highest priority CT. The remaining budget of 68 was used by
CC to stress its private bank.

In Figure 4 we provide the WCET comparison of various SD-
VBS benchmarks using CBC and CCM approach described
above. The results of experiments show that for most SD-
VBS benchmarks the CCM on average provides 56% smaller
WCET when compared to CBC. The localization benchmark
in addition shows a further reduction of 65%.

Fig. 4. WCET of tasks in CBC and CCM

VI. CONCLUSION

We propose an inter-core communication framework for
strictly partition multi-core platforms. For our evaluation, we
considered two communication models that are CBC and CCM.
Compared to the CBC where all the cores can access all the
DRAM banks, the CCM where at most only two cores access
any DRAM bank can help improve the worst-case system
performance. The presented results show the gain of CCM
over the CBC. Moreover, our presented approach and model
gives system level prospective of how to move networked single
core processors into a single multi-core architecture without

breaking the hard-real time requirements that need to be met
within a single core.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant numbers CNS-1646383, NSF CNS 18-15891 and Navy
N00014-17-1-2783. M. Caccamo was also supported by an
Alexander von Humboldt Professorship endowed by the Ger-
man Federal Ministry of Education and Research. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily
reflect the views of the NSF.

REFERENCES

[1] FAA position paper on multi—core processors, CAST-32A (rev 0).
https://www.faa.gov/aircraft/air cert/design approvals/air software/cast/
cast papers/media/cast-32A.pdf. Accessed: 2017-10-16.

[2] Nxp semiconductors. https://www.nxp.com/. Accessed: 2019-10-16.
[3] Muhammad Ali Awan, Konstantinos Bletsas, Pedro F Souto, Benny

Akesson, and Eduardo Tovar. Mixed-criticality scheduling with dynamic
memory bandwidth regulation. In 2018 IEEE 24th International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 111–117. IEEE, 2018.

[4] M. Chisholm, N. Kim, B. Ward, N. Otterness, J. Anderson, and F.D. Smith.
Reconciling the tension between hardware isolation and data sharing
in mixed-criticality, multicore systems. In 2016 IEEE International
Real-Time Systems Symposium (RTSS’16), December 2016.

[5] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H., and D. M. Johnson.
Rtos support for multicore mixed-criticality systems. In 2012 IEEE
18th Real Time and Embedded Technology and Applications Symposium,
pages 197–208, April 2012.

[6] Jung-Eun Kim, Man-Ki Yoon, Richard Bradford, and Lui Sha. Integrated
modular avionics (ima) partition scheduling with conflict-free i/o for
multicore avionics systems. In Computer Software and Applications
Conference (COMPSAC), 2014 IEEE 38th Annual, pages 321–331. IEEE,
2014.

[7] N. Kim, B. C. Ward, M. Chisholm, C. Y. Fu, J. H. Anderson, and F. D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-critcality provisioning. In 2016
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12, April 2016.

[8] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni. Real-time cache management framework for multi-core
architectures. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th, pages 45–54. IEEE, 2013.

[9] Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki
Yoon, Rodolfo Pellizzoni, Heechul Yun, Russel Kegley, Dennis Perlman,
Greg Arundale, et al. Single core equivalent virtual machines for hard
real—time computing on multicore processors. Technical report, 2014.

[10] Lui Sha, Ragunathan Rajkumar, and Shirish S Sathaye. Generalized
rate-monotonic scheduling theory: A framework for developing real-time
systems. Proceedings of the IEEE, 82(1):68–82, 1994.

[11] Vivy Suhendra and Tulika Mitra. Exploring locking & partitioning
for predictable shared caches on multi-cores. In Design Automation
Conference, 2008. DAC 2008. 45th ACM/IEEE, pages 300–303. IEEE,
2008.

[12] Bryan C Ward, Jonathan L Herman, Christopher J Kenna, and James H
Anderson. Outstanding paper award: Making shared caches more
predictable on multicore platforms. In 2013 25th Euromicro Conference
on Real-Time Systems (ECRTS), pages 157–167. IEEE, 2013.

[13] H. Yun, R. Mancuso, Z.P. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[14] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64. IEEE,
2013.

[15] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui
Sha. Memory access control in multiprocessor for real-time systems with
mixed criticality. In Real-Time Systems (ECRTS), 2012 24th Euromicro
Conference on, pages 299–308. IEEE, 2012.

2020 9th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 8-11 JUNE 2020, BUDVA, MONTENEGRO

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on September 15,2020 at 17:22:12 UTC from IEEE Xplore. Restrictions apply.

