
On the Interplay of Computation and Memory

Regulation in Multicore Real-Time Systems

Denis Hoornaert∗, Golsana Ghaemi†, Andrea Bastoni∗, Renato Mancuso†, Marco Caccamo∗, and Giulio Corradi‡

∗Technical University of Munich †Boston University ‡Xilinx
∗{denis.hoornaert, andrea.bastoni, mcaccamo}@tum.de, †{golsana, rmancuso}@bu.edu, ‡giulioc@xilinx.com

Abstract—The ever-increasing demand for high-performance
in the time-critical embedded domain has pushed the adop-
tion of powerful yet unpredictable heterogeneous Systems-on-
a-Chip. The shared memory subsystem, which is known to be
a major source of unpredictability, has been extensively studied,
and many mitigation techniques have been proposed. Among
them, performance-counter-based regulation techniques have
seen widespread adoption. However, combining performance-
based regulation with time-domain isolation is a relatively unex-
plored approach that requires the assessment of limitations and
benefits.

In this article, we outline our current work-in-progress on
SHCReg (Software Hardware Co-design Regulator), a full-stack
hardware/software co-design architecture that aims to improve
the interplay between CPU and memory isolation for mixed-
criticality tasks running on the same core.

Index Terms—Criticalities, Real-time, Hypervisor, Budget-
based Regulation

I. INTRODUCTION

The real-time community has proposed many successful

techniques to mitigate the impact of inter-core memory inter-

ference (e.g., [6], [7]). Notably, performance counter (PMC)

based techniques such as Memguard [7] have received signifi-

cant attention due to their practicality. In fact, PMC-regulation

techniques are used to establish temporal isolation by mit-

igating the problem of non-arbitrated memory bandwidth

sharing between cores. In the embedded and real-time domain,

these techniques are often implemented within a partitioning

hypervisor (e.g., Jailhouse [2]) when consolidation of multiple

RTOSs onto the same multicore system-on-a-chip (MPSoC)

is required. At the same time, when consolidating complex

applications with mixed-criticality requirements onto MPSoC

with rich OSs like Linux, CPU provisioning still remains a

fundamental dimension. Here, server abstractions –e.g., the

Constant Bandwidth Server (CBS) [1]– are well known and

widely used, with the SCHED_DEADLINE [5] policy being

the most popular example.

Despite combining CBS-based CPU scheduling and PMC-

regulation to achieve isolation in both time and memory

The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant number CCF-2008799.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the NSF. Marco Caccamo was supported by an Alexander von Humboldt
Professorship endowed by the German Federal Ministry of Education and
Research.

domains being a logical choice, effective integration proves

to be challenging. The need to enact the CBS at the task

level (i.e., in the OS) and PMC-regulation at the CPU level

(and hence in the hypervisor) results in a lack of coordination

between the two mechanisms. This leaves the system incapable

of handling what we refer to as memory overload conditions.

These correspond to all the cases where high-critical tasks

are still eligible for scheduling in the OS, but unable to use

the necessary memory bandwidth because throttled via PMC-

regulation at the hypervisor level.

Fig. 1 illustrates a run-time scenario where such overload

can happen. The considered system is composed of one high

and one low criticality task (respectively τ1 and τ0) scheduled

using CBS to absorb execution variations. The common PMC-

budget assigned is determined beforehand via profiling and

the addition of a fixed safety margins, a common practice

in industrial applications. While in Fig. 1a, τ1 is able to

complete on time, in Fig. 1b it experience extra blocking

due to the lack of sufficient memory budget caused by an

increased memory consumption of τ0. Such an increase can

be due to changing computational needs that require additional

memory accesses (for example, consider the case of object

detection or object tracking in an almost empty street or at

a very crowded intersection). We note that such an increase

in memory consumption cannot be determined apriori without

resorting to very pessimistic over-estimations.

Our proposed Software Hardware Co-design Regulator ar-

chitecture (SHCReg) tackles exactly this issue. Under SHCReg

(Fig. 1c), when an overload is detected, the critical memory

accesses of τ1 are prioritized at hardware level by switching

the policy of the interconnect to main memory from a fair

round-robin to a priority-based one. Consequently, τ1 can

further execute and meet its deadline. Priorities are assigned

depending on the criticality of the tasks running on each

core. The idea is to facilitate τ1’s completion (possibly at

the expanses of other cores) and quickly restore the standard

isolation property of the system.

We envision implementing SHCReg on the Xilinx ZCU102

development board leveraging available tools including Linux,

Memguard on Jailhouse,1 and SchIM [4]. The envisioned

hardware/software co-design architecture and the strategy em-

ployed are outlined in this work-in-progress.

1https://github.com/rntmancuso/jailhouse-rt



(a) Standard PMC-regulation, normal case. (b) Standard PMC-regulation, memory
budget depletion.

(c) SHCReg regulation, with interconnect
policy switch.

Fig. 1: Example scenario of a PMC-regulated core, where an increased memory consumption causes τ1 to miss its deadline.

II. PROPOSED REGULATION POLICY

Due to an early depletion of the memory budget Ak on

core CPUk (see Fig. 1b), CPUk could experience a memory

overload. Formally, a memory overload occurs if a critical

task τi, running on CPUk under server- and PMC-regulation,

is unexpectedly stalled because its memory budget Ak has

depleted, while its associated server Si is still eligible for

execution.

When one or more CPUk experience a memory overload,

SHCReg reacts by prioritizing their memory transactions over

those of other cores. The following rules control the regulation:

1) By default, the interconnect is configured to use a fair

policy (i.e., similar to round-robin), and each CPUk

memory budget accounting is done following standard

PMC-regulation rules.

2) When CPUk exhausts its memory budget Ak, it is

stalled until Ak is replenished unless: i) the criticality

of the running task τi is high, or ii) a high critical

task is released while CPUk is stalled (i.e., before

the next replenishment period). In these cases, the core

experiences a memory overload.

3) Upon a memory overload, the interconnect policy π is

switched to fixed-priority (FP ), and each CPUk’s bus

priority is set according to the criticality of the executed

task. (We assume a finite set of task’s criticalities.)

4) A CPUk leaves the memory overload state when the

high critical task has completed or when the memory

budget Ak is replenished. When all CPUs have left a

memory overload, the interconnect policy is set to Fair.

5) Each CPUk with leftover memory budget always con-

tinues its memory budget accounting until budget de-

pletion is reached. Only critical tasks τi can execute

even when the memory budget is depleted thanks to the

memory overload policy.

Interestingly, when considered alone, the individual regulation

mechanisms employed by SHCReg are insufficient to achieve

the same degree of isolation and flexibility. 1) Perhaps the

most straightforward solution would be to over-provision

the per-CPU memory bandwidth. But unfortunately, the safe

(conservative) usage of PMC-regulation alone inevitably leads

to under-utilization of the already scarce memory bandwidth.

2) On the other hand, statically prioritizing CPUs when they

Fig. 2: SHCReg layered architecture

access main memory (e.g., [4]) might lead to starvation for the

low-priority CPUs and prevent them from running non-critical

memory-intensive tasks entirely. 3) Dynamically switching the

bus priority depending on the criticality level of the running

tasks defeats the isolation properties of PMC-regulation and

might prevent low-critical tasks from running when the system

is not subject to memory overload.

III. ARCHITECTURE

We target systems that consolidate different RTOSs on top

of (lightweight) partitioning hypervisors. SHCReg implements

therefore a layered architecture such as the one depicted in

Fig. 2. CPU regulation is completely implemented in software

at the operating system level, while memory regulation re-

quires a hardware/software co-design, and its implementation

is distributed across the hypervisor software level and the

hardware-based control of the data link to the main memory

(see red arrows in Fig. 2). Furthermore, lightweight commu-

nication between layers is required to propagate, for example,

information on the criticality of the currently executing tasks

(see black arrows in Fig. 2).

The target platform for SHCReg is the Xilinx ZCU102

UltraScale+ development board,2 a Linux and Hypervisor

capable embedded platform associating a tightly integrated

programmable fabric (i.e., FPGA) with a traditional Processing

System composed of a CPU cluster.

A. CPU Regulation

Real-time tasks execute at the application level on top of an

OS with real-time capabilities. The OS supports a server-based

2Any PS-PL platform being hypervisor and Linux capable is eligible.



scheduling policy (e.g., [3]) that provides isolation among the

tasks. We use Linux as OS to prototype our architecture. In

Linux, the SCHED_DEADLINE scheduling policy [5] realizes

a Constant Bandwidth Server. We associate each task to a

server and define its maximum utilization. Each server is

statically assigned to one of the CPUs.

B. Memory Regulation

The memory regulation is the most complex part of our

architecture and consists of two layers, one implemented at the

hypervisor level and one implemented at the hardware level,

as depicted in Fig. 2.

1) PMC-regulation and Memory Overload Detection: The

hypervisor implements a PMC-regulation mechanism limit-

ing the maximum number of memory transactions towards

the main memory the cores can issue. Implementing PMC-

regulation at the hypervisor level makes the PMC-regulation

transparent to the OS level, and it allows using potentially

different OSs while ensuring adequate memory bandwidth

control. In addition, the proposed architecture allows different

OSs to use different types of CPU server regulation. The belief

is that separating the PMC-regulation level from the CPU

regulation level is a clean and sensible architectural choice.

2) Dynamic FP/Fair Interconnect Policy: The lowest part

of the memory regulation realized by SHCReg is implemented

in hardware extending the architecture of SchIM [4].3

The SchIM module is implemented on the PL-side and

acts as an intermediate step on the data path between cores

and DRAM. Similarly to [4], all CPU-originated memory

transactions are redirected to the PL-side and to SchIM. As

shown in Fig. 2, each core is associated with a queue storing

the memory transactions directed to DRAM. Fig. 2 illustrates

that CPU-originated transactions are split into two input links,

each being shared by two CPUs. Under heavy traffic, the

queuing of the transactions enables SchIM to schedule them

as desired by the system. Scheduling is enacted by deciding

which queue’s content is forwarded to the target memory,

and is orchestrated by the hardware transaction schedulers

(depicted as FP & Aging Sched. and multiplexer modules in

Fig. 2). The scheduler module defines a set of hardware sched-

ulers (e.g., Fixed-Priority, TDMA) implemented at design time

and statically available on the PL at system boot. A scheduler

can be selected by operating on a set of registers accessible

by the whole system through a memory-mapped configuration

port. We extended the original SchIM by enabling the dynamic

choice of a specific scheduler at run-time and by adding the

Fair scheduling policy.

C. Design Choices

The synchronization and the communication between the

layers constitute a critical performance hurdle of our architec-

ture. It is particularly the case regarding the interplay between

the memory budget and the CPU budget (respectively enforced

at the hypervisor- level and OS-level).

3https://github.com/denishoornaert/MemorEDF

Considering rules (2) and (4) in Sec. II, the release of a

critical task while a CPU is stalled and dynamically switch-

ing the priority of the interconnect when a critical task

is completed requires careful synchronization between the

OS and the hypervisor. For example, while a hypercall can

be used by the operating system to signal the completion

of critical task, synchronizing the complex high-resolution

timers in Linux with the PMC-regulation logic (at hypervisor

level) to detect the release of a high-critical task during a

memory- regulation phase is more complex. Either direction

introduce foreseeable run-time overheads that might limit the

potential benefits of the proposed architecture. Furthermore,

the implementation of PMC-regulation in hypervisors such as

Jailhouse-rt4 is realized with interrupt-nesting in hypervisor-

context. Its synchronization with the expiration of Linux’s

hrtimers is therefore particularly challenging and might

require considerable hypervisor changes. Nonetheless, while

slow, hypercalls completion times can be bounded. On the

other hand, not using a hypervisor in the middle would

automatically prevent the conception of consolidated systems

using various OSs or RTOSs.

IV. CONCLUSION AND FUTURE WORK

We presented our work-in-progress on SHCReg, a hard-

ware/software co-design that aims to solve the memory over-

load problems of real-time workloads with variable memory

requirements on architectures that feature both CPU and PMC-

based regulations. Our targets are real-world systems that

consolidate multiple different RTOSs on a single MPSoC

leveraging on hypervisor technologies.

Despite the technical challenges on the design side, we be-

lieve that, by exploiting the capability of dynamically change

the policy of the interconnect, SHCReg could provide real-

time and performance benefits for a wide class of workloads.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. In Proceedings 19th IEEE Real-Time Systems

Symposium (Cat. No.98CB36279), pages 4–13, 1998.
[2] Siemens AG. Jailhouse hypervisor. https://github.com/siemens/. Ac-

cessed: 2021-02-08.
[3] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable

Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag, 2011.

[4] Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso. A Memory
Scheduling Infrastructure for Multi-Core Systems with Re-Programmable
Logic. In Björn B. Brandenburg, editor, 33rd Euromicro Conference on

Real-Time Systems (ECRTS 2021), volume 196 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 2:1–2:22, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https:
//drops.dagstuhl.de/opus/volltexte/2021/13933.

[5] Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline
scheduling in the Linux kernel. Software: Practice and Experience,
46(6):821–839, 2016.

[6] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In 2013 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), page 45–54, 2013.
[7] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory

Bandwidth Management for Efficient Performance Isolation in Multi-Core
Platforms. IEEE Transactions on Computers, 65(2):562–576, 2016.

4https://github.com/rntmancuso/jailhouse-rt


