
Real-Time Systems
https://doi.org/10.1007/s11241-019-09340-0

A real-time scratchpad-centric OS with predictable
inter/intra-core communication for multi-core embedded
systems

Rohan Tabish1 · Renato Mancuso2 · Saud Wasly3 · Rodolfo Pellizzoni4 ·
Marco Caccamo5

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Multi-core processors have replaced single-core systems in almost every segment of
the industry. Unfortunately, their increased complexity often causes a loss of tem-
poral predictability which represents a key requirement for hard real-time systems.
Major sources of unpredictability are shared low level resources, such as the memory
hierarchy and the I/O subsystem. In this paper, we approach the problem of shared
resource arbitration at an OS-level and propose a novel scratchpad-centric OS design
formulti-core platforms. In the proposedOS, the predictable usage of shared resources
across multiple cores represents a central design-time goal. Hence, we show (i) how
contention-free execution of real-time tasks can be achieved on scratchpad-based
architectures, and (ii) how a separation of application logic and I/O operations in
time domain can be enforced, and (iii) how predictable asynchronous inter/intra-core
communication between tasks can be performed. To validate the proposed design, we
implemented the proposed OS using commercial-off-the-shelf (MPC5777M) plat-
form. Experimental results show that novel design delivers predictable temporal
behavior to hard real-time tasks, and it provides performance gain of upto 2.1× com-
pared to traditional approaches.

Keywords IPC · real-time · Predictability · Multi-core · embedded systems ·
Scratchpad · Operating system · Inter-core and intra-core communication

1 Introduction

Multi-core platforms are mainstream products. Multi-core chips allow different pro-
cessing tasks to execute in parallel while accessing a set of shared hardware resources,

B Rohan Tabish
rtabish@illinois.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-019-09340-0&domain=pdf

Real-Time Systems

Table 1 Suitable commercial multicore COTS platforms

Features MPC5777M MPC5746M TMS320C6678 ARM Cortex-R8

Scratchpad ✓ ✓ ✓ ✓

DMA engines ✓ ✓ ✓ ✓

Dedicated I/O bus ✓ ✓ ✗ Impl. dependent

Number of cores 3 + 1 (lockstep) 3 + 1 (lockstep) 8 4

including: main memory, buses, caches, and I/O peripherals. However, the extensive
sharing of hardware resources by different cores in a multi-core platform can heavily
affect the system’s temporal behavior and its predictability. From a real-time point of
view, unregulated contention on shared resources induces significant execution time
variance. Hence, specific mechanisms to manage and schedule shared resources need
to be designed and validated. This problem has also been acknowledged by the Federal
Aviation Administration (FAA), which currently imposes the use of a single core for
safety-critical avionic applications unless proper analysis and mitigation of inter-core
interference channels are demonstrated (FAA 2015).

This problem has been approached from different perspectives: (a) novel multi-core
hardware platforms have been designed (Bui et al. 2011; Ungerer et al. 2010), (b) new
OS-level techniques have been developed to perform shared resource partitioning and
management on commercial-off-the-shelf (COTS) platforms (Mancuso et al. 2015).
While a hardware solution might be desirable to meet the needs of modern real-time
systems, it does not represent a viable solution in the short term for the embedded
industry. Conversely, enforcing determinism at software level on a general-purpose
COTS architecture may trade some performance with execution time predictability.
In this work, we propose an approach that lies in between with respect to the afore-
mentioned methodologies. In fact, (i) we consider a segment of COTS platforms that
are designed to support desirable features for hard real-time computation as shown in
Table 1 and (ii) redesign parts of the operating system (OS), leveraging such features
to guarantee predictability and preserve performance. With these objectives in mind,
we focus on emerging embedded scratchpad-based multi-core platforms. Scratchpad
memories, in fact, have been proven to provide better temporal isolation when com-
pared to traditional caches (Puau and Pais 2007; Metzlaff et al. 2011). Alongside, we
exploit additional hardware features that vendors are now including in some modern
families of multi-core platforms designed for the embedded market, such as: sepa-
rate I/O and memory buses, the presence of dual-port memories with direct memory
access (DMA) support, and core specialization. Thereby, this work provides following
contributions:

1. Anovel operating systemdesign is built ground-up to achieve temporal predictabil-
ity. Our OS design targets multi-core embedded COTS platforms and exploits core
specialization and low level resource management policies.

2. To the best of our knowledge, this is the first OS that integrates a scratchpad-based
CPU scheduling mechanism with a task schedule-aware I/O subsystem.

123

Real-Time Systems

3. A description of how predictable communication between the tasks running on
same as well as different cores can be achieved when scratchpad-based scheduling
is performed.

4. A novel analysis is derived to calculate the response time of real-time tasks under
the proposed scheduling strategy.

5. Finally, a full implementation of the proposed OS has been performed using a
commercially available MPC5777M multi-core micro-controller. Its design has
been validated using a combination of synthetic tasks and EMBC benchmarks.

Before dwelling into the details of this paper, we would like to highlight that the
proposed executionmodel and resultingOS design are beneficial for tasks that perform
a large number of memory accesses over a relatively small memory footprint—i.e.
data-intensive applications (Metzlaff et al. 2011). This is because the main advantage
of our proposed model is that overhead of accessing the global (slower) memory is
encountered only once using the DMA, and this can be further reduced by pipelining
workload execution and memory accesses. After the overhead of loading a task’s
code and data into a local/faster memory is completed, the task executes without
suffering any contention on data/instruction accesses. For tasks with large memory
footprint that cannot entirely fit into a scratchpad partition, we suggest to split the
task into several segments that fit as discussed in (Software techniques for scratchpad
memory management 2015) and Li et al. (2005). Each segment will then leverage
the same performance benefits as mentioned above. The main goal of this paper is to
describe a full system that incorporates scratchpad memories (SPM) management and
corresponding schedulability analysis.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
work. Next, Sect. 3 introduces the considered systemmodel and architectural assump-
tions. The design of the proposed OS is described in Sect. 4, while Sect. 5 discusses
how to conduct task schedulability analysis. We describe the performed implemen-
tation in Sect. 6, and discuss the experimental results in Sect. 7. Finally, the paper
concludes in Sect. 8.

2 Related work

Temporal predictability is a crucial design-time constraint for real-time operating
systems (RTOS). Several RTOS designs have been proposed, and a number of
implementations are available, such as: QNX Neutrino,1 FreeRTOS,2 Wind River
VxWorks,3 These RTOS were designed for single-core platforms, where the use
of real-time scheduling policies, efficient inter-process communication and priori-
tized interrupt handling were enough to ensure temporal predictability. Support for
multi-core platforms was later introduced without a substantial change in design.
Unfortunately, however, a new set of challenges (mainly related to shared hardware

1 http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html.
2 http://www.freertos.org/.
3 http://www.windriver.com/products/vxworks/.

123

http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
http://www.freertos.org/
http://www.windriver.com/products/vxworks/

Real-Time Systems

resource management Bui et al. 2011; Ungerer et al. 2010; Mancuso et al. 2015) is
faced when trying to achieve predictability on multi-core systems.

In avionic standards such as ARINC 653 and ARINC 651, the concept of resource
partitioning is central for the design of safety-critical systems. Even if different parti-
tions execute on the same physical processor, the behavior/misbehavior of a software
component should not affect the execution of another component running on a separate
partition (Wilding et al. 1999). In single-core systems, requirement for inter-partition
isolation can be achieved by employing time division and fault containment strategies.
On multi-core systems, however, how to enforce and certify strong partitioning across
different cores is still an active research topic.

In Jean et al. (2012), Jean et al. provide a high-level discussion of themain issues for
the extension of existing avionic standards to multi-core systems. The work consid-
ers multi-core integrated modular avionic (IMA) systems were partitions may run in
parallel on different cores. The authors raise the concern that in the presence of faults,
the use of shared hardware resources may lead to a violation of strict inter-partition
isolation requirements. In multi-core systems, interference channels (if not carefully
mitigated) are also present under normal operating conditions. This has been acknowl-
edged by certification authorities (FAA 2015) and it represents a source of concern
for the use of multi-core processors in avionics systems. In this work, we propose a
RTOS design that leverages co-scheduling techniques of shared resources to mitigate
inter-core performance interference. Although we envision that some of the proposed
design principles could be reused to enhance temporal protection in multi-core avion-
ics systems, the proposed OS design rather targets embedded platforms suitable for
automotive systems and its extension to IMA is currently out of the scope of this work.

The proposed layer of OS-level strategies to perform co-scheduling of shared
resources is in line with the concept of Deterministic Platform Software (DPS) as
defined in Girbal et al. (2015). Specifically, in our system we enforce a deterministic
execution model for running applications, constructing a DPS that actively controls
and schedules access to shared resources. Following the nomenclature proposed in
Girbal et al. (2015), since tasks need to be specifically engineered and compiled to
comply with our task model, the proposed solution is application aware. In this work,
themulti-stage taskmodel is also consistentwith theAcquisitionExecutionRestitution
(AER) task model proposed in Durrieu et al. (2014).

The AER model proposed in Durrieu et al. (2014) achieves predictability by exe-
cuting tasks from local core memories (scratchpads), while shared memory resources
are only used for inter-core communication and device I/O during acquisition and/or
restitution phases. Inter-core interference arising from unregulated access to shared
memory is mitigated by ensuring that: (i) the execution phase of different tasks can
progress in parallel on multiple cores; and (ii) at most one acquisition or restitution
phase is in execution at any instant of time. In Durrieu et al. (2014), the fundamental
assumption is that the total footprint of all the tasks assigned to a core fits inside the
core’s local memory. In this work, we relax this constraint and only require that a task
fits in half of the local memory space. This relaxation leads to important differences
in the RTOS design: in fact, dynamic loading and unloading of tasks from/to local
memories (together with I/O data) need to be handled. For these reasons, tasks’ exe-
cution phases are parallelized; additionally, task loading/unloading is pipelined with

123

Real-Time Systems

execution by using DMA engines. Finally, asynchronous I/O device activity is decon-
flicted from applications by exploiting hardware specialization at the bus level and by
handling system-to-device interaction inside an isolated I/O subsystem.

Techniques to deriveWCETbounds on amulti-core systemaccounting for themajor
sources of unpredictability have been thoroughly analyzed in Chattopadhyay et al.
(2014). The latter work provides an in-depth overview of the state-of-the-art analysis
methodologies for shared buses, shared caches as well as scratchpad memories. Its
focus, however, is the derivation of safeWCET bounds in presence of typical platform
features and given a known task set. However, there is no discussion on how a real-
time OS can be designed on multi-core platforms to support multi-tasking subject to
temporal constraints.

The design of multi-core architectures that are able to provide worst-case execution
time guarantee have been proposed in Bui et al. (2011) and Ungerer et al. (2010).
Specifically, the precision timed (PRET) architecture (Bui et al. 2011) introduces task
runtime control and deadline enforcement at the instruction set architecture (ISA)
level. Additional hardware modifications allow to achieve better performance without
sacrificing predictability. Similarly, in the MERASA project (Ungerer et al. 2010;
Wolf et al. 2010), predictability is achieved at hardware level by controlling inter-core
interference. These works propose architectural features that have been prototyped
on field-programmable gate array (FPGA), but unfortunately such features cannot be
found in COTS system-on-chips (SoC).

In Mancuso et al. (2015), Yun et al. (2013), Mancuso et al. (2013), and Yun et al.
(2014) the authors presented the Single-Core Equivalence framework: that is a set of
OS-level techniques that can be implemented onCOTSplatforms to enforce spatial and
temporal partitioning of shared memory resources. Derived analysis and experimental
validation showed that WCET of tasks can be bounded and that inter-core temporal
isolation can be achieved.Apart from the SCE there are otherworks fromLampka et al.
(2014), Schranzhofer et al. (2010), Flodin et al. (2014), Lampka and Lackorzynski
(2016) andFarshchi et al. (2018) that allowus to bound theworst case execution time of
real-time tasks in a multi-core environment. In Lampka et al. (2014) and Schranzhofer
et al. (2010), authors bound the non-determinism introduced in the execution of the
real-time tasks in a multicore environment because of contention on main memory by
proposing the use of time-structured tasks model and timed automata for shared bus
(by considering different arbitration schemes such as time division multiple access
(TDMA), round robin (RR) or a hybrid of the two). In order to bound the amount of
interference from different cores on the shared memory controller, authors in Flodin
et al. (2014) adapt a dynamic software-based memory throttling approach.

Similarly, in Farshchi et al. (2018) authors propose Deterministic Memory where
the platform OS and hardware architecture guarantees strictly bounded worst-case
access timing. Three main differences exist with respect to the proposed approach.
First, the work in Mancuso et al. (2015), Lampka et al. (2014), and Flodin et al.
(2014) assumes a traditional task execution model, while in this work this assumption
is relaxed using a three-phase execution model. Second, in this paper we focus on
scratchpad-based architectures. Finally, this work also proposes the design of a novel
I/O subsystem.

123

Real-Time Systems

Proposed work is a contribution to existing literature on the usage of SPM for real-
time systems (Puau and Pais 2007; Metzlaff et al. 2011; Wasly and Pellizzoni 2013;
Whitham et al. 2012; Whitham and Audsley 2012; Takase et al. 2010). In fact, a num-
ber of works have explored the benefits of scratchpadmemories over traditional caches
for multi-core platforms (Puau and Pais 2007; Metzlaff et al. 2011). Other works on
embedded systems exist that propose scratchpad memory allocation strategies target-
ing real-time applications (Deverge and Puaut 2007; Lu et al. 2013; Bai et al. 2013;
Suhendra et al. 2010; Falk and Kleinsorge 2009). In Takase et al. (2010) the authors
propose a scratchpad memory management technique for preemptive multi-tasking
systems where they introduce three methods for SPM partitioning that are: (i) spatial,
(ii) temporal, and (iii) hybrid approaches. By employing these three methodologies
on a real-time operating system the authors show that they were able to save 73%
of energy when compared to the standard approach. The authors also conclude that
hybrid approaches outperform the other two approaches. However, this work has not
been applied to multi-core processors. Moreover, the focus of Takase et al. (2010) is
not predictability but energy efficiency, making its contribution substantially different
from proposed work.

Finally, our design shares some similarities with scratchpad scheduling approaches
that have been proposed in Wasly and Pellizzoni (2013), Whitham et al. (2012),
Whitham and Audsley (2012), and Wasly and Pellizzoni (2014). Compared to these
works, our approach mainly differs in four aspects: (i) it is not focused exclusively
on scratchpad management, but we rather show how a scratchpad can be integrated
within an overall OS design; (ii) a full OS design is implemented on a commercially
available (COTS) micro-controller; (iii) a predictable inter/intra-task communication
scheme is provided and analyzed; and (iv) it is also discussed how I/O traffic issued
by different cores is deconflicted. Part of this work without inter/intra core communi-
cation has been presented at Tabish et al. (2016). Table 2 compares our work with the
relevant related work.

3 Systemmodel and assumptions

This section summarizes the task model that we use and the hardware assumptions we
rely on for the design of proposed predictable operating system, namely SPM-centric
OS.

3.1 Scratchpadmemories

The first assumption we make is the presence of SPM. We assume that each core in
our system features a block of private scratchpad memory. Moreover, in this work we
assume that the size of each per-core scratchpadmemory is big enough to fully contain
the footprint of any two tasks in the system. Hence, the footprint of the sum of the two
largest tasks in the system is lower than or equal to the size of the SPM. Although this
assumption may appear restrictive, we make the following considerations. First, mod-
ern scratchpad-based micro-controllers provide scratchpad memories that have a size

123

Real-Time Systems

Table 2 Comparison of current work with related work

Work SPM/cache I/O core Single/
multicore

Inter/intra
core
comm.

Implementation
COTS/FPGA/
GEM5

OS (Linux
or RTOS)

PRET (Bui et al.
2011)

SPM N Single N FPGA X

MERASA
(Ungerer et al.
2010)

SPM/Cache N Multicore N FPGA X

SPM-custom
(Schranzhofer
et al. 2010;
Flodin et al.
2014; Lampka
and
Lackorzynski
2016)

SPM N Single N FPGA X

SPM-Commodity
(Farshchi et al.
2018)

SPM N Single N COTS X

SCE (Mancuso
et al. (2015);
Chattopadhyay
et al. (2014);
Wolf et al.
(2010); Yun
et al. (2013))

Cache Y Multicore N COTS Linux

Deterministic
memory
(Lampka et al.
2014)

Cache N Multicore N GEM5 (simulator) Linux

This work SPM Y Multicore Y COTS RTOS

in the same order of magnitude as the main memory. For instance, in the MPC5777M
that we use for our evaluation, each core includes 80 kB of scratchpad with a total
main memory size of about 400 kB. Second, hard real-time control tasks typically are
compact in terms of memory size. Third, if a task violates this size constraint, known
methodologies exist (Software techniques for scratchpad memory management 2015,
Li et al. (2005)) to split a large application into smaller sub-tasks that are individually
compliant with the imposed constraint.

In our proposed design before tasks can be executed from SPM, their code and
data need to be transferred from main memory. Thus, we adopt a task model that is
composed of three phases: a load phase, an execution phase and an unload phase.
First, during the load phase, the code and data image for the activated task is copied
from main memory to the SPM. Next, during the execution phase, the loaded task
executes on the CPU by relying on in-scratchpad data. Finally, the portion of data that
has been modified and needs to remain persistent across subsequent activations4 of

4 We use the terms activation and arrival interchangeably to mean a task release.

123

Real-Time Systems

the task is written back to main memory during the unload phase. More details are
provided in Sect. 4.

It should be noted that compared to a traditional cache-based platform with locked
instruction caches and temporarily locked data caches there are no notable differences
in terms of predictability. However, in case of cache-based platforms one is forced to
use the CPU to perform cache prefetching and locking, while the work proposed in this
paper uses DMA-aided scratchpad re-configuration with task execution. Moreover, in
many architectures the last-level cache (LLC) is shared among multiple cores and
platform-specific locking and/or cache partitioning features may not be available,
which is in line with the current trend in COTS embedded systems. For instance,
support for cache locking has been removed in the transition from ARMCortex-A9 to
Cortex-A15. Conversely, the newly introduced Cortex-R family of chips feature core-
local scratchpadmemories–also known as tightly-coupledmemories (TCM)with sizes
up to 1 mB per core.

3.2 DMA engines

To avoid to stall the CPU when load-unload operations are performed, we assume that
copy operations toward/from the scratchpad memories can proceed in parallel with
task executions. This can be achieved as long as execution and load-unload phases
belong to two distinct tasks. In order to parallelize load-unload operations with task
execution, we rely on DMA engines. We assume that the hardware provides DMA
engines that are able to transfer data from the main memory into the scratchpad and
vice versa. By exploiting (i) the capability of parallelizing load-unload operations
together with task execution, and (ii) the assumption that any task image can fit in
half of the SPM, it is possible to hide task loading/unloading overhead during task
execution, as we discuss in Sect. 4.

3.3 Dedicated I/O bus

The next made assumption is about the organization of the I/O subsystem. Since
the activity of I/O devices is typically triggered by external events, it is inherently
asynchronous. Unfortunately, unregulated I/O activity on the system bus can lead to
unpredictable contention with CPU activity (Betti et al. 2013). Hence, unarbitrated I/O
traffic represents one of the major sources of unpredictability in real-time systems. To
deconflict the inherently asynchronous activity of I/O devices from application cores’
activity, we assume that a dedicated bus exists to route I/O traffic without directly
interfering with CPU-originated memory requests. The idea of co-scheduling CPU
activity and I/O traffic is not new and specific solutions have been proposed in Betti
et al. (2013) and Pellizzoni et al. (2011). However, the increased awareness of chip
manufacturers about this problem has resulted in the design of COTS platforms that
use dedicated buses to handle I/O transactions. Table 1 shows a non-exhaustive list
of COTS platforms with this feature. In this work, we assume that suitable hardware
exists to enforce a separation between I/O and CPU-originated memory transactions.
Furthermore, traffic transmitted over the dedicated I/O bus needs to be handled, pre-

123

Real-Time Systems

Fig. 1 Multicore architecture satisfying our hardware assumptions

processed and scheduled before reaching the application cores. Thus, we assume
that an I/O processor exists, which we hereafter refer to as I/O core. Just like the
application cores, the I/O core features a SPM that is used to buffer I/O data before
they are delivered to applications.

Typically, devices that support high-bandwidth operations are DMA-capable.
Instead, slower devices expose memory-mapped input/output buffers that can be
read/written using generic platform DMA engines. Without loss of generality, we
assume I/O data transfers from/to the I/O core are performed by DMA engines and
that data from I/O devices can directly be transferred into the I/O core’s SPM. In
other words, I/O devices are not allowed to initiate asynchronous transfers directly
towards main memory. As previously discussed, this design choice allows us to per-
form co-scheduling of CPU and I/O activities to achieve higher system predictability.
A summary of the architectural assumptions discussed so far is provided in Fig. 1.

3.4 Memory organization

As micro-controllers evolve into complex multi-core systems, more advanced support
of memory protection schemes is provided. However, for the purpose of this work,
no specific assumption needs to be made about platform memory protection features.
Hence, the presence of a memory management unit (MMU) is not a necessary require-
ment. We discuss in Sect. 6 how task relocation frommain memory to scratchpads can
be achieved without MMU support. Intuitively, MMU support allows for a straight-
forward implementation of task relocation by relying on page table manipulation.
Usually, systems without MMU include a memory protection unit (MPU). MPUs sup-
port the definition of per-core access permissions based on linear ranges of physical
memory addresses. Although they are not necessary to implement our system, MPUs
can be easily supported within our design.

The hardware assumptions described so far represent desirable features that are
becoming increasingly common in modern COTS micro-controllers used for safety-
critical applications. Table 1 provides a list of some of the available COTS platforms
that satisfy the described assumptions.

123

Real-Time Systems

Table 3 Task’s parameters Term Definition

τi A task in the system

Ti Task’s MIT or period (if task is periodic)

Ci Task’s execution time including all overheads

σ TDMA slot size for the DMA operation

Ri Task’s response time

3.5 Taskmodel

For the proposed design,we consider a partitioned andfixed priority scheduling policy;
additionally, each core has a set� of N sporadic tasks, {τ1, . . . , τN }, eachwith different
prioritywhereby τ1 has the highest priority and τN has the lowest priority. The deadline
of each task is assumed to be less than or equal to itsminimum inter arrival time. Table 3
summarizes the notation used for task parameters. As described in Sect. 3.1, the tasks
follow a three-phases model. Hence, to satisfy temporal constraints, the last phase
(unload) of a task needs to complete before the deadline. For ease of implementation,
this work assumes non-preemptive tasks, although we plan to relax this assumption
as part of our future work.

3.6 Communicationmodel

We assume an asynchronous communication model that regulates data exchange
between tasks, whether they run on the same core or on different cores. In this model, if
the previously produced data by a producer task is not consumed by a consumer task, it
will be overwritten once the producer generates new data. In details, a producer task’s
communication data is written to main memory during its unload phase. Similarly, any
communication data required by a consumer task is loaded into SPM during its load
phase. Therefore, this model does not require to directly move communication data
between SPMs: instead, the communication is performed via main memory during
the load and unload phases of the tasks. Furthermore, communicating tasks are not
required to execute at the same rate. In order to compute the end-to-end latency of
the communicating tasks, we assume that communicating tasks are periodically acti-
vated according to their Minimum Inter-arrival Time (MIT). For communicating tasks
that have sporadic activations, the worst-case end-to-end latency is infinite. As such, in
our end-to-end analysis we assume that communicating tasks have periodic activations
instead. It should be noted that the proposed model is appropriate for communication
schemes where data exchange/sharing occurs only at the boundaries of processing
jobs. This is common for processing schemes that progress in stages. A typical exam-
ple is edge detection, where an image undergoes the following processing stages: (1)
smoothing, (2) enhancement, (3) thresholding, and (4) localization. To implement the
semantics of edge detection in our system, consider the case where the four stages are
implemented as four communicating tasks. For simplicity, let us assume that the four
tasks have the same period. In our proposed example, smoothing and enhancement

123

Real-Time Systems

tasks are assigned to one core. Whereas, the thresholding and localization tasks are
assigned to a different core. This assignment allows us to double the throughput at
steady-state compared to a single-core implementation. As described earlier, when a
task is activated it is loaded into the SPM using a DMA. Each task has an input buffer
and an output buffer. Upon activation, the input data is loaded frommain memory into
the SPM along with its local code/data. Upon completion, the completed tasks output
data is written into the input buffer of the next task during the download phase of
the task using DMA. In the case of the considered image processing pipeline, assume
that at steady-state frame (sample) k of the video stream has been acquired. While
smoothing is being performed on frame k, enhancing is performed on frame k − 1,
while in parallel thresholding is carried out on frame k − 2, and localization on frame
k − 3. In other words, a given task stage is working on new data, while the next stage
processes data from the input received in the previous sampling period. Our model
is also applicable for processing workflows described according to a DAG (directed
acyclic graph) task model, and where data exchange is allowed only at the boundaries
of processing nodes. By contrast the communication model considered hereby is not
suitable for processing schemes that exhibit tight data sharing between parallel and
potentially co-running processes.

In the context of communicating tasks, we define as “flow” a sequence of data
exchanges that occur between a terminating task instance (producer) after its unload,
and the subsequent load of the instance of a consumer job. Since data exchange occurs
in a “chain” of producer-consumer tasks, we often use the term “task chain” or simply
“chain” when referring to a communication flow. This allows us to avoid the confusion
with I/O flows intended as a sequence of I/O data belonging to the same I/O device,
or set of devices.

We assume any number of pairs of sender/receiver tasks, which can be assigned
either to the same or to different cores. We assume that all such pairs are statically
defined at task configuration time. Note that a task can belong to more than one pair; in
particular, it can both send and receive data to/from multiple other tasks. It is often the
case that related data is exchanged along a sequence of tasks. For example, a sensing
task might receive raw input data from an input device, process it, and pass it to a
control task. In turn, the control task might compute the required control action and
pass it to an actuating task, which prepares output data for an output device. Hence,
we are interested in computing bounds on the end-to-end latency for communication
across sequences of tasks. Formally, we consider a set of task chains, where each
chain λk is a set of Nk communicating tasks {τk,1, . . . , τk,i , . . . , τk,Nk }, with τk,i ∈ �.
Each task τk,i in λk with 1 < i < Nk receives data from the previous task τk,i−1
and sends data to next task τk,i+1 in the chain. Finally, for implementation reasons,
we assume that task-local data, code, I/O buffers, and communication buffers can be
accommodated within one partition of the scratchpad memory.

4 Proposed operating system design

In this section, we describe the design of the proposed SPM-centric OS by relying on
the previously discussed assumptions.

123

Real-Time Systems

4.1 Overview

The central idea of the proposed SPM-centric OS is resource specialization. As pre-
viously mentioned, a specialized I/O core and I/O bus are used to handle peripheral
traffic. Similarly, a specific role is assigned to different memory resources in the sys-
tem. Specifically, three types of memory resources exist in our system, as depicted in
Fig. 1. First, flash memories are used to persistently store application/OS code, read-
only data, as well as initialization values of read-write portions of main memory. Next,
the SRAM (main) memory contains writable application and system data that repre-
sent the time-variant state of the system. Finally, scratchpad memories temporarily
store a copy of code and data images for those tasks that are currently being scheduled
for execution.

In our solution, applications are never executed directly from main memory, thus
we adopt the following strategy: (1) task images are permanently stored in flash and
loaded into main memory at system boot; (2) a dedicated DMA engine is used to
move task images to/from SPM upon task activation; (3) a secondary DMA engine
is used to perform I/O data transfers between devices and I/O core; (4) tasks always
execute from SPM; (5) only task-relevant I/O data are transferred upon task load from
the I/O subsystem. The benefit of this design is twofold. First, it allows high-level
scheduling of accesses to main memory, ultimately achieving conflict-free execution
of tasks from local memories. Second, performance benefits derived from the usage
of fast scratchpad memories are exploited, ultimately combining better performance
with higher temporal determinism.

We refer to the capability of our SPM-centric OS to dynamically move applicative
tasks in and out of the SPM memories as support for relocatable tasks. As mentioned
in Sect. 3, if hardwareMMU support exists, task relocation can be achieved using page
table manipulation. Otherwise, advanced compiler level techniques can be exploited
to generate position independent code, as described in Sect. 6.

In proposed SPM-centric OS, a DMA engine is used to position the image of a relo-
catable task inside a SPM for execution. We refer to this DMA engine as application
DMA. Similarly, we refer to the platform DMA used for I/O transfers as peripheral
DMA. Typically, a single DMA engine is capable of utilizing the full main mem-
ory bandwidth in micro-controller platforms. Nonetheless, the design constraint that
imposes the use of a single applicative DMA can be relaxed if the main memory
subsystem allows two or more DMA engines to transfer data concurrently without
saturating the main memory bandwidth.

4.2 Scratchpad and CPU co-scheduling

Load-unload operations for tasks running on the M applicative cores need to be seri-
alized to prevent unregulated contention over the memory bus. Hence, only a single
DMA is required as application DMA for all the M applicative cores. Several schemes
are known to fairly share a single resource across different tasks. For the scope of our
design, we employ a TDMA scheme to serialize task load-unload operations among

123

Real-Time Systems

Fig. 2 Scheduling CPU, DMA and local memory

M applicative cores. The main advantage of the TDMA scheme lies in its simplicity
of implementation.

In order to perform TDMA-based scheduling of the application DMA, time is
partitioned into slots of fixed size. In each slot, only a single DMA operation can be
performed, either a task load or unload. The slot size is chosen to ensure that the task
with the largest footprint in the system can be loaded within the slot time window.
Figure 2 depicts the sequence of operations in our TDMA scheme for a system with
M = 2 application CPUs. Note that the TDMA enforcement needs to be centralized.
Hence, in our design, the I/O core is responsible for interfacing with application cores’
schedulers through active/ready queues, programming the application DMA as well
as enforcing the time-triggered TDMA slots. In particular, Fig. 2 depicts three tasks
scheduled on one core. Up arrows in blue color represent the arrival times of the
considered tasks; we use colors for two different partitions. A task can only run after
its load operation has been completed and the previous task on the other partition has
completed, (see τ2 to τ3 and τ1 to τ2 for example of the two cases). There might be
slots where no load-unload is performed. This happens at time 8: τ1 finishes right after
the beginning of the slot, so both partitions are full at the beginning of the slot and the
I/O core can neither load nor unload any applicative core scratchpad. Effectively, the
slot is wasted.

Since tasks need to be loaded/unloaded in parallel with respect to CPU activity,
two partitions are created on the scratchpad. There is logically no difference between
the two scratchpad partitions. Thereby, tasks may execute from either one of the two,
depending on their arrival time. Interchangeably, one of them contains the image of
the task which is currently being executed, while the second half is used to load
(unload) the image of the next (previous) task to be executed (that was completed).
Note that when a task is executing on the CPU while a second task is loaded-unloaded
in background, CPU and DMA contend for scratchpad access. However, the impact of
this contention on the timing of the tasks is typically negligible for two main reasons.
First, scratchpads are often implemented as dual-ported memories; thus, they are able
to support stall-free CPU and DMA operations. In fact, on the consideredMPC5777M
platform we have verified this by experimentation and found that both the core and
the DMA module do not suffer any delay when they access the SPM simultaneously.

123

Real-Time Systems

Second, in a system with M CPUs, DMA-CPU contention over scratchpad involves
only two masters, as opposed to the traditional approach where up to M masters could
contend for main memory.

As depicted in Fig. 2, the application DMA is alternatively assigned to transfer data
for a specific core. Within a single slot, either an unload operation for a previously
running task or a load operation for the next scheduled task is performed. The specific
operation to be performed is decided as follows:

Rule 1: If a load operation can be performed, a load operation is programmed on
the application DMA;
Rule 2: If a load cannot be performed and there is a previously running task to
be unloaded, an unload operation is programmed on the application DMA.

Note that Rule 1 can be activated by the following conditions: (i) at least one of
the two SPM partitions is available (i.e. has been previously unloaded), and (ii) a task
has been released and is ready to be loaded. Similarly, Rule 2 can be activated if no
load can be performed, at least one partition is not empty and the task loaded on that
partition has completed.

In the proposed design, the next task to be executed is loaded in background while
the foreground running task is not interrupted until its completion. The described
mechanism allows to hide the DMA loading overhead, avoiding contention in main
memory and exploiting performance benefits deriving from SPM usage.

The workflow followed by an applicative core and the I/O core at the boundary
of each TDMA slot is depicted in Fig. 3. Specifically, at each time slot, the I/O core
checks the status of the queue of active tasks belonging to the considered core. If a task
that is active for execution but not ready (i.e. not relocated in scratchpad) is found, the
I/O core checks which SPMpartition (P1 or P2) is empty on the application core. If any
partition is found to be empty (Slot #1), the I/O core programs the application DMA
to load the topmost active task to the empty partition. Once the load is complete, the
I/O core updates the active and ready queues of the considered application core. The
latter operation allows the application core to begin the execution of the task (Slot #2).
Note that since only one task can be in running state on the CPU, there is always a
SPM partition that is available for load-unload operations.

4.3 I/O subsystem design

Together with memory resources, applications typically need to communicate with
peripherals and thus require I/O data to operate. We propose an I/O subsystem design
that enforces a complete separation between task execution and the asynchronous
activity of I/O peripherals: this goal is achieved by offering to application tasks a
synchronous view of I/O data. It is achieved by distinguishing between data produc-
tion and their dispatch to/from tasks. In fact, we allow I/O data to flow from/to I/O
subsystem to tasks only at the boundary of load-unload operations.

As mentioned in Sect. 3, we assume that a dedicated bus connects the SPM of
I/O core with peripherals. Hence, asynchronous peripheral traffic can reach the I/O
subsystem without interfering with task execution. For each device used in the pro-
posed system, the OS defines a statically positioned device buffer on the I/O core

123

Real-Time Systems

Fig. 3 Interaction between I/O core and core 1 for task scheduling

scratchpad. A device buffer is further divided into an input device buffer and an output
device buffer. The input and output device buffers represent the positions in memory
where data produced by devices and tasks (respectively) is accumulated before being
dispatched to tasks or devices.

In our design, peripheral drivers can operate with an interrupt-driven or polling
mechanism. For DMA-capable peripherals supporting interrupt-driven interaction,
the driver only needs to specify the address in SPM of the device buffer from/to
where data are transferred. The driver is also responsible for updating device-specific
buffer pointers to prevent a subsequent data event from overwriting unprocessed data.
For interrupt-driven interaction with non-DMA-capable devices, the driver uses the
platform peripheral DMA to perform data movement. Similarly, the device driver is
periodically activated and the peripheral DMA is used to perform data transfer for
polling-based interaction with devices.

In general, device-originated interrupts as well as timer interrupts for device driver
activations are prioritized according to how critical is the interaction with the consid-
ered device. Nonetheless, all the device-related events are served with priority levels
that are lower than task-scheduling events, such as: (i) TDMA slot timer events and
(ii) completion of application DMA loads-unloads.

123

Real-Time Systems

Fig. 4 Timeline of tasks performed on I/O core

In order to interface with a peripheral, application tasks define subscriptions to I/O
flows. A subscription represents an association between a task and a stream of data at
the I/O device. For instance, a given task could subscribe for all the packets arriving
at a network interface with a specific source address prefix. Task subscriptions are
metadata that are stored within the task descriptor.

For each task in the system, a pair of buffers (for input and output respectively) is
defined on the SPM of the I/O core to temporarily store data belonging to subscribed
streams. Since the content of these buffers will be copied to/from the application cores
upon task load-unload, we refer to them as task mirror buffers. The concept of mirror
buffers is similar to what are known as bounce buffers in the context of multiple
buffering. Consider the arrival of I/O data from a device. As soon as the interaction
with the driver is completed, the arrived data is present in the corresponding device
buffer. According to task subscriptions, the OS is responsible for copying the input
data to all the mirror buffers of those tasks subscribed to the flow.

The advantage of defining mirror buffers lies in the fact that when a task needs
to be loaded, all the peripheral data that need to be provided are clustered in a single
memory range. Consequently, during the loading phase of a task, the application DMA
is programmed to copy the content of the mirror input buffer together with task code
and data images to the application core. The reverse path is followed by task-produced
output data during the task unload phase.

Since I/O data are delivered to applicative tasks at the boundary of load-unload
operations, the approach presented in Sect. 5 for the calculation of tasks’ response
time can be reused to reason about end-to-end delay of I/O-related events.

Figure 4 provides an example of timeline of the tasks performed on the I/O core.
These include TDMA slots management, I/O output dispatching tasks (IO OUT) and
I/O input dispatching tasks (IO IN). The TDMA management task has the highest
priority among the three types of tasks so that a application core must not stay idle
and its utilization can be maximized. IO OUT tasks have intermediate priority level
because as soon as the DMA unload operation finishes moving data to the task output
buffer in the SPM of I/O core, the data needs to be copied to the output device buffer

123

Real-Time Systems

of the device this is because the system must be able to send actuation at a certain
rate. Where IO IN tasks have lowest priority because we assume asynchronous model
where we use old data if new input has not arrive and new data every time if input
rate matches or exceeds the task activation rate. In case the input rate matches the task
activation the system will not miss any packets. Whereas in the case where the input
rate exceeds the task activation rate the system might miss some packets but this is
fine since we have asynchronous communication model.

TDMA tasks are activated in a strictly periodic manner, where the periodicity
corresponds to the TDMA slot length σ . IO OUT tasks are triggered only following a
task unload operation. These tasks are responsible for moving I/O data produced by
a completed job from the corresponding task mirror output buffer and into the output
buffers of the affected device(s). Since they are activated only after a completed task
unload operation, they are inherently synchronous with respect to unload operations.
Conversely, IO IN tasks are responsible formoving data arrived in input at some device
into the mirror input buffers of application tasks according to I/O subscriptions. As
such, their activation is directly related to data input events occurring at the various
devices. The system can be comprised of a number of different devices. As such, our
system uses device-specific drivers to handle the first part (top-half) of input event
handling. Next, the same IO IN data dispatching task is activated as the bottom-half
handling routine. It can never happen that an IO IN task instance preempts an already
running IO IN job. In other words, I/O dispatching operations are always carried out
in a serialized manner.

Top-half buffer handling while the top-half I/O input handling routines are device-
specific, the following strategy is used for DMA-capable devices. A set of buffers—at
least two, say A and B—are maintained for each device. At any point in time, a data
pointer register is exposed by the device to indicate the location where the next input
should be transferred, e.g. buffer A. Upon receiving an interrupt that indicates the
availability of new data, the top-half routine reads such a register to determine the
location of the received input. Next it updates the pointer to an unused buffer, e.g.
buffer B, and passes the location of buffer A to the dispatch (IO IN) bottom-half task.
In case of a two-buffers setup, it is fundamental that no new input arrives before any
pending dispatch operation for a given device is completed. Additional device buffers
can be introduced to prevent data loss when this property may not hold.

Bottom-half (IO IN) buffer handling an IO IN dispatching task is activated in
response to new data arrivals at any of the supported devices. The first operation
performed by the IO IN task consists in the interpretation of data headers to determine
which application task(s), say Task 1 and Task 2, should be receiving the input data,
depending on I/O subscriptions. The IO IN task strips any unnecessary encapsulation
data from the received input and proceeds with dispatching to tasks. In a nutshell, the
dispatch operation consists of a number of copy-commit operations—one per each I/O
subscribed task. First, the unencapsulated device input data is copied into the mirror
input buffer of Task 1. This copy operation is performed by the CPU (busy-copy).
Once the copy operation is completed, the IO IN task commits the written task mirror
buffer. This operation is atomic. The task input mirror buffer is divided in three slots
of equal size, which is larger than or equal to the size of the largest input that can
be received on the corresponding device. At a generic point in time, one of the slots

123

Real-Time Systems

Fig. 5 Example showing I/O and intercore communication

holds the latest-committed input; a second slots holds the input being currently loaded
by a TDMA load operation; while the third slot is used to direct the next dispatch
operation. After dispatch for Task 1 is completed, the IO IN task proceeds to perform
dispatching for Task 2 and so on. The roles of the three slots in a task mirror input
buffer are better illustrated in Fig. 4.

4.4 Inter-core and intra-core communication

As mentioned earlier (see Sect. 3.6), for both inter-core (communication between
tasks on different core) and intra-core (communication between tasks on same core)
communication, the communication flow of how a task sends data to another task is
statically defined at configuration time. Consider, for example, two producer tasks that
need to send data to a consumer task. We name the two producer tasks as Producer
0 and Producer 1. Whereas, the task that will be receiving data from these tasks is
named as Consumer 0. The scenario is depicted in Fig. 5.

At task definition, Producer 1 and Producer 2 need to know the size of eachmessage
sent to Consumer 0. This size information is used to create a temporary send buffer
inside SPM of the application core where Producer 0 and Producer 1 tasks will be
loaded and executed. These temporary buffers are used to store communication data
that Producer 0/1’s intends to send to the consumer task.

Similarly, Consumer 0 at configuration time needs to define separate receive buffers
in main memory for each producer task (two in our example) from which it intends to
receive data. In our example, two buffers are defined: for Producer 0’s and for Producer
1’s data.

123

Real-Time Systems

Fig. 6 SPM-centric OS task scheduling. Scheduling intervals are highlighted

During execution of producer tasks in SPM, data to be sent to consumer tasks
is written inside temporary buffers. These buffers are unloaded using a DMA from
scratchpad directly to main memory, and specifically into the corresponding buffers of
consumer tasks. Finally, when Consumer 0 task is activated, all of its local code, data,
I/O data, and communication data, received by the time activation occurs, is loaded
from main memory (and I/O scratchpad) into the corresponding application core’s
SPM.

5 Schedulability analysis

Given the scheduling strategy described in Sect. 4, we can calculate a safe bound on
the worst case execution time based on all tasks’ parameters in an approach similar to
Wasly and Pellizzoni (2014). Note that we assume that the task’s execution time, Ci ,
is actually the adjusted execution time in which all the overheads are included, such
as the context-switch and the DMA setup routines. Also note that for simplicity we
discuss the case with M = 2 cores, since it is used in our prototype, but the analysis
could be trivially extended to account for any number of cores by changing the length
of the DMA operations.

Figure 6 depicts an illustrative example of the worst case scheduling scenario (crit-
ical instant) for an example task set where τ3 is the task under analysis. The schedule
depicts a busy period where τ3 suffers interference from two higher-priority tasks,
τ1 and τ2. As in Wasly and Pellizzoni (2014), we consider the busy period as com-
posed by a sequence of scheduling intervals I nterval1, I nterval2, I nterval3, and
I nterval4 (each bounded by bold vertical lines in the figure), followed by a final inter-
val I ntervalF (F). During each scheduling interval, only one blocking or interfering
task runs. During the final interval, the task under analysis runs. Each scheduling

123

Real-Time Systems

interval always starts with a CPU execution and ends either when the CPU finishes
executing the task or when the next task finishes being loaded by the DMA, whichever
happen last; at this point, the next interval starts with the execution of the loaded task.
The final interval starts with the execution of the task under analysis and finishes when
the task under analysis is unloaded.

We say that a scheduling interval is CPU-bound when it ends with CPU execution
(ex: I nterval1, I nterval3 and I nterval4 in the figure), andDMA-bound when it ends
with DMA load operation (ex: I nterval2). The length of a scheduling interval is the
maximum between the execution time of the task running in the interval and the DMA
operations required to load the next task. We denote the size of the TDMA slot as σ ;
since in the worst case a load-unload operation can occupy the entire slot, we upper
bound the length of DMA operations as a multiple of σ .

5.1 Response time calculation

Similar to Wasly and Pellizzoni (2014), we compute the response time Ri of the task
under analysis using the standard response time iterations as follows:

Ri ← B + H(Ri) + F (1)

In detail, we compute the response time by adding three components: (1) the block-
ing time B caused by a lower priority task that starts executing before the beginning
of the busy period; this is I nterval1 executing task τ5 in the figure; (2) the interfer-
ence H comprising the remaining scheduling intervals in the busy period, which are
I nterval2, I nterval3 and I nterval4 in the figure. The number of such intervals is
equal to the number of interfering higher priority jobs plus one, since an extra lower
priority job that starts loading before the beginning of the busy period (τ4 in the figure)
can execute within the busy period itself; (3) the length F of last interval I ntervalF
in which the task under analysis executes and finishes.

Compared to Wasly and Pellizzoni (2014), our solution differs in three aspects.
First, in this work we use fixed-size DMA operations, while Wasly and Pellizzoni
(2014) employs dynamic-size DMA operations. Therefore, we need to discuss how to
compute the length of the DMA operations as multiple of TDMA slots (σ). Second,
we need to recompute the length of the blocking time B since the next task to be
loaded is determined at a different time. Finally, unlike Wasly and Pellizzoni (2014),
we consider the task under analysis finished when the task is unloaded, at the end
of I ntervalF instead of finished execution on the CPU. We address each point in
sequence.

5.2 Critical instant and blocking time (B)

Unlike the traditional non-preemptive scheduling where a task under analysis τi can at
most suffer bocking from one lower-priority task, in our scheduling scheme τi can at
most suffer blocking from two lower-priority tasks due to the number of SPMpartitions
available to load tasks into. For instance, at the beginning of the example schedule

123

Real-Time Systems

in Fig. 6, the system has two free local SPM partitions at time zero. In I nterval1,
the task under analysis τ3 is released along with all higher-priority tasks after an
arbitrarily small time (ε) when all free partitions have been loaded or have started
loading lower-priority tasks (τ5 and τ4); this is ε after time 2 in the figure. Since we
consider non-preemptive DMA operations and non-preemptive CPU execution, the
task under analysis τ3 cannot run until the pre-loaded lower-priority tasks (τ5 and
τ4) plus all higher-priority tasks (τ1 and τ2) finish execution. We now prove that the
discussed scenario is indeed the critical instant for our system, leading to the worst
case response time for the task under analysis.

Lemma 1 The critical instant is produced when the task under analysis τi and all
higher priority tasks arrive immediately after a lower priority task has started loading
into a partition, and the other partition was loaded with another lower priority task
as late as possible (i.e., two slots before).

Proof We first show that in the worst case, both τi and all higher priority tasks must
arrive ε time after the beginning of a slot where a lower priority task is being loaded.
If either τi or a higher priority task would arrive at or before the beginning of the slot,
then such task would be loaded and executed in place of the lower priority task. Hence,
the length of the busy period would decrease by one scheduling interval, which cannot
produce the worst case response time for τi .

If instead τi arrives some δ time later during the busy period, then the finishing time
of τi would not change, but the response time of τi would decrease by δ. Similarly,
if a higher priority task arrives later during the busy period, the number of interfering
jobs of the task could only be lower or equal compared to releasing it immediately
after the beginning of the slot. Hence, the described activation pattern must lead to the
critical instant.

For what concerns the lower priority task pre-loaded in the other partition, it suffices
to notice that loading the task as late as possible maximizes the amount of execution
of the task within the busy period. Assuming that the first partition was initially free,
so that no unload was required, and given the TDMA arbitration of DMA operations,
the latest such load could happen is two slots before τi arrives, i.e., during slot [0 : 1]
in Fig. 6. ��

Based on Lemma 1, the task under analysis τi arrives σ +ε time after the beginning
of I nterval1; hence, we can upper bound the blocking time as the length of I nterval1
minus σ . Furthermore, the length of I nterval1 itself is bounded by max(C5, 2 · σ);
here, C5 represents any low priority task executed in I nterval1, while the length 2 ·σ
accounts for the fact that the next task is loaded after 2 · σ in the second slot of the
interval (slot [2:3] in the figure). As noted in the proof of Lemma 1, this is possible as
the partition is free and no unload is required during this interval. Similar to Wasly
and Pellizzoni (2014), since we can make no assumption on which lower priority tasks
execute in I nterval1 and I nterval2, we simply consider the two lower-priority tasks
τl1 and τl2 with the longest execution time and the second longest execution time
respectively. Thus, we define the blocking B as follows:

B = max(Cl1, 2 · σ) − σ. (2)

123

Real-Time Systems

5.3 Scheduling intervals in the busy period (H)

When the system is busy with both SPM partitions occupied and at least one active
task, within each interval we need to first unload the previous partition and then load it
with the next task. Therefore, for any scheduling interval, it will require four TDMA
slots (4 · σ) to load the next task if the interval was preceded by another DMA-bound
interval, such as for I nterval3 in Fig. 6. On the other hand, if the interval is preceded
by a CPU-bound interval, it might require up to five TDMA slots (5 · σ) to finish
loading the next task in the worst case, as for I nterval2. This is because the CPU-
bound interval might finish at the middle of a slot or ε time after the beginning of a
slot, hence, inducing an unused (empty) TDMA slot in the next interval (slot [4:5] in
the figure).

As a result, the length of any scheduling interval can be computed as either
max(Ci , 4·σ) ormax(Ci , 5·σ).We now formally prove that for any CPU-bound inter-
val to cause the worst case scenario, with the exception of the first interval I nterval1,
the CPU execution has to be strictly longer than four TDMA slots (4 · σ). Note that
in I nterval1, unlike the busy period intervals, there is no DMA unload operation, as
the targeted partition is already free.

Lemma 2 For any scheduling interval in H, no extra empty slot will be induced in
the next interval unless the length of the CPU execution is strictly greater than four
TDMA slots (4 · σ).

Proof We show that any scheduling interval in H with CPU execution less than 4 · σ
cannot induce an empty slot in the next interval. First, by definition, a DMA-bound
interval finishes when the load phase of a task is done. Consequently, in the next
interval, the CPU execution of the loaded task can start immediately, and the unload of
the other partition can start in next TDMA slot dedicated for the same core. Therefore,
the DMA-bound interval cannot induce any empty TDMA slot in the next interval by
definition.

Second, since in the busy period H both partitions are loaded with tasks, in each
interval an unload and a load operations must be performed to load the next task. In the
best case, the DMA unload starts at the beginning of the interval, as shown above in
the Fig. 7. Thus, the next task is guaranteed to be loaded in 3 ·σ time after the interval
started. As a result, any interval with CPU execution less than or equal to 3 ·σ , must be
a DMA-bound interval and cannot induce an empty TDMA slot in the next interval.
However, as shown in the figure above, since the next TDMA slot is dedicated for the
other core, it follows that the CPU execution need to be strictly greater than 4 · σ to
miss its own TDMA slot and induce an empty slot. ��

In Algorithm 1, we show how to compute an upper bound on the length H during
the busy period. Note that we use a python-like syntax for operations on lists: given

Fig. 7 Example of a CPU-bound
interval that affects the next
interval and increases the time
required to load the next task

123

Real-Time Systems

lists A and B, A.extend(B) adds the elements in B to A; A + B is the concatenation
of A and B; A ∗ n repeats A n times; and len(A) returns the number of elements in A.
Based on Lemma 2, we construct a list of DMA times (M) used by the algorithm as
follows: we insert in the list a number of 5 ·σ time values equal to the number of tasks
executed in H with length greater than 4 · σ , plus one task (to account for the task
in I nterval1, which can cause an extra empty TDMA slot as shown in Fig. 6). The
remaining DMA times in the list are equal to 4 · σ . For this sake, Eq. 3, determines
the length of TDMA slots inserted in the DMA list based on the execution time of the
task in the previous interval.

DMA
next

i =
{
5 · σ if Ci > 4 · σ

4 · σ otherwise;
(3)

Algorithm 1 Calculating a safe upper bound of the length of the busy period H of the
task under analysis τi

1: M = [5 · σ, DMA
next

l2]
2: E = [Cl2]
3: for τ j ∈ hp(i) do

4: M .extend

(
[DMA

next

j] ∗
⌈
Ri−F−σ

Tj

⌉)
5: E .extend

(
[C j] ∗

⌈
Ri−F−σ

Tj

⌉)
6: end for
7: A = M + E
8: sort A in descending order
9: H = sum(A[0 : len(E) - 1])

Step (1) in the algorithm initializes the list of DMA operations (M) with the lengths
of τl1 and τl2. Note that, since τl1 runs in I nterval1 while not all partitions are
occupied, it is assumed to induce 5 · σ slots in the next interval. Similarly, Step (2)
initializes the list of CPU executions (E) with Cl2, as τl2 runs within the busy period
H . Then in Steps (3)–(6), the DMA and CPU lists are extended based on the set
of higher-priority jobs that can execute within the response window of task under
analysis τi . Since we consider a non-preemptive scheduling, we reduce the interfering
window to Ri − F − σ . This is because once the task under analysis starts loading
(which happens no later than σ before the beginning of I ntervalF), it is guaranteed to
run non-preemptively in the next interval (I ntervalF), hence does not suffer further
interference from higher-priority jobs. In Step (7), the listsM and E are combined into
A, which is then sorted descendingly. Finally, in Step (9), the top contributing DMA
operations or CPU executions are selected and summed to upper bound the length of
H . Figure 8 shows a visual illustration of the algorithm.

Lemma 3 Assume that the task under analysis τi suffers interference from a set Jhp
of higher priority jobs, plus one job of lower priority task τl2. Then the value of H
computed by Algorithm 1 is a safe upper bound to the length of all intervals where
jobs of either higher priority tasks or τl2 delay the task under analysis.

123

Real-Time Systems

Fig. 8 An arbitrary example to illustrate how Algorithm 1 maximizes the intervals’ sizes in the busy period
H

Proof As discussed above, the maximum number of intervals where higher priority
jobs interfere with the task under analysis τi is I = len(Jhp) + 1: one interval where
the first higher priority jobs is loaded, plus len(Jhp) intervals to execute each higher
priority job. In each interval there is one CPU execution that overlaps with DMA
operations; therefore, the length of each interval is the maximum of the two. We can
then obtain H as the sum of the lengths of I intervals, where each length is either
a CPU execution time or a DMA operation of length 5 · σ or 4 · σ as proved in
Lemma 2. Now, our algorithm simply takes all CPU execution times and all DMA
times in those intervals, as shown above, and picks the maximum I elements among
all of them; hence, this must result in a upper bound to the actual combined length of
the I intervals. ��

5.4 Final interval (F)

The length of the final interval I ntervalF (F) can be computed asmax(Ci+5·σ, 7·σ),
where τi is the task under analysis. In the example depicted in Fig. 6, the length of
I ntervalF is C3 + 5 · σ . The other case can happen when C3 is short enough and slot
[22:33] is utilized, in the worst case, to load the next task. In this situation, up to seven
TDMA slots are required to finish unloading τ3, as formally proven below.

Lemma 4 The length of I ntervalF is upper bounded by max(Ci + 5 · σ, 7 · σ).

Proof Similar to scheduling intervals in H , we need to consider two cases: (1) the
length of the interval is bounded by Ci plus the time required to unload the task; (2)
the length of the interval is bounded by the time required to unload/load the other

123

Real-Time Systems

Fig. 9 Worst case when
execution of task under analysis
is small

partition before unloading Ci . For the first case, note that differently from scheduling
intervals in H , there might be no active task at the start of I ntervalF , since the last
task in the busy period (task under analysis) is running. Therefore, a new job of any
task could be released later during I ntervalF and start a load operation. In particular,
the new job could arrive just before the unload of the task under analysis (τi), as shown
in Fig. 6. In this case, since there is one free partition and load operations have priority
over unload operations (Rules 1,2), the new job has to be loaded first; thus, the unload
of τi is delayed by up to 5 · σ in the worst case (one empty slot plus four other slots,
as shown in Fig. 6 for slots [22:27]; no more than 5 slots are possible since after the
load at [24:25], both partitions are full and thus an unload must happen next). In this
case the length of I ntervalF is upper bounded by Ci + 5 · σ .

On the other hand, Fig. 9 shown above illustrates the other case where the length of
I ntervalF is 7 ·σ in the worst case. This case happens when the execution of the task
under analysis is very small to the point that Ci + 5 · σ is smaller than the required
number of TDMA slots to actually unload τi . When CPU execution of τi is sufficiently
small, the load of the next task has to be after 5 · σ at most regardless of the release
time of the next task, otherwise τi would be unloaded by the fifth slot. If the next task
is indeed loaded before the unload of τi as shown in the figure, then in the worst case
it takes two more slots to unload τi (given that both partitions are full after loading the
next task), hence resulting in a bound of 7 · σ . To conclude, by taking the maximum
of the two cases we guarantee to capture the worst case. ��

Theorem 1 The worst-case response time of the task under analysis (Ri) is computed
by Eq. 1.

Proof We show that if Eq. 1 converges to a fixed-point Ri , then Ri is a valid upper
bound to the response time of the task under analysis τi . Let τl1 and τl2 be the first and
second lower priority tasks loaded before the critical instant, as required in Lemma 1.
Then Eq. 2 computes an upper bound to B. Furthermore, Lemma 4 computes an upper
bound to F . Finally, since according to Lemma 1, higher priority tasks arrive at the
same time as the task under analysis, which cannot be preempted after it starts loading
no later than one slot before the beginning of I ntervalF , it follows that the interfering
window for higher priority tasks has a length of Ri−F−σ ; hence, all interfering higher
priority jobs must be contained in the set Jhp computed at Line 1 of Algorithm 1, and
as a consequence, according to Lemma 3 the value of H computed by the algorithm
is a valid upper bound. In summary, since the response time is decomposed in three
intervals, and the values computed for the three intervals are valid upper bounds, it
follows that Ri is indeed an upper bound to the response time for a given choice of τl1
and τl2.

Since we are interested in computing the worst case response time for any possible
arrival pattern of lower priority tasks, it remains to determine how to select τl1 and

123

Real-Time Systems

τl2 so as to maximize the response time of τi . Note that since τl2 is loaded while τl1
executes, they must be different tasks. Hence, it suffices to consider two cases: (1) τl1
is the lower priority task with the longest execution time, and τl2 is the second longest;
(2) or vice-versa. Now note that since Algorithm 1 only selects the I largest times
among all DMA operations, and CPU executions of higher-priority tasks plus Cl2, it
follows that Cl2 might not contribute to the worst case response time as it might get
hidden by larger times. Therefore, if follows that case (1) leads to the maximum total
response time of the task under analysis. ��

5.5 Bounding communication latency

Asmentioned in Sect. 4.4, tasks communicate asynchronouslywithout any precedence
constraint between them. In other words, when a job of a higher-priority task τ1 is
ready, it will be scheduled and start loading as soon as there is a free partition regardless
of any other running tasks that send data to it. Since the access to main memory is
serialized using DMA, integrity of the communication data is assured as there will
be no data race (lock-less data sharing). Suppose τ1 is a receiver task for data sent by
τ2. Then τ1 will access the previous (old) communication data from τ2 if τ1 is loaded
while τ2 is still running or not yet unloaded from the SPM partition to main memory.

From a schedulability point of view, this communication model does not affect task
scheduling.However, we still need to bound theworst-case end-to-end communication
latency. As mentioned earlier in Sect. 5, the computed response time of a task is the
time that elapsed from when a task becomes active (released) to the time it finishes
and is fully unloaded. Therefore, communication data sent by a sender task τi will
be available to a receiver task after Ri , which is the worst-case response time of τi ,
accounting for interference and overheads.

As described in Sect. 3.6, a set of task chains is defined at compile time; where
a chain λk = {τk,1, . . . , τk,2, . . . , τk,Nk } defines an ordered set of communicating
tasks. The communication data in the chain pass through all the tasks in that chain in
sequence. Consequently, the end-to-end communication latency (Lλk) is the time it
takes for the data to be consumed (loaded) by the first task in the chain, i.e, τk,1, until
the last task in the chain, i.e., τk,Nk , writes the data to main memory (unload). The
end-to-end latency of a chain λk is computed in Eq. 4:

Lλk =
Nk−1∑
i=1

(Rk,i + Tk,i+1 − 2 · σ) + Rk,Nk , (4)

where Rk,i represents the worst-case response time of task τk,i , as determined in
Sect. 5.

Theorem 2 The worst-case total end-to-end latency of a task chain λk is Lλk =
Nk−1∑
i=1

(Rk,i + Tk,i+1 − 2 · σ) + Rk,Nk .

Proof We seek to maximize the time between the load operation for a job τk,1, and
the unload operation for a successive job of τk,Nk . Hence, we shall assume that the

123

Real-Time Systems

Fig. 10 Worst-case arrival pattern between two communicating tasks

load operation happens as soon as possible, i.e., immediately after τk,1 arrives, and
the unload operation happens as late as possible, i.e., after the worst-case response
time Rk,Nk of τk,Nk . We can thus determine the end-to-end latency as follows: we first
sum themaximum distance between the arrival times of communicating jobs along the
chain, i.e., between a job of τk,1 and τk,2, then τk,2 and τk,3, and so on until the distance
between the arrival times of jobs of τk,Nk−1 and τk,Nk ; and finally we add the response
time of τk,Nk . In the rest of the proof, we show that the maximum distance between
the arrival times of communicating jobs of τk,i and τk,i+1 is Rk,i + Tk,i+1 − 2 · σ ;
Eq. 4 then directly follows.

The worst-case arrival pattern (critical instant) that leads to the maximum distance
between any two communicating jobs is shown in Fig. 10: a job of the receiver task
(τk,i+i) starts loading right before the unload phase of the sender job (τk,i). This
behavior, which is possible if the tasks are mapped to different cores, prevents τk,i+1
from loading the fresh communication data until its next job. Furthermore, tomaximize
the distance between the arrival times of the jobs of τk,i and τk,i+1 under such scenario,
we assume that τk,i unloads its data as late possible, while τk,i+i starts loading as soon
as possible right after its arrival time. As a consequence, the distance can be computed
as the response time Rk,i , plus the distance between successive jobs of τk,i+1 which is
the period Tk,i+1, minus 2 · σ to account for the overlap between the load and unload
operations (slots [6 : 8] in Fig. 10). This is equal to Rk,i + Tk,i+1 − 2 · σ , concluding
the proof. ��

6 Implementation

In this section, we provide the details of SPM-centric OS implemented using a
COTS platform that supports the hardware assumptions described in Sect. 4.

6.1 Architectural overview of considered platform

For the implementation, we used a Freescale MPC5777M micro-controller unit
(MCU). ThisMCU is themost advanced SoC in the FreescaleMPC line as of Q4 2015.
A brief summary of the architectural features of the MPC5777MMCU is provided in
Table 4. The chip includes four processors: two E200Z710 application cores operating

123

Real-Time Systems

Table 4 Characteristics of Freescale MPC5777M SoC

Chip name MPC5777M (Matterhorn)

Manufacturer Freescale

Architecture Power-PC, 32-bit

CPU unit 2x E200-Z710 + 1x E200-Z709 + 1x E200-Z425 (I/O)

Processing unit CPUs, DMA, Interrupt Controller, NIC

Operational modes Parallel + Lockstep (on one applicative core)

ECC protection Cache, RAM, Flash Storage

Cache hierarchy L1 (Private Instructions + Data) + Local Memory

Local memory (SPMs) Instructions (16 KB) + Data (64 KB)

L1 cache size Instructions (16 KB) + Data (4 KB)

SRAM size 404 KB

Flash size 8 MB

Main peripherals Ethernet, Flexray, CAN, I2C, SIUL

at 300 MHz and a single E200Z425 I/O core. An additional non-programmable core
is included for delayed lockstep operation.

Each core in the system has its own private instruction and data cache as well as
globally accessible instruction and data scratchpads. No shared cache is present in
the system and the data in the SPM is not cached because of the following reasons:
(1) the performance of the SPM on the considered platform is same as that of the
cache; (2) there is no difference in the execution time if we cache the SPM data;
and (3) the architecture cannot cache the SPM memory. No MMU is available on this
platform. Hence, there is no support for virtual memory. Application cores can directly
access the SRAM through a dedicated bus. A separate and slower bus is dedicated for
transferring peripheral data to/from the I/O core.

6.2 Implementation of SPM-centric OS using Erika Enterprise

Proposed SPM-centric OS was implemented using Evidence Erika Enterprise.5 Erika
Enterprise is an open-source RTOS that is compliant with the AUTOSAR6 (Auto-
motive Open System Architecture) standard. AUTOSAR is an open standard for
automotive architectures providing a basic infrastructure for vehicular software. Erika
Enterprise features a smallmemory footprint, supportsmulti-core platforms and imple-
ments common scheduling policies for periodic tasks.We performed a porting of Erika
Enterprise on the MPC5777MMCU, adding support for UART communication inter-
face, interrupt controller, caches,memory protection unit (MPU), data engines (DMA),
and Ethernet controller.

5 http://erika.tuxfamily.org/drupal/.
6 http://www.autosar.org/.

123

http://erika.tuxfamily.org/drupal/
http://www.autosar.org/

Real-Time Systems

In order to implement our SPM-centric OS, we have augmented Erika Enterprise
to support position-independent (relocatable) tasks. We rely on the compiler7 support
for far-data and far-code addressing modes. In this way, tasks are compiled
to perform program-counter-relative jumps and indirect data addressing with respect
to an OS-managed base register. We have extended the default task loader to exploit
DMAs for transferring task images from SRAM to local memories and vice-versa.
Similarly, the OS scheduler has been adapted to implement the strategy discussed in
Sect. 4.

In Erika Enterprise, tasks are compiled and linked directly inside the image of
the OS. For each task in the system, Erika-specific meta-data need to be defined.
Additionally, meta-data that extend the task descriptors for SPM-centric operations are
required.Manually configuring these parameters is tedious and error-prone; hence, we
developed an OS configurator. The tool uses high-level task definitions and generates
the final configuration for our SPM-centric OS. Specifically, each core is associated
with a set of configuration files that describe: number of tasks, their priority, task entry
points, initial status and so on. When a task is added, these files need to be configured
accordingly.

First, the body of all the tasks is placed in an ad-hoc file. Similarly, task-specific
data that need to be preserved across activations are defined in different files and
surroundedwith appropriate compiler-specificPRAGMA. This is fundamental to ensure
that: (A) specific linker section is used to store task code and data images; and (B)
position-independent data and instructions are generated. A separate file also defines
the relocatable task table,which stores the status of each relocatable task. This structure
includes: (A) position in SRAM of the task code and data images; (B) position of the
task’s I/O data buffers; (C) current status of the task (e.g. loaded, completed, unloaded);
(D) SPM partition of last relocation.

7 Evaluation

To validate the proposed design and implementation, we performed a series of experi-
ments, whose results are summarized in this section. First, we investigate the overhead
of SPMmanagement. Next, we consider the performance and predictability benefits of
our approach with synthetic as well as real benchmarks. The achievable I/O bandwidth
supported by our design is also measured. Finally, we investigate the schedulability
results of the proposed strategy.

7.1 SPM-centric OS overhead evaluation

A crucial parameter of proposed system is the size of the TDMA slot. This should be
long enough to allow the completion of a load (or unload) operation for the task with
the largest footprint in the system. However, in order to derive an upper-bound, we
assume that a task footprint is constrained by the size of an SPM partition. Thereby,

7 Applications and OS are compiled using the WindRiver Diab Compiler version 5.9.4—http://www.
windriver.com/products/development-tools/.

123

http://www.windriver.com/products/development-tools/
http://www.windriver.com/products/development-tools/

Real-Time Systems

Table 5 Details of OS
parameters

Parameter Time (µs)

Partition load time 432

Partition unload time 432

DMA setup 3.16

Context switch 0.46

we measured the time to copy from/to half SPM (one partition) of an applicative core
and derive the TDMA slot size accordingly. The results are reported in Table 5.

The application DMA needs to be programmed by the I/O Core to perform task
relocation. Hence, DMA programming time represents an overhead introduced by our
design. The time required to program the DMA has been measured and is reported
in Table 5. Similarly, Table 5 reports the measured context-switch overhead of the
implemented scheduler.

7.2 Results of achievable I/O bandwidth

The performance of the proposed I/O subsystem (see Sect. 4.3) depends on the fre-
quency of load-unload operations. In order to measure the achievable I/O bandwidth
of proposed design, we have implemented support for the onboard Fast Ethernet Con-
troller (FEC). The FEC is capable of transmitting data at the highest bandwidth among
all the devices of the considered MCU. Hence, it represents the best I/O component
to stress-test our design.

We have connected the FEC to an external node which generates constant-rate
traffic. Specifically, the traffic source generates a 1 KB packet every 100 µs (1000 Hz,
about 82 Mb/s). The payload of each packet contains a flow-ID chosen from four
different values in round-robin. On used MCU, each applicative core runs two tasks
that have subscribed to I/O data flows based on packets’ flow-IDs. Device buffers and
task (mirror) I/O buffers have been dimensioned to accommodate a single packet per
task, with an overwrite policy.

With this setup, we have derived the raw achievable bandwidth considering two
different values of TDMA slot size. Specifically, we measured the data rate of packets
that are processed and looped back on the network interface using theWireshark packet
analyzer.8 Our experiments revealed an achievable bandwidth for the outgoing traffic
of 4 Mb/s with a TDMA slot of 800 μs, and 8 Mb/s with a TDMA slot of 400 μs.
Although this represents a fraction of the physically available bandwidth (100 Mb/s),
being able to sustain a bandwidth higher than 1 Mb/s constitutes a promising result
given that the platform operates at a clock frequency of few hundred Hz.

8 https://www.wireshark.org/.

123

https://www.wireshark.org/

Real-Time Systems

Fig. 11 Experimental execution time for synthetic benchmarks

7.3 Results of synthetic benchmarks

We investigate the performance of SPM-based execution as opposed to a traditional
execution model. For this purpose, we have developed a set of synthetic bench-
marks that exhibit different memory access benchmarks on one of the two applicative
cores. These benchmarks are designed such that they either exhibit good data local-
ity meaning that they are sequential, repetitive and fit well in the cache or they have
poor instruction/data locality. Conversely, those benchmarks that exhibit poor instruc-
tion/data locality incur in a cache miss for every fetch of a data item and/or instruction.
The results of the bechmarks are shown in Fig. 11. The first cluster of bars in Fig. 11
refer to the runtime of the benchmark that exhibits good instruction and data locality.
Hence, when it is executed from SRAM, caches are effective at hiding SRAM access
latency and significantly reduce task execution time. The next two clusters of bars
show that misses suffered for only instruction fetches or only data fetches already
induce a significant execution slowdown (around 2x). The need for accessing SRAM
data also introduces runtime fluctuation (about 25%) as a result of inter-core interfer-
ence. Such effect becomes even more severe with applicative code that experiences
misses while accessing both instructions and data. If the cost of accessing SRAM
memory together with the slowdown due to inter-core interference are considered, an
overall 3.5x slowdown is experienced when compared to what has been observed in
the ideal case (100% cache hits). Finally, notice that if a task is able to entirely exe-
cute from scratchpad, its execution time is comparable to the ideal case and inter-core
interference is prevented. These results are a strong motivation to best use available
scratchpads in order to improve performance and avoid inter-core interference.

123

Real-Time Systems

Fig. 12 Experimental execution time for EEMBC benchmarks

7.4 Results of EEMBC benchmarks

Next, we investigate the behavior of EEMBC benchmarks on the selected platform.
For this purpose, we have ported and measured the execution time of the full suite
of automotive EEMBC benchmarks under two scenarios: traditional contention-based
execution fromSRAMand proposed SPM-based execution.We have initially explored
the stability of the results over time. We observed that the maximum variation across
multiple runs of the same configuration was never more than 3 CPU cycles, in spite
of our millisecond-scale frame of reference for task activations and execution times.
Given the very low variability, the final results were computed by timing 10 runs.
The average of the acquired measurements is reported in all the tables and plots.
The normalized execution times for all the considered benchmarks are reported in
Fig. 12. From the results, we note that computation intensive benchmarks do not
benefit from SPM-based execution. Conversely, for memory intensive benchmarks
SPM-based execution determines substantial speed-ups (up to 2.1x).

Table 6 shows the execution time of the full suite of EEMBC automotive bench-
marks. Furthermore, Table 6 also provides the footprint size of the considered
benchmarks. It can be noted that all the considered benchmarks fit into a single
scratchpad partition. These results validate the applicability of proposed design in
real scenarios.

7.5 Schedulability analysis

For the schedulability evaluation of our approach, we compare our system against
the contention-based system, in which cores use caches but are left unregulated when
accessing main memory. We consider the platform described in Table 4. For the SPM-
centric system, we use the schedulability analysis in Sect. 5, while for the contention-
based system, we use response-time analysis for a set of non-preemptive, fixed priority
sporadic tasks (Buttazzo 2011). We have considered the applications in Table 6 to
generate sets of random tasks (workloads). Given a system utilization, each application

123

Real-Time Systems

Table 6 Details of EEMBC benchmarks

Benchmark SPM time (µs) SRAM time (µs) Code size
(bytes)

Relocatable
code size
(bytes)

Data size
(bytes)

tblook 1013 1015 1804 1892 10,516

matrix 1053 1054 4430 4774 4488

a2time 1002 1029 2175 2538 1704

pntrch 1036 1145 1000 1398 4924

ttsprk 383 425 4124 4772 8160

iirflt 1040 1189 3288 3512 1000

canrdr 1009 1359 1370 1562 12,440

bitmnp 990 1389 3152 3282 1116

rspeed 1012 1457 710 1208 13,212

puwm 1036 1540 1716 2500 2412

aifirf 1005 1564 1554 2286 1552

aifftr 916 1642 3720 4458 8448

aiifft 1170 2092 2796 3540 9224

idct 1045 2126 4498 4690 244

is randomly selected and assigned a random period in the range between 10 ms to 100
ms. The task’s utilization is then computed based on the measured execution time of
each application and its selected period. At every iteration a new task is randomly
generated. The generation stops when the sum of the individual tasks’ utilizations
reaches the required system utilization. After that, the overhead is added, such as
context-switch and DMA setup. For the contention-based system, the execution times
reported in SRAM column in Table 6 are used to represent the worst-case execution
time including the contention overhead.

Figure 13 shows the result of the schedulability analysis when using proposed SPM-
centric OS versus a contention based SRAM system. The figure shows the results in
terms of proportion of schedulable task sets for both approaches. Each point in the
graph represents 1000 task sets. The results show that the schedulability of the system
increases significantly when the proposed SPM-centric approach is used. Hence, the
described SPM-centric OS not only improves the predictability of task execution, but
it also improves task set schedulability by hiding the main memory access latency,
especially for memory intensive applications.

7.6 Communication latency

We evaluate the communication latency by generating random set of tasks as discussed
in Sect. 7.5. From a generated task set, we compute the response time of each task using
the analysis in Sect. 5. After that, we generate four random communication flows with
5, 10, 15, and 20 tasks and compute the communication latencies of each flow. Each
experiment is repeated 1,000 times and the average worst-case communication latency

123

Real-Time Systems

Fig. 13 Schedulability with SPM-based and traditional scheduling models

is reported. Figure 14 shows the estimated worst-case communication latencies for the
generated flows comprised of a mix of applications provided in Table 6. As one can
observe, there is a slight improvement when the communication tasks are scheduled on
the same core. This improvement is because of the DMA phasing. We expect that the
improvement should increase with number of application cores. However, exploring
this is part of the future work.

In addition, the yellow line in the figure represents the average communication
bandwidth, that is, the total amount of data transferred divided by the end-to-end
communication latency. For the sake of this experiment, we assumed that each task in
a flow will send data equal to the size of its data section as reported in Table 6; hence,
the amount of data transferred between any two successive tasks in a flow might be
different, which resemble real-life scenarios. Each point in the line is generated by
randomly picking 5, 10, 15, or 20 tasks based on the number of tasks in the flow.
Then, we compute the total amount of data transferred withing the end-to-end latency
window. We repeat the experiment 1,000 times and take the average to capture all the
application benchmark in Table 6.

8 Conclusion

In this paper, we presented a novel OS design, namely SPM-centric OS. Proposed
SPM-centric OS aims at providing predictability for hard real-time applications on
multi-core embedded systems. In order to achieve this goal, we combined resource
specialization, high-level scheduling of shared hardware resources as well as a three-
phases task execution model. Theoretical results on how to perform schedulability
analysis of the proposed scheduling strategy were presented. A complete implementa-
tion using a commercially available multi-core platform was also performed to assess
the feasibility of our design.

123

Real-Time Systems

Fig. 14 End-to-end communication latency

Finally, in order to validate the proposed OS design, we have combined experi-
mental results from synthetic and automotive EEMBC benchmarks on the considered
platform. In addition to the strong temporal predictability achieved by enhancing inter-
core isolation, we are able to exploit the performance benefits of scratchpadmemories.
Hence, a schedulability improvement over traditional contention-based approaches
was obtained. As part of our future work on SPM-centric OS, we plan to investigate
the following aspects: support for task preemption, and compliance with standard
application interfaces (e.g. AUTOSAR, POSIX).

Acknowledgements The material presented in this paper is based upon work supported by the National
ScienceFoundation (NSF) underGrantNumbersCNS-1646383,NSERC402369-2011 andCMCMicrosys-
tems. Marco Caccamo was also supported by an Alexander von Humboldt Professorship endowed by the
German Federal Ministry of Education and Research. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the authors and do not necessarily reflect the views
of the NSF and other sponsors.

References

BaiK, Lu J, ShrivastavaA,HoltonB (2013)CMSM: an efficient and effective codemanagement for software
managed multicores. In: Hardware/software codesign and system synthesis (CODES+ ISSS), 2013
international conference on, IEEE, pp 1–9

Betti E, Bak S, Pellizzoni R, Caccamo M, Sha L (2013) Real-time I/O management system with COTS
peripherals. IEEE Trans Comput 62(1):45–58

Bui D, Lee EA, Liu I, Patel H, Reineke J (2011) Temporal isolation on multiprocessing architectures. In:
Design automation conference (DAC), pp 274 – 279

ButtazzoGC (2011)Hard real-time computing systems: predictable scheduling algorithms and applications,
vol 24. Springer, New York

Chattopadhyay S, RoychoudhuryA, Rosén J, Eles P, Peng Z (2014) Time-predictable embedded software on
multi-core platforms: analysis and optimization. Found Trends Electron Des Autom 8(3–4):199–356

Deverge J-F, Puaut I (2007) WCET-directed dynamic scratchpad memory allocation of data. In: Real-time
systems, 2007. ECRTS’07. 19th Euromicro Conference on, IEEE, pp 179–190

Durrieu G, Faugere M, Girbal S, Perez DG, Pagetti C, Puffitsch W (2014) Predictable flight management
system implementation on a multicore processor. In: ERTSS’14

FAA position paper on multi-core processors, CAST-32 (rev 0). http://www.faa.gov/aircraft/air_cert/
design_approvals/air_software/cast/cast_papers/media/cast32.pdf. Accessed 26 Jan 2015

123

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast32.pdf

Real-Time Systems

Falk H, Kleinsorge JC (2009) Optimal static WCET-aware scratchpad allocation of program code. In:
Proceedings of the 46th annual design automation conference, ACM, pp 732–737

Farshchi F, Valsan PK, Mancuso R, Yun H (2018) Deterministic memory abstraction and supporting mul-
ticore system architecture

Flodin J, LampkaK,WangY (2014)Dynamic budgeting for settling dram contention of co-running hard and
soft real-time tasks. In: Industrial embedded systems (SIES), 2014 9th IEEE international symposium
on, IEEE, pp 151–159

Girbal S, Jean X, Le Rhun J, Perez DG, Gatti M (2015) Deterministic platform software for hard real-time
systems using multi-core COTS. In: Digital avionics systems conference (DASC), 2015 IEEE/AIAA
34th, IEEE, pp 8D4–1

Jean X, Faura D, Gatti M, Pautet L, Robert T (2012) Ensuring robust partitioning in multicore platforms
for ima systems. In: Digital avionics systems conference (DASC), 2012 IEEE/AIAA 31st, IEEE, pp
7A4–1

Kai L, Adam L (2016) Resolving contention for networks-on-chips: Combining time-triggered applica-
tion scheduling with dynamic budgeting of memory bus use. In: International GI/ITG conference on
measurement, modelling, and evaluation of computing systems and dependability and fault tolerance,
Springer, pp 137–152

Lampka K, Giannopoulou G, Pellizzoni R, Zheng W, Stoimenov N (2014) A formal approach to the wcrt
analysis of multicore systems with memory contention under phase-structured task sets. Real Time
Syst 50(5–6):736–773

Li L, Gao L, Xue J (2005) Memory coloring: a compiler approach for scratchpad memory management. In:
Parallel architectures and compilation techniques, 2005. PACT 2005. 14th international conference
on, IEEE, pp 329–338

Lu J, Bai K, Shrivastava A (2013) SSDM: smart stack data management for software managed multicores
(SMMs). In: Proceedings of the 50th annual design automation conference, ACM, pp 149

Mancuso R, Dudko R, Betti E, Cesati M, Caccamo M, Pellizzoni R (2013) Real-time cache management
framework for multi-core architectures. In: Real-time and embedded technology and applications
symposium (RTAS), 2013 IEEE 19th, IEEE, pp 45–54

Mancuso R, Pellizzoni R, Caccamo M, Sha Lui, Yun Heechul (2015) WCET(m) estimation in multi-
core systems using single core equivalence. In: Real-time systems (ECRTS), 2015 27th Euromicro
conference on, pp 174–183

Metzlaff S, Guliashvili I, Uhrig S, Ungerer T (2011) A dynamic instruction scratchpad memory for embed-
ded processors managed by hardware. In: Architecture of computing systems-ARCS 2011, Springer,
pp 122–134

Pellizzoni R, Betti E, Bak S, Yao G, Criswell J, CaccamoMKegley R (2011) A predictable execution model
for COTS-based embedded systems. In: Proceedings of the 2011 17th IEEE real-time and embedded
technology and applications symposium, RTAS ’11, IEEE Computer Society, Washington, DC, USA,
pp 269–279

Puau I, Pais C (2007) Scratchpad memories vs locked caches in hard real-time systems: a quantitative
comparison. In: Design, automation & Test in Europe conference & exhibition, 2007. DATE’07,
IEEE, pp 1–6

SchranzhoferA, PellizzoniR,Chen Jian-Jia, ThieleL,CaccamoM(2010)Worst-case response time analysis
of resource access models in multi-core systems. In: Proceedings of the 47th design automation
conference, ACM, pp 332–337

Software techniques for scratchpad memory management. http://memsys.io/wp-content/uploads/2015/09/
p98-sebexen.pdf. Accessed 26 Jan 2015

Suhendra V, Roychoudhury A, Mitra T (2010) Scratchpad allocation for concurrent embedded software.
ACM Trans Program Lang Syst 32(4):13

Tabish R, Mancuso R, Wasly S, Alhammad A, Phatak SS, Pellizzoni R, Caccamo M (2016) A real-time
scratchpad-centric os for multi-core embedded systems. In: Real-time and embedded technology and
applications symposium (RTAS), 2016 IEEE, IEEE, pp 1–11

Takase H, Tomiyama H, Takada H (2010) Partitioning and allocation of scratch-pad memory for priority-
based preemptivemulti-task systems. In: Design, automation& test in Europe conference& exhibition
(DATE), 2010, IEEE, pp 1124–1129

Ungerer T, Cazorla F, Sainrat P, Bernat G, Petrov Z, Rochange C, Quinones E, Gerdes M, Paolieri M,
Wolf J, Casse H, Uhrig S, Guliashvili I, Houston M, Kluge F, Metzlaff S, Mische J (2010) MERASA:
multicore execution of hard real-time applications supporting analyzability. IEEE Micro 30(5):66–75

123

http://memsys.io/wp-content/uploads/2015/09/p98-sebexen.pdf
http://memsys.io/wp-content/uploads/2015/09/p98-sebexen.pdf

Real-Time Systems

Wasly S, Pellizzoni R (2013) A dynamic scratchpad memory unit for predictable real-time embedded
systems. In: Real-time systems (ECRTS), 2013 25th Euromicro Conference on, IEEE, pp 183–192

Wasly S, Pellizzoni R (2014) Hiding memory latency using fixed priority scheduling. In: Real-time and
embedded technology and applications symposium (RTAS), 2014 IEEE 20th, IEEE, pp 75–86

Whitham J, Audsley NC (2012) Explicit reservation of local memory in a predictable, preemptivemultitask-
ing real-time system. In: Real-time and embedded technology and applications symposium (RTAS),
2012 IEEE 18th, IEEE, pp 3–12

Whitham J, Davis RI, Audsley NC, Altmeyer S, Maiza C (2012) Investigation of scratchpad memory for
preemptive multitasking. In: Real-time systems symposium (RTSS), 2012 IEEE 33rd, IEEE, pp 3–13

Wilding MM, Hardin DS, Greve DA (1999) Invariant performance: a statement of task isolation useful for
embedded application integration. In: dcca, IEEE, p. 287

Wolf J, Gerdes M, Kluge F, Uhrig S, Mische J, Metzlaff S, Rochange C, Cassé H, Sainrat P, Ungerer T
(2010) RTOS support for parallel execution of hard real-time applications on the MERASA multi-
core processor. In:Object/component/service-oriented real-time distributed computing (ISORC), 2010
13th IEEE international symposium on, IEEE, pp 193–201

Yun H, Mancuso R, Wu ZP, Pellizzoni R (2014) PALLOC: DRAM bank-aware memory allocator for per-
formance isolation on multicore platforms. In: Real-time and embedded technology and applications
symposium (RTAS), 2014 IEEE 20th, IEEE, pp 155–166

Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2013) Memguard: memory bandwidth reservation system
for efficient performance isolation in multi-core platforms. In: Real-time and embedded technology
and applications symposium (RTAS), 2013 IEEE 19th, IEEE, pp 55–64

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Rohan Tabish works as a graduate student in the Department
of Computer Science at the University of Illinois at Urbana-
Champaign, IL, USA. His research interests are in real-time and
embedded systems with a focus on the use of OS-level techniques
in multi-core processors to achieve predictability and strong timing
guarantees such that they can be deployed in safety-critical auto-
motive and avionics applications. He is also interested in wireless
communications and sensor networks. He is an IEEE student mem-
ber.

123

Real-Time Systems

Renato Mancuso is an assistant professor at the department of Com-
puter Science at Boston University (BU) since September 2017.
He received his Ph.D. from the University of Illinois at Urbana-
Champaign (UIUC) the same year. His research focuses on real-time
and embedded systems, with specific focus on OS-level multi-core
resource management technologies for high-performance, safety-
critical avionics and automotive systems. Renato is also interested
in applications and methodologies to design, deploy and analyze
Cyber-Physical Systems (CPS) in general, and autonomous terres-
trial and aerial vehicles in particular. He is a member of the IEEE.

Saud Wasly is an Assistant Professor in the Department of Electri-
cal and Computer Engineering at King Abdulaziz University, Saudi
Arabia. He received his Ph.D. in 2018 from the Department of
Electrical and Computer Engineering at the University of Waterloo,
Canada. His research interests include embedded systems architec-
ture, real-time operating systems, timing analysis, and architectural
simulation. He is a member of the IEEE.

Rodolfo Pellizzoni is Associate Professor in the Department of Elec-
trical and Computer Engineering at the University of Waterloo.
He received his master degree from Scuola Superiore Sant’Anna
in 2005 and his Ph.D. from the University of Illinois at Urbana-
Champaign in 2010. Rodolfo’s main research interests are in real-
time systems and timing analysis, with a particular focus on hard-
ware/software architectures for timing predictability and safety cer-
tification.

123

Real-Time Systems

Marco Caccamo studied Computer Engineering at University of Pisa
(Italy). Following his Master degree in computer engineering in July
1997, he earned his Ph.D. in computer engineering from Scuola
Superiore SantAnna (Italy) in 2002. Shortly after graduation, he
joined University of Illinois at Urbana-Champaign as assistant pro-
fessor in Computer Science and was promoted to associate professor
at the age of 36, then he became a full professor in 2014. Since 2018,
Prof. Caccamo has been appointed to the chair of Cyber-Physical
Systems in Production Engineering at TUM. He has chaired Real-
Time Systems Symposium and Real-Time and Embedded Technol-
ogy and Applications Symposium, the two IEEE flagship confer-
ences on Real-Time Systems. He also has served as General Chair
of Cyber Physical Systems Week. In 2003, he was awarded an NSF
CAREER Award. He is a recipient of the Alexander von Humboldt
Professorship and he is an IEEE Fellow.

Affiliations

Rohan Tabish1 · Renato Mancuso2 · Saud Wasly3 · Rodolfo Pellizzoni4 ·
Marco Caccamo5

Renato Mancuso
rmancuso@bu.edu

Saud Wasly
saudalwasli@gmail.com

Rodolfo Pellizzoni
rpellizz@uwaterloo.ca

Marco Caccamo
mcaccamo@tum.de

1 University of Illinois at Urbana-Champaign, Champaign, IL, USA

2 Boston University, Boston, MA, USA

3 Kind AbdulAziz University, Jeddah, Saudi Arabia

4 University of Waterloo, Waterloo, ON, Canada

5 Technical University of Munich, Munich, Germany

123

	A real-time scratchpad-centric OS with predictable inter/intra-core communication for multi-core embedded systems
	Abstract
	1 Introduction
	2 Related work
	3 System model and assumptions
	3.1 Scratchpad memories
	3.2 DMA engines
	3.3 Dedicated I/O bus
	3.4 Memory organization
	3.5 Task model
	3.6 Communication model

	4 Proposed operating system design
	4.1 Overview
	4.2 Scratchpad and CPU co-scheduling
	4.3 I/O subsystem design
	4.4 Inter-core and intra-core communication

	5 Schedulability analysis
	5.1 Response time calculation
	5.2 Critical instant and blocking time (B)
	5.3 Scheduling intervals in the busy period (H)
	5.4 Final interval (F)
	5.5 Bounding communication latency

	6 Implementation
	6.1 Architectural overview of considered platform
	6.2 Implementation of SPM-centric OS using Erika Enterprise

	7 Evaluation
	7.1 SPM-centric OS overhead evaluation
	7.2 Results of achievable I/O bandwidth
	7.3 Results of synthetic benchmarks
	7.4 Results of EEMBC benchmarks
	7.5 Schedulability analysis
	7.6 Communication latency

	8 Conclusion
	Acknowledgements
	References

