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Abstract9

The sharp increase in demand for performance has prompted an explosion in the complexity of10

modern multi-core embedded systems. This has lead to unprecedented temporal unpredictability11

concerns in Cyber-Physical Systems (CPS). On-chip integration of programmable logic (PL) alongside12

a conventional Processing Systems (PS) in modern Systems-on-Chip (SoC) establishes a genuine13

compromise between specialization, performance, and re-configurability. In addition to typical14

use-cases, it has been shown that the PL can be used to observe, manipulate, and ultimately manage15

memory traffic generated by a traditional multi-core processor.16

This paper explores the possibility of PL-aided memory scheduling by proposing a Scheduler In-17

the-Middle (SchIM). We demonstrate that the SchIM enables transaction-level control over the main18

memory traffic generated by a set of embedded cores. Focusing on extensibility and reconfigurability,19

we put forward a SchIM design covering two main objectives. First, to provide a safe playground20

to test innovative memory scheduling mechanisms; and second, to establish a transition path from21

software-based memory regulation to provably correct hardware-enforced memory scheduling. We22

evaluate our design through a full-system implementation on a commercial PS-PL platform using23

synthetic and real-world benchmarks.24
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1 Introduction34

It is undeniable that the massive increase in expectation on the performance of next-generation35

cyber-physical systems has deeply impacted the way we design modern embedded and real-36

time systems. High-resolution, high-bandwidth sensors such as lidars, and depth cameras on37

the one hand, and data-intensive processing workload such as machine-learning applications38

on the other hand, have exacerbated the push for high-performance embedded platforms.39

Following this performance moving target, chip manufactures have significantly scaled up40

clock speeds, CPU count, and heterogeneity. For instance, the on-chip integration of powerful41

graphic processing units (GPUs) has been the characterizing factor in the NVIDIA Tegra42

series of embedded systems-on-a-chip (SoC).43
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In this context, an embedded architectural paradigm that is surging in popularity among44

manufacturers, researchers, and industry practitioners is the PS-PL organization. This45

class of embedded platforms integrates on the same die (1) traditional full-speed embedded46

CPUs and (2) programmable logic constructed using field-programmable gate array (FPGA)47

technology. This organization naturally defines two macro-domains, namely the Processing48

System (PS) and the Programmable Logic (PL), hence the name. PS-PL platforms establish a49

good trade-off between specialization, raw performance, and mission-specific re-configurability.50

The current generation of commercially available PS-PL platforms is dominated by ARM-51

based products offered by, most notably, Intel [12] and Xilinx [38]. A pilot large-scale,52

high-performance PS-PL system is the Enzian platform [3] being rolled out by ETH Zurich1.53

Furthermore, a RISC-V-based solution has been recently made available by Microsemi with54

their PolarFire SoC [18].55

From a real-time perspective, the co-existence of traditional CPUs and a tightly-coupled56

block of PL has more profound implications than expected. Clearly, it is possible to define57

custom accelerators in PL and to relieve the main CPUs of some of the heavy data-processing58

workload. However, more interestingly, recent studies have highlighted the possibility of using59

the PL also as a way to manage the memory traffic originated from the main CPUs [13, 29].60

Such a possibility opens the doors for memory traffic inspection and control at the level61

of individual transactions; which in turn promises to unlock provable determinism for the62

real-time workload.63

In this paper, we embrace the concept of PL-aided memory traffic management and propose64

an infrastructure to develop, test and evaluate memory scheduling policies. Specifically, we65

propose a component, called the Scheduler In-the-Middle—or SchIM, for short—that can66

be instantiated in the PL to enforce a set of configurable scheduling policies on individual67

memory transactions generated by the CPUs in the PS.68

The overarching goal of the proposed SchIM is twofold. First, we want to provide a69

playground for researches to test promising novel memory scheduling ideas for multi-core70

platforms, much like LITMUSRT [7] fostered research on CPU scheduling techniques. Second,71

we want our SchIM to act as an intermediate stepping stone for industrial applications where72

strong determinism over memory performance is required. The SchIM can be used to analyze73

the behavior of realistic workload in a multitude of what-if memory management use-cases.74

We note that such kind of analysis was previously possible only through full-system simulation75

or by synthesizing the entire SoC on FPGA—that is, with a soft-core implementation.76

In short, this paper makes the following contributions. (1) We demonstrate that a77

configurable module could be interposed between the cores and the memory controller to78

perform transaction-level scheduling in commercial PS-PL platforms; (2) we propose a79

design for a memory scheduling infrastructure that focuses on extensibility and runtime80

reconfigurability; (3) we address important issues to correctly account and regulate CPU-81

generated traffic when a shared last-level cache is present; (4) we design and implement two82

pilot memory scheduling policies as a proof-of-concept on the potential of our SchIM; and (5)83

we perform a full system integration and implementation on a commercial PS-PL embedded84

platform to evaluate the behavior of the SchIM with synthetic and realistic workload.85

1 Also see http://enzian.systems/

http://enzian.systems/


D. Hoornaert, S. Roozkhosh and R. Mancuso 23:3

2 Related Work86

There is a broad consensus that memory resources represent the main performance bottleneck87

in modern multi-core processors. The observation has sparked a host of research works88

addressing the problem from multiple angles [17]. In this context, the works representing89

the inspiration for our SchIM fall in two macro-categories, namely hardware-based and90

software-based techniques for main memory traffic management.91

The first category includes a large body of works aimed at achieving better and/or92

more predictable performance by advancing novel hardware redesigns. The works in [22–24]93

strive to construct high-performance and fair memory schedulers. The addition of software-94

controlled memory deadlines and transactional semantics where explored in [33] and [10],95

respectively. Next, the work by Åkesson et al. [1, 2] and Paolieri et al. [25] attains timing96

predictability through careful scheduling of SDRAM commands. Finally, the MEDUSA97

DRAM controller [9, 34] implements a two-tiers scheduler at the DRAM controller to ensure98

predictability when accessing memory areas where access time strongly impact application99

performance. Finally, the hardware designs proposed in [8, 26, 43] put their emphasis on100

main memory bandwidth partitioning; clever dynamic pipelining is further explored in [20]101

to better balance average performance and determinism.102

Among the software-based techniques are the mechanisms that stemmed from MemGuard,103

originally proposed in [42] and that rely on broadly available performance counters to regulate104

the bandwidth extracted by individual CPUs. Later extensions to jointly consider regulation105

and cache partitioning [39] and to expose control over memory bandwidth as a lockable106

resource [40] were proposed. Software-based memory throttling has also been implemented at107

the hypervisor-level [21, 30]. Remarkably, the work in [30] combines regulation mechanisms108

for CPU and embedded accelerators through the ARM QoS extensions [4].109

In addition to the two categories surveyed above, perhaps the most closely related works110

are those that explored memory isolation techniques in PS-PL platforms. The work in [11]111

demonstrated that the PL-side can be used to define private memory storage, control, and112

bus units to strongly isolate high-criticality workload. A number of techniques developed113

as part of the FRED framework [6] put an emphasis on memory traffic arbitration and114

management for in-PL accelerators [27, 28]. The AXI HyperConnect [27] is perhaps the115

component most similar to the SchIM in terms of high-level design. However, both are116

substantially different as the SchIM is designed to manage embedded CPUs’ memory traffic.117

Compared to the literature reviewed above, what sets this work apart are the following118

aspects. (1) Our SchIM applies to existing PS-PL commercial systems without introducing119

any hardware modification; (2) it allows management in the PL of memory traffic originated120

by the embedded CPUs residing in the PS; (3) it provides the framework to test the feasibility121

and performance of custom memory scheduling policies; and (4) it is designed such that122

multiple schedulers can coexist, be activated, and configured at runtime.123

3 Background Concepts124

In this section, we introduce some fundamental concepts necessary to understand the overall125

system design and the class of platforms targeted by this work.126

3.1 Hybrid Multi-Core Platforms with Programmable Logic127

This work targets the aforementioned class of embedded multi-core platforms with pro-128

grammable logic—i.e., PS-PL platforms. In such platforms, the PS encompasses a multi-core129

CVIT 2016



23:4 A Memory Scheduling Infrastructure for Multi-core Systems with Re-programmable Logic

processor with a multi-level cache hierarchy and a main memory (DRAM) controller. A130

simplified block diagram for a reference PS-PL organization is illustrated in Fig. 1. The131

figure considers a platform with four CPUs denoted as C0, C1, C2, and C3.132

Figure 1 PS-PL interconnect block diagram.

A key feature in PS-PL platforms is133

the presence of high-performance commu-134

nication channels between the two do-135

mains. These come in the form of136

data exchange interfaces and interrupt137

lines. Data exchange channels follow a138

master-slave paradigm. Specifically, high-139

performance masters (HPM, Fig. 1 1 ) and140

high-performance slaves (HPS, Fig. 1 2 )141

send and receive transactions to and from142

the PL, respectively. Additionally, there ex-143

ist programmable interrupt request (IRQ)144

lines (see Fig. 1 3 ) that can be driven by145

the PL and are connected to the interrupt146

controller (Fig. 1 4 ) inside the PS. As we147

discuss in Section 5.7, the presence of PS-PL148

interrupt lines is crucial to building PL-assisted memory traffic regulation.149

Note also that there might exist PS-PL data ports that are routed through a secondary150

interconnect (Fig. 1 8 ). These can generally sustain less throughput compared to HPS ports;151

hence we refer to them as low-performance masters (LPM, Fig. 1 9 ). LPM ports are useful152

to perform memory-mapped configuration of PL modules.153

3.2 Programmable Logic In-the-Middle154

In this work, we leverage the ability to route main memory traffic originated by the CPUs155

through the PL. This technique is known as Programmable Logic In-the-Middle, or PLIM156

for short. PLIM was originally proposed in [29]. To fully grasp how PLIM can be achieved,157

one needs to understand how memory accesses are routed in PS-PL platforms.158

Any CPU-generated memory access that results in an LLC miss is routed directly to159

main memory if its physical address falls within the aperture, say the address range [A, B]160

handled by the DRAM controller. We refer to this as the normal route, depicted in Fig. 1 5161

and highlighted in yellow.162

Conversely, generic memory access resulting from an LLC cache miss will be sent on an163

HPM port if the corresponding physical address falls within another range, say [C, D]. One164

can then insert (1) a lightweight layer of virtualization to map all the physical addresses165

of a guest OS to the PL, i.e., to fall in the range [C, D]; and (2) an address translator in166

the PL that re-bases request physical addresses to access main memory and relays back the167

data payload to the requesting CPU(s). In other words, one can find a constant k such that168

C = A + k. Then, the translator in the PL, upon receiving any request at address x ∈ [C, D]169

will issue a main memory request at the address (x − k) through the HPS port and provide170

the response to the CPU. The PLIM technique introduces a secondary memory route for171

reaching the DRAM, called the PL loop-back, or simply loop-back, which is highlighted in172

blue in Fig. 1 6 . Memory transactions on the loop-back route typically traverse the main173

interconnect, as depicted in Fig. 1 7 . The advantage of PLIM is that transactions on the174

loop-back route can be inspected, blocked, re-routed, and in general managed by custom175

re-programmable logic. Importantly, switching from the direct to the loop-back route can176
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be done dynamically at runtime so that the overhead of PLIM can be avoided if deemed177

detrimental for the application under analysis.178

In this paper, we leverage the PLIM approach to perform memory scheduling, hence, we179

call our module the Scheduler In-the-Middle, or SchIM for short.180

3.3 Advanced eXtensible Interface (AXI)181

The vast majority of PS-PL platforms currently available are ARM-based. This is also the182

case for the platform we used for our evaluation, namely the Xilinx Zynq UltraScale+ MPSoC.183

Thus, we briefly introduce the communication protocol used for on-chip communication184

in ARM-based SoCs, namely the Advanced eXtensible Interface (AXI). The AXI is an185

open specification bus protocol [5] used for high-bandwidth data exchanges between on-chip186

subsystems — such as cache controllers, memory controllers, DMAs, PL modules. It is also187

used in the PS-PL platforms of reference to exchange data on the HPM and HPS ports.188

The AXI protocol is based on the master-slave duality. A master AXI interface can189

initiate transactions toward a connected slave interface. The latter responds master-initiated190

requests. Masters and the slaves communicate with each other through five different channels191

named AW (address write), W (write), B (write acknowledgment), AR (address read) and R192

(read), as illustrated in Fig. 2a.193

A write transaction begins with an address phase 1 where the channel AW is used to194

transmit the transaction’s meta-data, such as the destination address, the transaction ID,195

and the cacheability attributes the type/length of the burst, and so on. Upon completing196

this phase, follows the data phase 2 , which consists of the transmission of the data payload197

to be written through the W channel. The response phase 3 concludes a successful write198

transaction and occurs on the B channel.199

The transmission of a read transaction is carried out in a similar way. The address phase200

1’ is transmitted through the equivalent AR channel and is directly followed by the data201

phase 2’ . A response initiated by the slave follows where the read data is transferred over the202

R channel. The protocol is asynchronous because different phases of different transactions203

can interleave on any AXI bus segment. Hence, multiple outstanding transactions can be204

emitted by a single master and the receipt of out-of-order responses is possible.205

4 Design Goals and Overview206

In this section, we introduce the proposed SchIM design and describe the overarching goals207

of this work. We then provide a bird’s-eye view of the SchIM organization and principles of208

operation.209

CVIT 2016
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Figure 3 SchIM internal organization connected to the PS via the HPM, LPM and HPS ports.

4.1 Design Goals210

As briefly surveyed in Section 2, there have been numerous proposals for better memory211

controllers and approaches to manage memory traffic in modern multi-core embedded212

platforms. With respect to the existing literature, the purpose of this work is twofold. First,213

we want to demonstrate that scheduling CPU-originated memory traffic at the granularity214

of individual transactions is possible in PS-PL platforms. Second, and more importantly,215

we want to provide an infrastructure that is generic and extensible enough for the broader216

research community to adopt and foster a new chapter on PL-assisted memory scheduling.217

With this in mind, we establish the following goals.218

Extensible memory scheduling infrastructure. First and foremost, the SchIM has219

been designed with modularity and extensibility in mind. We separate the functionalities220

that concern handling, queuing, selection, and forwarding of memory requests inside our221

infrastructure. Moreover, we design our SchIM to be able to support multiple memory222

scheduling policies simultaneously. A simple, standardized interface is provided to define new223

memory scheduling policies without impacting the design of the rest of the SchIM. We discuss224

in Section 5.5 the generic interface provided by the SchIM to implement a new memory225

scheduling policy.226

Runtime configuration and transparency. We want the SchIM to be a robust227

supporting infrastructure to evaluate, compare, and contrast memory scheduling policies.228

As such, we strive to provide (1) runtime reconfigurability and (2) operational transparency.229

It is possible to rapidly identify desirable configuration parameters by allowing memory230

scheduling policies to be switched at runtime. Besides, an adopted policy can be tuned231

according to the workload criticality and memory intensiveness. For this purpose, the SchIM232

exposes a memory-mapped configuration interface where all the operational parameters can233

be changed at runtime. At the same time, we want to ensure that the applications and the234

(real-time) operating system under analysis need not be modified to use the SchIM. Hence,235

we propose using a thin virtualization layer to selectively route memory traffic through the236

SchIM without changes to the binary of OS kernel and applications.237

Realistic performance with experimental policies. One of the limiting factors of238

research on memory scheduling policies is the ability to construct evidence of performance239

improvements with the realistic workload. Proposing a new memory scheduling policy is240

traditionally done with either a simulated setup or with a full-system soft-core implementation.241

Both cases have their drawbacks. The former gives a great deal of flexibility but achieving242

clock-level accuracy requires simulating many components the SoC whose details might not243

be publicly available. In addition, simulated setups that propose custom hardware designs244
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cannot be directly adopted on real platforms without being first synthesized in hardware.245

Full soft-core-based SoC implementations suffer from two shortcomings. First, they run246

at relatively low frequencies and thus can extract only a fraction of the available DRAM247

bandwidth. Secondly, they are typically based on processors IPs that do not feature the248

same Instructions Set Architecture (ISA) as widely available COTS, which further limits the249

practical impacts of these works.250

As reported in , re-routing the traffic of the core cluster through the PL-side comes at251

a cost in terms of extra latency and reduced bandwidth. Nonetheless, as PS-PL platforms252

mature and the interplay of PL and memory resources improves, a SchIM-like design could253

be the way to go for mission-reconfigurable, upgradable embedded systems.254

4.2 Design Overview255

As previously mentioned, the SchIM leverages the PLIM approach. CPU-originated main256

memory transactions are re-routed through the programmable logic and scheduled by the257

SchIM according to a flexible and configurable policy. The result is that the timing of258

memory transactions generated by real-time applications can be carefully determined and259

reasoned upon. Because the SchIM follows a PLIM approach, transactions can be selectively260

sent to the SchIM for scheduling. However, it is always possible to dynamically exclude the261

SchIM and route transactions directly to the main memory. Toward this paper’s incentive,262

we consider a setup in which SchIM handles all the CPU-generated memory transactions.263

Fig. 1 provides an overview of the location of the SchIM in the reference platform, while264

its internal organization is visible in Fig. 3. Application memory requests reach the SchIM the265

aforementioned HPM ports. Without loss of generality, we consider a SchIM instance with266

two arrival lanes, which are labeled as HPM1 and HPM2 in Fig. 3. The SchIM then forwards the267

received transactions towards main memory through the HPS interface. A more detailed view268

of the SchIM module is provided in Fig. 3 where the same convention is used to identify input269

and output ports. In addition, as shown in Fig. 3, a fourth LPM port is used to configure the270

SchIM from the PS.271

The SchIM is composed of a number of sub-modules grouped into three different domains,272

namely (i) the interfacing domain, (ii) the queuing domain, and (iii) the scheduling domain.273

The interfacing domain encompasses the sub-modules to interface the core logic of274

the SchIM with the rest of the system using the AXI protocol. This is comprised of three275

sub-modules. These are (i) the packetizer(s), (ii) the serializer, and (iii) the previously276

mentioned configuration interface.277

The PS-facing end of the packetizer offers an AXI slave port to accept new incoming278

transactions. Upon receipt, this module transforms each transaction into an equivalent packet279

that can be queued and scheduled by SchIM. Packetization of AXI transactions is necessary280

to be able to store transactions that are serial by nature. A standard AXI transaction is281

composed of one address phase (AR or AW channel) followed by a data phase (R or W282

channel), which can be itself composed of multiple successive bursts.283

In many ways, the serializer is the dual module of the packetizer. Its purpose is to284

transform the packets that encode CPU-generated memory requests back into AXI-compliant285

transactions. As such, the serializer offers a master port to the rest of the system to be286

routed to the main memory controller.287

The queuing domain handles how packets are stored between receipt and re-trasnmission.288

This domain is comprised of (i) the dispatcher module, (ii) the transaction queues, and (iii)289

the selector module.290

CVIT 2016
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The use of multiple transaction queues is necessary to differentiate the traffic of the291

CPUs and perform scheduling. As such, the SchIM associates a queue to each of the active292

cores — four in the platform of reference. The queues implemented in the SchIM not only act293

as a holding space for in-flight memory transactions. They also (a) provide information to294

the scheduling domain regarding their current state, and (b) they can generate a congestion295

control signal to the associated CPU core.296

Congestion control is vital because memory transactions originated at the LLC controller297

follow the same route to the SchIM regardless of the originating CPU. The total number of298

outstanding transactions that the cores can emit exceeds the queuing elements’ capacity on299

the loop-back route. Hence, priority inversion arises if a low-priority CPU’s memory traffic300

is (temporarily) held. Latter is due to the uncontrolled queue buildup, which provokes a301

head-of-line blockage. Importantly, what described is true also for the normal route and it is302

a direct consequence of the best-effort nature of traditional multi-core memory buses. The303

SchIM allows the user to specify a configurable threshold on the occupancy of the queues304

that, when reached, issues a regulation signal to the corresponding CPU. We describe in305

greater detail how congestion control was implemented on the target platform in Section 5.7.306

As suggested by Fig. 3, transactions are categorized and enqueued based on the source of307

traffic. The dispatcher module performs the matching between an incoming transaction308

and the destination queue. Similarly, transactions are dequeued by the selector module and309

sent directly to the output of the SchIM following the scheduling domain’s resolutions.310

The scheduling domain encompasses all the sub-modules that enable arbitration of311

transactions issued by the different cores of the PS. The modules in this domain are intended312

to be generic for extensibility, albeit the first set of two template schedulers is provided as313

a proof of concept. The scheduling policies currently implemented in the SchIM are Fixed314

Priority (FP) and Time Division Multiple Access (TDMA). Each of the parameters required315

by the implemented policies — such as the priorities and the periods — can be adjusted at316

runtime via the configuration interface.317

The FP scheduler allows associating a priority value to each of the transaction queues.318

Pending transactions at the queues are then forwarded out of the SchIM following the319

user-defined priority order. The TDMA scheduler allows associating a transmission time slot320

to each of the queues expressed in PL clock cycles. The module then builds a schedule by321

concatenating the per-core slots so that only pending transactions from one queue at a time322

are forwarded by the SchIM.323

5 SchIM Design and Implementation324

A full-system implementation was carried out on a Xilinx ZCU102 development system,325

which is based on a Xilinx Zynq UltraScale+ XCZU9EG PS-PL SoC. The PS comprises four326

ARM Cortex-A53 CPUs that share a unified 1 MB LLC. The PS includes a DDR4-2666327

controller connected to a 4 GB DDR4 memory module. There are two high-performance328

master interfaces (HPM1 and HPM2); and a third interface routed through the low power329

domain (LPM). The PL is capable of driving up to 16 interrupt requests lines towards the330

PS interrupt controller. We hereby provide key details on the operation of our SchIM in the331

target platform. These include complementary software stack, memory traffic accounting,332

regulation to prevent head-of-line blocking, and programming model.333
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5.1 Software Stack334

As mentioned in Section 4.1, we want to ensure that the SchIM can be used with no335

modification to the OS and the applications under analysis. For this reason, we rely on a336

thin virtualization layer that can be used to redirect memory traffic from the direct route to337

the loop-back route (see Section 3.2). For this purpose, we use the open-source Jailhouse [16]338

partitioning hypervisor2 Jailhouse does not boot the target machine. Instead, it relies on a339

standard Linux kernel to perform the initial boot sequence. When enabled from a Linux340

driver, Jailhouse dynamically virtualizes the original OS. In line with its partitioning-only341

philosophy, Jailhouse has a small footprint and enforces virtualization-aided partitioning of342

essential resources like CPUs, interrupts, main memory, I/O devices. It does not perform343

any virtual-CPU scheduling.344

Following Jailhouse’s nomenclature, a resource partition is called a cell, while guest OS’s345

are referred to as inmates. An inmate can be either a bare-metal application, an RTOS346

or a full-fledged OS like Linux. Jailhouse uses ARM hardware Virtualization Extensions347

(VE) to offer a set of Intermediate Physical Address (IPA) to its inmates that is compatible348

with the way they have been compiled. Jailhouse then maps IPA ranges of different cells to349

configurable Physical Addresses (PAs) — stage-2 translation. By changing the configured350

stage-2 mapping, it is possible to dynamically re-route via the loop-back the memory traffic351

generated by each inmate.352

As described below, some modifications were necessary to the mainline Jailhouse code for353

our full system implementation3.354

5.2 Altered communication scheme355

In order to achieve the objective of re-ordering transactions, one must alter the standard AXI356

communication scheme explained in the Section 3.3. To this end, the SchIM is interposed357

between the master (HPM) and the slave (HPS) as depicted in Fig. 2b. As shown in Fig. 2b,358

only the phases initiated by the masters (i.e., address phase on AW and AR and the data359

phase on W) are intercepted for re-ordering by the SchIM. The introduction of the SchIM360

has a direct consequence on the overall communication scheme. Unlike the response phases361

on channels R and B that remain unchanged, the address and write data phases are handled362

following a store-and-forward scheme. Consequently, a write transaction will start exactly363

as in the standard AXI scheme with its address phase 1 and data phase 2 . These two364

transactions are buffered within the SchIM’s queues ( 3 ) and only relayed following the365

internal memory scheduler’s logic. This release of the transaction leads to the initialization366

of two new addresses and data phase 4 , and 5 . Finally, the response phase 6 goes directly367

from the slave to the master without being intercepted. For read transactions, the same368

modifications apply to the address phase 1’ which is buffered ( 2’ ) for some time before369

being re-emitted in 3’ . Just like for write acknowledgments writing, the read response phase370

4’ is not intercepted by the SchIM.371

5.3 Queueing Domain372

At the heart of the queueing domain, lies the queues. They work as FIFOs. However, instead373

of inserting the new data at the back of the queue, the new data is always inserted as close374

2 The source code is available at https://github.com/siemens/jailhouse.git.
3 The modified Jailhouse sources are available at https://github.com/rntmancuso/jailhouse-rt.
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as possible to the front of the queue. This mechanism helps avoiding gaps within the queues375

prevents the loss of few clock cycles that would be required to move the data from the back376

to the front. From the authors’ experiments, saving clock cycles in SchIM is vital to keep377

the final bandwidth as high as possible.378

Furthermore, the queues have been designed to deal with three constraints. Firstly, the379

queues store both read and write packets such that the order at which transactions arrived380

is guaranteed. This implies that all the queue slots have the same size regardless of whether381

they contain read or write packets. Secondly, due to the altered communication scheme (see382

Section 5.2), each slot needs to be large enough to store both the address phase payload and383

the corresponding data of an AXI write transaction (678 bits). The depth of each queue is384

determined by considering the worst-case scenario. The latter consists of having to handle385

the maximum number of outstanding read and write transactions simultaneously. Our SchIM386

instance on the considered Xilinx UltraScale+ platform was configured with queues that are387

16 slots in-depth. Indeed, the HPM ports in this platform cannot handle more than eight388

transactions of each type [37].389

5.4 LLC-SchIM Interface and Traffic Accounting390

As illustrated in Fig. 1, the considered system features an LLC shared between the four cores391

of the PS. For a non-cacheable read (resp., write) memory access, which CPU represents392

the source of the traffic is carried in the ID bits of the corresponding AR (resp., AW) AXI393

transaction. But for cacheable memory accesses, which is the norm for application workload,394

this is not the case. This is mainly because cache controllers typically use a write-back395

strategy. In this case, a read or write cache miss causes up to two events: (1) a cache refill396

and (2) a cache eviction. The cache refill is carried out with a read AXI transaction. If397

the line being evicted was previously written (dirty), then the eviction causes a write AXI398

transaction. It follows that, while read AXI transactions have an easily identifiable source,399

write transactions do not. Indeed, a CPU x might be causing the eviction of a line previously400

allocated and modified by CPU y. Hence, accounting (and scheduling) the resulting write401

transaction as if it originated from CPU x would be incorrect.402

To ensure fair accounting for both read and write traffic, we rely on cache partitioning403

through coloring. As studied in a number of previous works, cache coloring is easy to404

implement at the hypervisor level [15, 21,32]. In our system setup, we leverage the support405

Jailhouse already provides. The standard support has been extended to support booting406

a Linux inmate over colored memory. Cache partitioning allows us to establish a 1-to-1407

relationship between any read/write transaction traversing the SchIM and the originating408

CPU. Moreover, with cache coloring in place, the SchIM uses the color bits in the address409

of the memory transactions (AR and AW channels) — instead of the AXI ID bits — to410

differentiate between the traffic of the various cores.411

Finally, recall that the SchIM forwards transactions between HPM and HPS ports. These412

ports follow the asynchronous AXI protocol that allows issuing multiple outstanding AR and413

AW transactions. The protocol dictates that any outstanding transaction must have a unique414

AXI ID. This property is crucial to be able to match received responses with outstanding415

requests. Unfortunately, a potential mismatch between the bit-width of the AXI ID emitted416

at the HPM ports and the bit-width of AXI ID accepted by the HPS ports. For instance, in417

the platform of reference, the HPMs emit 16-bit AXI IDs, while the HPS AXI ID bit-width418

is 6 bits. Therefore, the SchIM also acts as an AXI ID translator.419
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5.5 Scheduling Interface and Implemented Policies420

All the memory schedulers included in the scheduling domain share a common interface to421

ease the integration of a new scheduler. In terms of input signals, a generic scheduler module422

must define (1) a manual reset signal that can be triggered through the configuration port;423

(2) a vector of bits where each bit indicates whether the associated queue is empty; and (3) a424

signal indicating if the last scheduled transaction as been consumed. Alongside these inputs,425

the scheduling modules also have access to all the configuration registers listed in Table 1.426

In terms of outputs a SchIM scheduler must define (1) a signal to the selector indicating427

the queue considered for scheduling; and (2) a signal stating whether the current scheduling428

decision is valid. We hereby review the initial set of memory scheduling policies implemented429

in the SchIM.430

5.5.1 Fixed Priority431

The FP scheduling module aims at enforcing strict prioritization of cores’ memory traffic.432

The priority ordering is explicitly defined by the user through the configuration port. While433

the SchIM instance used in this paper only has four queues, 16 different levels of priority434

are offered as the considered platform supports up to 16 different colors. This is useful if an435

hypervisor that supports vCPU scheduling is used. In this case, the SchIM allows assigning436

different priorities to different partitions sharing the same physical CPU. The core-to-priority437

assignment must be strict, meaning that two cores cannot be assigned the same priority.438

The FP scheduling module only needs two pieces of information. That is (1) the priority439

associated with each queue and (2) whether a given queue contains at least one buffered440

transaction. The module logic always selects the queue with the highest priority. Lower441

priority queues are considered when higher priority queues do not have transactions. This is442

done by internally setting the user-defined priority of a queue as 0 when the corresponding443

queue is empty.444

5.5.2 Time Division Multiple Access445

The TDMA memory scheduler is a non-work conserving policy that operates by defining a446

per-core time slot during which the core has exclusive access to main memory. The slots are447

expressed in PL clock cycles, to maximize granularity. The configuration port can be used to448

specify and change the slots specifications at runtime.449

The implementation of the module uses a counter register to track the time elapsed in450

the current TDMA primary frame — defined as the sum of all the cores’ slots. It is reset451

to 0 at the beginning of a new major frame. Using the time-tracking register, the module452

determines to which core the current slot belongs, and forwards the information to the queue453

selector. This is done by summing up the length of all the previous slots, and determining if454

the current time falls within the interval of the considered core’s slot.455

5.6 Programming Model456

The parameters that compose the programming interface of the SchIM are summarized in457

Table 1. The base address referenced in the table can be set when the SchIM is deployed in458

the PL. By default, this is set to 0x800000000. All the parameter registers are 32 bit wide,459

except for the priorities of the FP scheduler. In this case, the priority values are encoded460

using 8 bits. The last “Mode” register allows a user to select the active memory scheduler.461

CVIT 2016



23:12 A Memory Scheduling Infrastructure for Multi-core Systems with Re-programmable Logic

Table 1 Available SchIM configuration registers.

Parameter Associated Core Address

TDMA slots

C0 base+0x00
C1 base+0x04
C2 base+0x08
C3 base+0x0C

User Thresholds

C0 base+0x10
C1 base+0x14
C2 base+0x18
C3 base+0x1C

FP Priorities C0 C1 C2 C3 base+0x20
Reserved

Mode N/A base+0x38

5.7 PL-to-PS Feedback462

Each of the HPM ports interfacing the PS and the PL sides (HPM1 and HPM2) have two463

dedicated queues for read and write transactions. Since transactions are being buffered inside464

SchIM as well as in these port buffers, head-of-line blocking can happen. Head-of-the-line465

blocking is harmful for performance; and can cancel out the benefits of transaction scheduling466

performed by the SchIM. For instance, in the case of a non work-conserving policy (e.g.,467

TDMA), if the HPM port queue gets filled with transaction coming for the same core, no468

other transaction will be able to reach the SchIM and thus be considered for scheduling. This469

implies that no transaction would be scheduled until the end of the active core’s TDMA slot.470

On the other hand, for work-conserving policies (e.g., FP) in the presence of head-of-line471

blocking, the decisions being taken by SchIM would directly depend on the order at which472

transactions are emitted by the HPM port buffer.473

In both cases, one must prevent the cores from saturating the HPM port buffers. In474

order to avoid such situation, we implemented a feedback scheme aimed at slowing down475

the cores when necessary. As we mentioned in the context of Fig. 3, the SchIM’s queues are476

associated a programmable threshold. Whenever the queue occupancy reaches (or exceeds)477

the associated threshold, a per-core interrupt line is asserted from the PL to the PS side.478

When received, the interrupt is treated by the platform software as a fast interrupt request479

(FIQ) and directly handled by the hypervisor—invisible to any guest OS. The advantage of480

using FIQs instead of regular IRQs is the significantly reduced handling latency [31]. Minor481

modifications to the TrustZone monitor were necessary to correctly configure FIQ handling.482

To minimize overhead, the installed FIQ handler only executes two assembly instructions.483

These are (1) a dsb memory barrier that stops the core until all the outstanding memory484

transactions have been completed, and (2) a eret instruction to exit the FIQ context. There485

is not need to save/restore any register because FIQs have banked syndrome/status registers486

and because no general purpose register is modified in the handler.487

Ideally, the available space in the HPM buffers should be shared evenly between the cores.488

Since each HPM port has a buffer with a depth of 8+8 transactions, each core should occupy489

at most 2 slots in each buffer. Unfortunately, our experiments highlighted that the control490

over amount of transactions buffered by each core is imperfect. Often times, the selected491

threshold is exceeded by up to two transactions. This is the main reason why we propose492

a dual-ported SchIM which uses both the available HPM ports. Indeed, by assigning two493
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cores on each of the ports, the ideal threshold on maximum amount buffered transactions494

can be doubled. The increase provides enough room to compensate for imperfections in the495

micro-regulation performed with PL-to-PS FIQ delivery.496

6 Evaluation497

The present section aims at evaluating the behavior of the SchIM on the target platform, its498

overhead and benefits. First, in subsection 6.1, we review our experimental setup. Thereafter,499

we assess the overhead introduced by the SchIM in Section 6.2. Section 6.3 explores the500

impact of the PL-to-PS feedback on the control and the performance. In Section 6.4, an501

in-depth analysis of the SchIM’s behavior is presented. Finally, an evaluation of the temporal502

behavior of a set of real-world benchmarks operating through the SchIM is provided in503

Section 6.5.504

6.1 Experimental Setup505

The SchIM has been evaluated using synthetic benchmarks (or Memory Bombs), real506

benchmarks selected from the San Diego Vision Benchmark Suite (SD-VBS) [35] and a507

combination of the two. Specifically, seven memory-intensive benchmarks have been selected,508

i.e. stitch, texture synthesis, disparity, tracking, localization, mser and sift. For our runs, we509

have considered all the intermediate input sizes ranging from SQCIF (128×196 pixels) to510

VGA (640×480 pixels). When running any benchmark, we use the cache coloring mechanism511

implemented in the Jailhouse hypervisor [32] to partition the LLC evenly amongst the 4 cores512

and to prevent our measurements from being affected by inter-core cache interference. As a513

result, each benchmark operates on 1/4 of the total cache space—256 KB. As extensively514

discussed in [14, 41], it is also important to avoid inter-core DRAM bank conflicts, which515

can cause the arbitrary re-ordering of transactions originating from different cores. This is516

accomplished by (1) configuring the DRAM controller to disable DRAM bank interleaving;517

and (2) by performing static cache bleaching [11,29] at the SchIM’s output to re-compact518

accesses to colored pages into contiguous DRAM accesses. In this platform, there are a519

total of 16 DRAM banks of 256 MB each. Thanks to bleaching, we can assign the full size520

of 4 banks (i.e., 1 GB) to each core, instead of being restricted to only 1/4 of that due to521

non-overlapping color and bank address bits.522

To evaluate the capabilities of the SchIM, two memory routes for the traffic generated523

by the cores are compared. The first serves as baselines, whereas, the last one is the one524

under analysis and involves the SchIM module. The first path consists in the cores directly525

accessing the main memory. As illustrated in Fig. 1, the traffic simply goes through the526

Main Interconnect before arriving at the DDR controller. This path is referred to as the527

normal route. Secondly, we consider the case where the SchIM module is deployed and in use528

to schedule memory traffic generated by the CPUs in the PL. Cores 0 and 1 target HPM1529

aperture, while cores 2 and 3 target HPM2. In our analysis, the SchIM is used in all the530

available modes, i.e., FP and TDMA.531

Note that in the case of the normal route, combining both a strict cache partitioning and532

strict bank partitioning could not be applied. In fact, as a direct consequence of the address533

coloring and in the absence of a bleacher, only 1/16 of each 1 GB wide memory allocation534

can be used by each core. The resulting reduced space of 64 MB is not enough for running535

Linux. Consequently, in the case of the normal route, the cores have been split into two536

groups of two, where each group targets independent sets of banks. This configuration allows537

the cache to be partitioned using address cooring.538
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Figure 4 Bandwidth in MBps for different path under increasing set of cores contending.

6.2 Platform Capabilities and performance degradation539

Intuitively and as discussed in [29], redirecting the traffic coming from the cores to the PL540

side incurs a performance hit. In spite of the lower frequency at which the SchIM operates541

(250 MHz), the theoretical throughput when using both the HPM lanes should be around542

8 GBps. We observe, however, that the achievable throughput through the HPM ports is543

a fraction of what we measured by accessing the main memory through the normal route544

(2116.5 MBps and 1207.41 MBps for solo and full contention by 3 other cores, respectively).545

We further provide a discussion on the bandwidth drop when transactions are routed through546

the PL in Section. For the sake of completeness, we quantify in Fig. 4 the maximum547

bandwidth achieved through the PL — and hence through the SchIM. Nevertheless, it is548

important to remember that the absolute figures are strictly platform dependent.549

In Fig. 4, we have computed the throughput of one core under analysis, here core 0 (noted550

C0) when a synthetic memory-intensive application is deployed on an increasing number551

of cores denoted with the same notation. The first bar cluster (“Normal”) refers to the552

throughput measured via the normal route. The other two clusters capture the observed553

bandwidth when traffic is routed through and managed by the SchIM. One cluster is provided554

for each of the implemented memory scheduling policies, namely — from left to right — FP555

and TDMA. As expected, there is a sharp reduction (around 75%) in terms of absolute556

bandwidth. Importantly, however, two aspects need to be highlighted. First, the bandwidth557

achieved through the SchIM is still remarkably high and allows studying the behavior of the558

realistic workload under custom memory scheduling policies, which is the primary goal of559

this research. Second, it emerges that the implemented FP and TDMA policies are capable560

of protecting the core under analysis from inter-core interference, while this is not the case561

when going through the normal route562

6.3 PL-to-PS feedback performance impact563

As mentioned in Section 5.7, the PL-to-PS feedback enables our SchIM to regulate the HPM564

ports buffer occupancy to prevent head-of-line blocking. Since this feedback directly throttles565

the desired core, the selection of an adequate threshold is important to preserve the balance566

between control and performance. Therefore, in Fig. 5, we have explored the sensitivity to567

the threshold for each of the proposed schedulers under different levels of contention. The568

thresholds in use range from 1 to 8 and even include the case where the feedback mechanism569
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Figure 5 Figures showing the impact of the threshold in use on the final bandwidth experinced
by the cores for the offered schedulers

is disabled (noted NA). The contention is created by up to four co-running cores emitting570

write transactions. For each parameter applied to a scheduler (i.e., fixed priority or TDMA571

slot), the co-running cores are assigned the most demanding parameters available (i.e., the572

highest priority for FP or the biggest TDMA slot).573

In the case of the FP scheduler (Fig. 5a), one can observe that when running alone, the574

threshold has no influence on the throughput. However, as soon as co-runners are added, the575

cores start to experience a decrease in throughput. Fig. 5b shows that the TDMA scheduler576

is not impacted considerably by the threshold with respect to the throughput. Globally, the577

scheduler manages to preserve a constant throughput regardless of the contention and the578

assigned slot.579

Nonetheless, under high contention, one can observe that the throughput of each core is580

affected. The fourth inset of Fig. 5a and Fig. 5b illustrate the importance of the threshold and581

the PL-to-PL feedback mechanism as a a considerable drop of throughput can be observed582

for the highest priority of FP and for a TDMA period of 32.583

Considering these experiments, setting the threshold to four for all the schedulers seems584

to bring the best trade-off between control and performance. However, this value cannot be585

blindly applied to all cases as this experiment is performed for a sequential and contiguous586

access pattern.587

6.4 Internal Behaviour of SchIM588

The next objective is to verify the correct behavior of the schedulers at the granularity of589

a clock cycle by observing the inputs, the outputs and the internal signals and registers590

of the SchIM module. This is made possible thanks to the Integrated Logic Analyzer (or591

ILA) provided by Xilinx [36]. The latter IP can be directly implemented on the PL side,592

alongside the SchIM, and is able to probe the signals and to store them in a local memory.593

For this experiment, a group of relevant internal signals have been probed and captured594

during a window of 16384 contiguous clock cycles. Then, the information has been extracted595

by post-processing the data. To characterize the behavior of the two different policies, the596
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Figure 6 Trace snapshots of SchIM for FP (6a), TDMA (6b)

ILA has been instrumented to collect (i) the amount of transactions being buffered in the597

queues at each clock cycle (inset 1 in Fig. 6a and Fig. 6b) (ii) the rate at which queues receive598

new transactions from the cores cluster (inset 2 in Fig. 6a and Fig. 6b) and (iii) the queues599

ID of each transaction forwarded by the SchIM module (inset 3 in Fig. 6a and Fig. 6b).600

For the Fixed Priority trace snapshot displayed in Fig. 6a, the following strict priority601

ordering has been considered: C0 ≻ C1 ≻ C2 ≻ C3 where the ≻ operator means that the602

left argument has a strictly higher priority than the right argument. In this experiment,603

a regulation threshold of 3 for each core has been used. As emphasized by the inset 2 in604

Fig. 6a, the FP scheduler is able to prioritize the traffic of one core at the expense of the605

others according to the priorities assignment. Furthermore, one can observe that the rate at606

which the queues receive new transactions from their associated core is proportional to the607

priority level in the priority ordering. Finally, the third inset in Fig. 6a confirms the correct608

behavior of the FP policy.One can see that the cores with the highest priority also feature609

the highest density of transactions at the output of the SchIM.610

The trace snapshot displayed in Fig. 6b has been obtained by configuring the SchIM611

module in TDMA mode. For the sake of clarity, a slot of 256 clock cycles has been set for each612

core. Besides, the threshold of each core has been set to 4 to create sharp transitions. The613

insets 2 and 3 of Fig. 6b clearly show the behavior expected from a TDMA schedule. In fact,614

one can clearly see in the latter that transactions originating from one core are only being615

repeated out of the SchIM module during a well-defined and periodic time slot of 256 clock616

cycles. In the inset 2 of Fig. 6b, we can observe a similar pattern, with transactions arriving617

only during the TDMA slot associated with their queue (and indirectly core). Globally, the618

rate at which queues receive transactions is steady and constant.619

6.5 Memory Isolation620

On the platform considered for this set of experiments, the Xilinx ZCU102 development board,621

we denote three main sources of inter-core performance interference: (1) cache contention,622

(2) DRAM bank conflicts, and (3) the congestion and saturation of the memory controller.623

Despite their orthogonality, the two first sources are tackled respectively via the integration624

of page coloring in the hypervisor and static bleaching in the SchIM. On the other hand,625

since the SchIM provides fine-grained control over the timing and ordering of transactions626
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originating from the application cores as they reach the memory controller. Thus, the SchIM627

brings memory bandwidth management into the PL, and provides not only regulation but a628

generic infrastructure to experiment with custom bandwidth management techniques, both629

work-conserving and non-work-conserving.630

The evaluation setup considered for this experiment is identical to the one presented in631

Section 6.1. The routes going through the PL and using our SchIM (i.e., FP and TDMA)632

benefit from both cache partitioning and bank partitioning. On the other hand, the normal633

route uses cache partitioning and sees its cores divided into two sets targeting each a different634

group of private banks.635

To evaluate the capability of our SchIM with respect to its ability to ensure performance636

isolation between the cores, a set of experiments involving SD-VBS benchmarks were designed.637

Here, we compare the execution time of an application on a given core when running alone638

(referred to as Solo) and when running alongside interfering synthetic benchmarks (write639

memory bombs) on all the other cores (referred to as Stress). For each combination of a640

route to main memory (i.e., the normal route or the SchIM route) and scheduler, the result641

obtained for Stress is normalized with respect to the equivalent configuration in Solo. The642

results obtained on the considered benchmarks are listed in Fig. 7. The results in the Fig. 7643

are the aggregation (arithmetic average) of 30 different runs in the same configuration. Each644

bar cluster of the Fig. 7 insets represents one of the aforementioned configuration for Solo645

and Stress. The height of each bar denotes its normalized execution time.646

For this set of experiments, the FP scheduler was configured such that the core under647

analysis (i.e., the one running the benchmark) has the highest priority and a threshold of 8.648

The other cores are assigned lower priorities and thresholds matching their priority order649
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(i.e., 4, 2, 1). Under TDMA scheduling, the core under analysis has a slot of 512 clock cycles650

and a threshold of 14 while the co-runners are assigned slots of 32 and 16 clock cycles with651

thresholds of 4 and 1.652

The normal route is used as a baseline for this experiment because no scheduling is653

performed in this configuration. The Fig. 7 highlights the sensitivity of both disparity and654

mser to inter-core interference on the normal route. This is especially the case for large655

input sizes such as cif and vga. On the other hand, texture synthesis and localization do656

not suffer from inter-core interference. Globally, the TDMA scheduler always manages to657

preserve the isolation of the core, having execution times under Stress similar or smaller than658

the normal route. This is particularly visible for qcif, cif and vga input sizes of disparity659

and mser. Similarly, the FP scheduler is also capable of ensuring sound isolation of the core660

under analysis.661

7 Discussion and Limitations662

By design, the PLiM module proposed in this paper, the SchIM, centralizes the memory663

traffic and its scheduling. A centralized design makes sense on the specific target platform664

because there exist only one memory controller and thus a single path between the LLC and665

the DRAM controller. In systems where multiple paths between the processing units and the666

memory controllers exist, for instance when multiple controllers and channels are present, a667

decentralized design is to be preferable to better exploit the available memory parallelism.668

In such platforms, a possible avenue could be instantiating multiple SchIM modules, roughly669

one per channel, and introducing appropriate out-of-band signaling between the modules for670

coordination off the critical path.671

As we mentioned in Section 6.1, our setup includes the Jailhouse partitioning hypervisor.672

While the SchIM module does not strictly require the PS side to use a hypervisor, Jailhouse673

has been extensively used for the evalution as it provides convenient features to control674

physical memory allocation. For instance, the support for page coloring has been used to675

both partition the LLC space and to easily identify the owner of each memory transactions676

in the SchIM (as presented in Section 5.4). However, instead of enforcing cache partitioning,677

one could instead identify the ownership of memory transactions by extracting a different678

subset of address bits. For instance, if the physical memory allocated to different partitions679

is not interleaved, then the most significant bits of the address can be used to perform680

traffic accounting. In addition, the IPA address virtualization is convenient to transparently681

redirect the memory traffic of the application partitions through the PL side, even if they682

are initially booted through the normal route. Finally, the cores throttling mechanism (see683

Section 5.7) via the FIQs can be implemented at EL3 (Secure Monitor) or in the individual684

guest OS’s instead (EL1). Implementing FIQ handling in the hypervisor (EL2), however,685

has the advantage of not requiring any change in the guest OS’s, as well as not requiring a686

full switch into secure mode compared to an implementation at EL3.687

On the same note, provided that the FIQ lines are not used by the inmates, the feedback688

regulation mechanism is entirely transparent to the guest OS’s (or even for bare-metal689

applications) and introduces minimum overhead. The Linux kernel do not use FIQs, and690

the same goes for typical RTOS’s. Nonetheless, it must be acknowledged that defining a691

FIQ handler to be used for CPU throttling might interfere with (and be interfered by) the692

latency of FIQ handling in guest OS’s that rely on the same functionality. This is mainly693

because FIQ handling is non-preemptive. We also recognize that the PL-to-PS feedback694

mechanism is relatively coarse. Inset 1 of Fig. 6b highlights this problem. Even though695



D. Hoornaert, S. Roozkhosh and R. Mancuso 23:19

all the queues have been assigned a threshold of 4, the threshold is often exceeded. The696

worst-case being queue 3 exceeding the threshold by 2 on the right-hand side of the plot.697

This problem can be attributed to the reaction time of the FIQ routine, and to the fact that698

jumping to the FIQ handler itself might cause a few memory transactions depending on the699

cache state. Currently, the thresholds used for FIQ-based regulation require to be fine-tuned700

manually by the user. Future extensions of the SchIM will explore the implementation of701

schedulers capable of dynamically adapting the thresholds to maximize performance and702

improve isolation.703

The loss in bandwidth caused by routing transactions through the PL is important and a704

serious drawback against the adoption of the SchIM. Our experiments in Section 6.2 have705

shown that rerouting the traffic through the PL has a cost. As illustrated in Fig. 4, up to706

2100 MBps can be extracted from the normal route whereas any route through the PL only707

achieves around 320 MBps. In contrast, a back-of-the-envelope calculation reveals that for708

a PL operating at 250 MHz (the SchIM frequency), and with a bus width of 128 bits, a709

full-duplex throughput of approximately 3.7 GBps can be sustained. This calculation is in710

line with the reported throughput in an experiment conducted in [19], in which PL-originated711

transactions targeting the DRAM passed through the one of the HP ports. This suggests712

that the PL-to-DRAM route can sustain a much higher throughput than what has been713

experimentally observed in our evaluation setup, where transactions originate from the PS714

side. In light of thse considerations, we can conclude that the source of the bandwidth715

loss can be imputed to the bus segments connecting the CPU cluster to the HPM ports.716

A focused study is necessary to narrow down the exact reason for the performance drop.717

Nonetheless, vendor-imposed bandwidth throttling, PS-to-PL clock-domain crossing delays,718

and shallow FIFOs at the HPM ports and/or at the main PS-side interconnect represent719

plausible reasons. We anticipate that due to the platform-specific nature of this issue, the720

raw performance of the SchIM will substantially vary across different SoCs.721

8 Conclusion722

In the present article we introduced the SchIM, a memory transactions scheduler framework723

that can be integrated with commercially available platforms featuring a tightly coupled724

processing system and programmable logic. A full-system implementation in a commercially725

available PS-PL platform has been detailed, which encompasses the accompanying software726

stack and the platform-specific integration steps have been detailed in as well as advanced727

scheduling techniques are few of many possible future directions.728

Through a set of experiments, we assessed the capabilities of the framework and demon-729

strated the correct behavior of the proposed scheduling policies, namely Fixed Priority, Time730

Division Multiple Access and Traffic Shaping. Finally, we showed using a suite of real-world731

benchmarks that the SchIM is capable of enforcing strong temporal isolation despite heavy732

memory contention.733

The authors see the proposed SchIM as a stepping stone to propose, test and validate novel734

memory scheduling policies to be tested on embedded platforms with realistic performance735

and complex workload. For this reason, the SchIM has been designed to be open-source and736

with extensibility in mind. Especially, we strongly envision that the SchIM could represent a737

stepping-stone toward profile-based memory traffic scheduling.738
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