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Abstract
Unikernels have demonstrated enormous advantages over
Linux in many important domains, causing some to propose
that the days of Linux’s dominance may be coming to an
end. On the contrary, we believe that unikernels’ advantages
represent the next natural evolution for Linux, as it can adopt
the best ideas from the unikernel approach and, along with
its battle-tested codebase and large open source community,
continue to dominate. In this paper, we posit that an up-
streamable unikernel target is achievable from the Linux
kernel, and, through an early Linux unikernel prototype,
demonstrate that some simple changes can bring dramatic
performance advantages.

CCS Concepts • Software and its engineering → Vir-
tual machines; Operating systems; • Security and pri-
vacy → Virtualization and security; • Computer systems
organization → Real-time operating systems;
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1 Introduction
Linux is the dominant OS across nearly every imaginable
type of computer system today. Linux is running in billions of
people’s pockets, in millions of our homes, in cars, in planes,
in spaceships [15], embedded throughout our networks, and
on each of the top 500 supercomputers [2]. To accomplish
this, the Linux kernel has been continuously expanded to
support awide range of functionality; it is a hypervisor, a real-
time OS, an SDN router, a container runtime, a BPF virtual
machine, and a support layer for Emacs. When considering
this ever-growing set of requirements, and the complexity
creep which ensues [26], it leads to the question: Can a single
kernel really handle this massive range of conditions and
use cases efficiently?
There is, in fact, evidence that the structure of the Linux

kernel is problematic for a number of today’s key use cases.
For one, applications that require high-performance I/O use
frameworks like DPDK [4] and SPDK [5] to bypass the kernel
and gain unimpeded access to hardware devices [14, 28].
The most performance sensitive of these applications are
often dedicated entire machines for their deployments, for
example, infrastructure components like Ceph [32].
In the cloud, client workloads are run inside a dedicated

virtual machine for security. Increasingly, these workloads
are written to single-process language runtimes and de-
ployed in parallel across VMs. Thus, a kernel designed to
multiplex the resources of many users and processes is in-
stead being replicated across many single-user, often single-
process, environments [31].
In response, there has been a resurgence of research sys-

tems exploring the idea of the libraryOS, or a unikernel,
a model where target application is linked with a special-
ized kernel and deployed directly on hardware, virtual or
physical [12]. Compared with Linux, unikernels have demon-
strated significant advantages in boot time [22], security [33],
resource utilization [24], , and I/O performance [29]. In fact,
unikernels have shown such promise for new models of
serverless computing that some foresee the dominance of
Linux may soon come to an end [18].
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Linux has often lagged behind research systems in many
key aspects such as multiprocessor scalability [20], virtu-
alization [7], and process containment [25, 30]. However,
in each of these aspects, Linux not only caught up, it soon
became the standard. We believe that unikernels represent
its next natural evolution; Linux can adopt some of the best
ideas from research unikernel systems and, along with its
large community and battle-tested codebase, continue to be
the standard across current and future domains.
In this paper, we explore the idea of turning Linux itself

into a unikernel, i.e., add support within the codebase to
build a target application into an optimized unikernel binary,
while avoiding or bypassing kernel features deemed unnec-
essary for the application’s workload. Although preliminary,
our initial results suggest that a unikernel target offers an
immediate performance advantage for applications. Further-
more, we posit that the necessary changes made to Linux to
support a unikernel target are few and self-contained, and
therefore are likely to be accepted by the upstream commu-
nity.

We first discuss inmore detail the advantages of the uniker-
nel model in Section 2. We then discuss a few design goals
and explore some approaches that we could take to adapt
Linux to a unikernel in Section 3, and describe the approach
for our initial prototype in Section 4. We then discuss in
Section 5 optimization opportunities, and the research chal-
lenges in Section 6.

2 Unikernels
The unikernel is a cloud-era handle for the classic systems
technique of linking an application with a library of oper-
ating system components (including memory management,
scheduler, network stack and device drivers) into a single
flat address space, creating standalone binary image that is
bootable directly on (virtual) hardware [22]. The advantage
of this approach is that kernel functionality can be special-
ized to fit the needs of the target application to increase
the performance of the application or to support it within a
highly restricted execution domain.

In recent years there has been an increase in the number of
new unikernel systems, most of which target cloud and Inter-
net workloads. Network performance is a common driving
influence for unikernels as simplified IO paths and removal
of domain crossings are common techniques for improving
the latency and throughput of network-driven workloads.
Memcached running on a unikernel TCP/IP stack, compared
to that of Linux, demonstrates a throughput improvement
of over 200% [29]. Similarly, the small memory footprints
and short boot times of unikernels are beneficial to cloud
providers who deploy client workloads in dedicated environ-
ments. Unikernels deployed within a microVM have shown

6×-10× improvement in boot times over containers [18]. Sim-
ilarly, a micropython unikernel had an image sizes of 1MB
and required only 8MB of memory to run [24].

Protection and isolation providemoremotivation for uniker-
nel research, because an application equipped with a library
OS can be made to run in a highly-restricted execution do-
mains, such as an SGX enclave [8], or behind a set of software-
defined interfaces [13, 33].
Despite the security and performance benefits of uniker-

nels, they have yet to be widely adopted outside of the do-
main of research systems and experimental platforms. We
attribute this to the increased engineering burden for devel-
opers that comes with porting applications to a runtime with
only partial support for legacy software interfaces.
The root of the problem lies in the way that unikernels

have been developed. As of today, the creation of a new
unikernel followed one of two approaches: a clean slate ap-
proach where the kernel is largely built from scratch, or a
strip down approach where an existing kernel codebase is
stripped of functionality deemed unnecessary for the uniker-
nel. With a clean slate approach, unikernel designers have
full control over the language and methodology used to
construct the kernel. With such freedom, the resulting im-
plementation can be extremely specialized and limited to
particular class of application (for example, MirageOS only
supports applications written in OCaml [21]). Implementa-
tions in clean-slate unikernels can also be finely-tuned for
performance and provide efficient, low-level interfaces that
applications can be directly written for. Unikernels such as
OSv [17], IncludeOS [9], and EbbRT [29] attempt to balance
high-performing components together with a C-standard
runtime and partial support for common POSIX-like inter-
faces. The problem is that clean-slate unikernels cannot (and
should not) hope to support the same myriad of interfaces
and options provided by a general purpose kernel, at least
not without abandoning or obfuscating the efficient path-
ways and finely-tuned implementation that make a clean
slate approach attractive to begin with. With limited sup-
port for legacy software, porting and supporting existing
applications on a clean slate unikernel becomes a non-trivial
endeavour, and may be quickly deemed “not worth the ef-
fort.”

Alternatively, strip-down unikernels attempt to make port-
ing software easier by preserving the general-purpose li-
braries and interfaces of a legacy kernel codebase. Also
known as rump kernels—a name inspired by the infamous
purge of royalists from Parliament following the English
CivilWar—this process involves creating a fork of an existing
kernel codebase and manually purging it of the components
deemed unnecessary to the target unikernel. For example,
the RumpRun unikernel contains a heavily-reduced version
of NetBSD [16]. But like in any governing body, the removal
of a key set of components, while continuing to support
a wide range of interests, can become problematic. In this
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case, creation of an out-of-tree fork abandons a fundamental
asset of the original kernel codebase, its global community
of contributors. The fixes and updates made to the evolving
source kernel do not come free to a rump kernel. Instead, a
rump kernel must be updated manually at regular intervals
to continue to provide an up-to-date platform that supports
existing software.

3 Key Goals and Possible Approaches
Based on our and others’ research on unikernels and our
experience with the Linux community, we believe a Linux-
based unikernel is achievable and can exist as part of the of
the kernel source tree. A Linux unikernel with retain many
of the advantages of Linux, i.e., battle tested code base, large
open-source community, huge support for legacy software,
etc., while introducing some key properties that have given
unikernels their advantage: single address space, small mem-
ory footprint, customizable kernel pathways. Overtime, the
community can extend the Linux unikernel to incorporate
many of the techniques and lessons learned from unikernel
research systems, and move the performance and security
of Linux closer to that of a lightweight research unikernel.
Towards this vision we outline the following goals for

realizing a Linux-based unikernel:
1. Most applications and user libraries should be able to

be integrated into a unikernel without modification;
building the unikernel should just mean choosing a
different GCC target.

2. Avoid any ring transition overheads; overhead experi-
enced by any application requesting kernel function-
ality should be equivalent to a simple procedure call.

3. Allow cross-layer optimization; the compiler and/or
developer should be able to co-optimize the application
and kernel code.

4. The changes in Linux source code should be minimal
so that they can be accepted upstream and the uniker-
nel can be an integral part of Linux going forward. This
will ensure unikernels are not an outsider but a build
target anyone can choose to compile their applications
for.

Projects that share the goal of intermixing application and
kernel code include 1) User Mode Linux (UML) [10] which
allows the kernel to run in userspace as a process; 2) Linux
kernel library (LKL), [27] which packages the kernel as a
library and creates a virtual machine in which the kernel
executes; and 3) LibOS [1], which builds the kernel network
stack as a shared library and runs in userspace. All these
approaches try to reuse the kernel code one way or the other
but do not address our first two goals.

Two approaches to avoid ring transitions are 1) integrating
applications into the kernel as a Linux kernel module, and 2)
allowing unmodified applications to run in ring zero along
with the kernel [3, 23]. Both of these approaches preserve

the full functionality of Linux, while allowing one or more
applications to be optimized. We eventually rejected these
approach because they do not really meet our third goal
of cross-layer optimization. Also, for kernel modules, the
application needs to be rewritten which violates the first
goal.
We have chosen a pure unikernel approach where the

kernel is statically linked to run a single application. Only
with this approach can we enable configure time and link
time optimizations that are not possible if arbitrary user-
level applications can be run alongside the application we
are optimizing for.

4 Unikernel Linux (UKL)
We have created a working prototype of Unikernel Linux
(UKL). Belowwe describe the implementation steps involved,
the build process, some early challenges we hit, and an initial
set of performance results.

4.1 Implementation Overview
To create the UKL prototype, we:

• Added a new kernel configuration option to allow the
user to select if he/she wants to compile the Linux
kernel as UKL.
• Added a call to an undefined symbol (protected by an
#ifdef) that can be used to invoke application code
rather than creating the first userspace process.
• Created a small UKL librarywhich has stubs for syscalls.
These stubs hide the details of invoking the required
kernel functionality now that the regular interface (i.e.,
the syscall instruction) is no longer used.
• Changed glibc so that instead of making syscalls into
the kernel, it makes function calls into UKL library.
• Changed the kernel linker script to define new seg-
ments such as thread local storage (TLS) segments
which are present in application ELF binaries.
• Added a small amount of initialization code before
invoking the application to replace initialization nor-
mally done by user level code, e.g., for network inter-
face initialization.
• Modified the kernel linking stage to include the appli-
cation code, glibc and UKL library to create a single
binary.

Our prototype uses the latest versions of Linux (v5.0.5)
and glibc (v2.28). Any source file in glibc making syscalls
is copied into a separate subdirectory and edited so that it
makes procedure calls to the UKL library instead. Obviously,
the number of lines changed here is same as the number of
times syscalls are made. The changes in glibc, contained in a
separate sub-directory, ensure that the normal build process
does not break. Once the code becomes stable, we will not
need to have a separate sub-directory; UKL function calls
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(a) Userspace Echo server
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(b) UKL Echo server

Figure 1. Probability density and CDF of latencies for the userspace and UKL echo server. The average latency of UKL echo server (0.06
ms) is less than half of that of the userspace case (0.13 ms), and the 99% tail latency for UKL (0.22 ms) is 41% faster than the userspace case
(0.37 ms).

can live alongside normal glibc code. The total size of glibc
archive is 45MB.
We changed 11 lines and added 20 new lines in total to

the Linux kernel to turn it into a unikernel. These changes
do not disrupt the normal Linux kernel: turning off the UKL
config option creates a normal Linux binary and turning it
on creates the UKL binary. These modest changes are more
likely to be accepted upstream.

4.2 Build Process
The UKL build process is straightforward.

1. Compile glibc into an archive of object files without
any linking.

2. Compile the application code into object files without
any linking, i.e., with the -c option.

3. Compile the UKL library into an object file.
4. Build the Linux kernel with UKL config option turned

on. As mentioned above, the linking stage in the kernel
build process is slightly modified to link together all
the object files created earlier.

The first three steps can be performed in any order. The
first step (compiling glibc) takes just under two minutes on
a modest 4 core Intel i7 laptop with 16GB RAM, but this
only needs to be done once. As expected, the fourth step
takes the longest if being done for the first time. This is
simply because it normally takes time for the entire Linux
kernel to build, depending on the machine being used. If the
Linux kernel is already built, building a simple TCP echo
server into a unikernel takes 1 minute 52 seconds on the 4
core Intel i7 laptop. This is extremely helpful for debugging
purposes because changing the application code, re-building
everything, and deploying UKL on QEMU/KVM is fast. One
can simply build an application into a unikernel with less
than two minute overhead, comparable to building a normal
executable ELF in userspace.

4.3 Early Challenges
A number of challenges came up for which we report some
preliminary solutions.

Namespace Issues: Some routines, e.g., memset, memmove,
etc., exist both in the Linux kernel and glibc, and raise build
time errors of multiple definitions. We fixed that by sup-
pressing the glibc versions, but a more intelligent solution
will have to be devised. For instance, we might do partial
linking of glibc with application code and partial linking of
the kernel separately, followed by a final linking step.

Malloc: We have mapped malloc in the UKL library through
the vmalloc routine in the kernel. Going forward we might
need to rethink this memory management design because
we want to enable the rich, general purpose functionality
of glibc malloc for application code. We also want to allow
kernel level code to allocate buffers which can later be freed
by an application using those buffers directly.

Primordial Thread Setup: We had to set up TLS memory
in kernel space, the way glibc does [11], because that is what
glibc expects for the primordial thread.

Major design questions like these will need to be addressed
going forward.

4.4 Initial Evaluation
Figure 1 compares the performance of TCP echo server, writ-
ten in C, running as a userspace process on Linux with the
same TCP echo server linked into a unikernel. In both cases
the server is deployed as a VM on QEMU/KVM on a host
machine and the client is running on that host machine.
While this is obviously a toy example, it’s encouraging that
the unikernel version of the application achieves an average
latency half of that of the userspace application and a tail
latency that is 41% faster.
Our prototype has given us strong confidence that it is

feasible to convert Linux into a unikernel and, even without
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any optimizations, obtain some performance advantages.
We now have evidence that the required changes to Linux
kernel and glibc code bases are limited and we do not foresee
significant challenges getting them upstreamed. The (large
number) of shortcuts to create this early prototype can be
addressed without any major changes to either project.

4.5 Required work
Work to make the approach more widely usable includes:

1. Make UKL a GCC target so that existing makefiles can
be used for arbitrary applications.

2. Develop a simple model for initializing devices and
interfaces required by an application.

3. Add crt0 support for C++ constructors.
4. Integrate the full glibc initialization code into the ker-

nel startup.
5. Add customizable initialization of devices and kernel

functionality.

5 Where We Are Going
After this prototype, we aim to improve it and answer the
open design and research questions discussed earlier in sec-
tion 4. Once we have a stable unikernel which can run any
Linux application, there are a series of optimizations we can
integrate that will have minimal impact on Linux or the ap-
plication. First, and most obviously, link time optimizations
can be explored given that the compiler/linker can see at
link time the entire object code, enabling removal of unused
code to reduce size, inlining code, especially short functions,
for better latency, and exploiting value range propagation
even across the application/kernel boundary.

Second, we can enable profile driven optimizations, which
work nicely on statically linked binaries, where the entire
unikernel is profiled to enable subsequent compiler/linker
optimizations to further optimize code layout and cache
footprint.
Third, the implementation of user-level synchronization

mechanisms can be simplified and therefore sped up since
the runtime environment can control scheduling and make
assumptions about a thread being rescheduled or not.

Fourth, we can exploit information available in the appli-
cation and/or library to bypass system call wrappers and
directly invoke internal kernel functions; e.g., if we know
that a descriptor is being used for a network socket, jump
directly to the respective routine and avoid demultiplexing
code.

Right now the entire Linux kernel is linked into the uniker-
nel. One longer term research goal would be to strip down the
unikernel to the bare requirements to support an application.
We envision developing tools that can analyze a program
and automatically strip out unneeded kernel functionality
with fine-grained compile-time configurations for the kernel

with the help of compiler extensions and source code anno-
tations. The programmer, or tools analyzing the userlevel
code, can express additional knowledge not represented in
the source code for use of the compiler. For instance, it can
provide assumptions on non-constant parameters (some file
descriptor is always for a file). Also, we can simplify case
handling in the kernel e.g., by expressing that network traffic
is limited to TCP, various places in the kernel can be anno-
tated to remove tests or indirect calls to handle other cases
without any changes to source code.

As the unikernel model becomes an accepted part of Linux,
our goal would be to enable the same kind of rich optimiza-
tion that has been achieved in existing research unikernels.
For example, exposing an alternative interface to read which
does not dictate the location of the buffer but lets the kernel
dictate the location (e.g., in a ring buffer or DMA buffer)
[19]. As another example, exposing a flattened version of
the network stack which does not implement the informa-
tion security aspect of the full stack; if there is only one
process there is no need for privacy and a single ring buffer
is sufficient, enabling true zero-copy networking. As a more
extreme example, complex runtimes like that for OpenMP
can exploit true system-global information to dynamically
create threads based on that information (number, affinity)
rather than the heuristics they are forced to use today.

6 Concluding Remarks
There is clear evidence from the research on unikernels that
they have substantial advantages for a wide class of applica-
tions in use today where a virtual or physical computer can
be dedicated to running a single application. Linux has been
enormously successful in adapting innovation and integrat-
ing it. Rather than unikernels being a threat to the dominance
of Linux, we believe that the next natural evolutionary phase
of Linux is to enable a unikernel model.
In this paper we have demonstrated that Linux can be

turned into a unikernel, a fundamental question we were
not sure of at the start of this project. Moreover, we have
shown that the changes required are modest, and gathered
initial evidence that they offer at least some performance
advantages, two conditions that make such changes likely
to be accepted upstream. We also have some evidence that
there is substantial community interest in this work; our
blog post [6] describing the vision in mid November was in
the words of the editor “by far the most read post for 2018
on next.redhat.com.”
We are at this point quite confident that Linux can and

will adopt unikernels as a viable deployment model. Once
this is accomplished, we have identified a whole series of
natural optimizations that can, and likely will, be pursued
by the broader Linux community. We believe that this will
open up fundamental new research opportunities; the exis-
tence of a commercial grade unikernel will enable a much
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broader research community to explore optimizations across
the hardware, system software and application spaces, oppor-
tunities that until now have been only available to unikernel
researchers.
While it is quite possible that we are wrong, our expec-

tation is that, over time, the unikernel target will become
the most important target for Linux, offering advantages for
real-time environments, HPC, cloud applications, infrastruc-
ture components, etc. If this occurs, it will be a fundamental
transformation, where the dominant use of an operating sys-
tem changes away from the kernel/user model we have all
grown up with. This may well be the beginning of the end
of multi-user general purpose operating systems. Perhaps
we are finally putting the “U” back into Unix.
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