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We are witnessing a race to meet the ever-growing computation requirements of emerging AI applications

to provide perception and control in autonomous vehicles — e.g., self-driving cars and UAVs. To remain

competitive, vendors are packing more processing units (CPUs, programmable logic, GPUs, and hardware

accelerators) into next-generation multiprocessor systems-on-a-chip (MPSoC). As a result, modern embedded

platforms are achieving new heights in peak computational capacity. Unfortunately, however, the collateral

and inevitable increase in complexity represents a major obstacle for the development of correct-by-design

safety-critical real-time applications. Due to the ever-growing gap between fast-paced hardware evolution and

comparatively slower evolution of real-time operating systems (RTOS), there is a need for real-time oriented

full-platform management frameworks to complement traditional RTOS designs.

In this work, we propose one such framework, namely the X-Stream framework, for the definition, synthesis,
and analysis of real-time workloads targeting state-of-the-art accelerator-augmented embedded platforms.

Our X-Stream framework is designed around two cardinal principles. First, computation and data movements

are orchestrated to achieve predictability by design. For this purpose, iterative computation over large data

chunks is divided into subsequent segments. These segments are then streamed leveraging the three-phase

execution model (load, execute and unload). Second, the framework is workflow-centric: system designers can

specify their workflow and the necessary code for workflow orchestration is automatically generated.

In addition to automating the deployment of user-defined hardware-accelerated workloads, X-Stream

supports the deployment of some computation segments on traditional CPUs. Finally, X-Stream allows the

definition of real-time partitions. Each partition groups applications belonging to the same criticality level

and that share the same set of hardware resources, with support for preemptive priority-driven scheduling.

Conversely, freedom from interference for applications deployed in different partitions is guaranteed by

design. We provide a full-system implementation that includes RTOS integration and showcase the proposed

X-Stream framework on a Xilinx Ultrascale+ platform by focusing on a matrix-multiplication and addition

kernel use-case.
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1 INTRODUCTION
An important step in the evolution of embedded computing has been — and still is in many ways —

the transition from single-core processors to multicore systems. In their first generations, these

provided I/O interfaces (e.g., PCI-e, USB) to interact with external hardware accelerators such

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:2 Rohan, et al.

as FPGA and/or GPUs. Following important hardware advancements and as new challenging

applications emerged — especially in response to the increase in popularity of autonomous vehicles

— there has been an spike in the demand for real-time, low-power data-intensive computing. To

address such requirements, hardware vendors are packing multiple processing elements, such as

CPU clusters, GPUs, programmable logic (PL), and AI accelerators, into integrated multiprocessor

systems-on-a-chip (MPSoC).

One of the common attributes of these high-performance MPSoCs is the existence of a shared

memory subsystem. This is well suited for systems where the goal is high average-case performance.

But unfortunately, this is fundamentally ill-suited for safety-critical systems. Indeed, in the latter,

worst-case execution times (WCET) are crucial for safety determination. If no measures are taken to

mitigate performance interference at the level of shared memory components, the WCET of a task

running in one of the processing elements can vary significantly as we activate more processing

elements [20]. The three-phase execution model, where an application task is first (1) loaded into a

local and private memory, (2) locally executed and then (3) written back to main memory
1
(load,

execute, unload) has been proposed to address multicore contention by design [2, 25].

In light of its design principles, the three-phase model represents a highly attractive workloads

management strategy especially in safety-critical systems. Therefore, it seems natural to investigate

possible adaptations to handle real-time hardware-accelerated workloads. Doing so involves solving

four main challenges. First, data movements between main memory and accelerators, and between

local memories of accelerators need to be carefully orchestrated to prevent contention. Second,

appropriate (double– or triple–) buffering mechanisms must be integrated depending on the user-

defined workflow to properly implement pipelining. Third, workflow orchestration code needs to

be auto-generated and appropriate integration with the underlying real-time operating system

(RTOS) shall be provided to support priority-driven preemption within each partition. Fourth, a

suitable schedulability analysis must be provided to aid system verification and validation.

In this work, we aim to tackle the four challenges mentioned above and propose our X-Stream

framework as a solution. We hereby describe our framework that extends the use of the three-phase

execution model to accelerator-enabled MPSoCs and offers following contributions:

• First, we provide a generic DAG formalization for parallel application tasks.

• Second, we offer a strategy to convert DAG tasks into a series of segments, each containing

all the required data transfers between local (i.e. internal to the accelerator) and global (i.e.

shared at the platform level) memory resources to translate the DAG-imposed precedence

constraints.

• Third, we describe an OS-level runtime environment to deploy the generated application

code onto a RTOS.

• Finally, we derive schedulability results and evaluate our design with a full system imple-

mentation.

2 RELATEDWORK AND BACKGROUND
PRedictable Execution Model (PREM): Contention over shared memory resources such as last-

level cache (LLC), main memory, and interconnect is known to be a major source of unpredictability

in multicore systems and hence an important roadblock for the consolidation of safety-critical

applications with strict timing requirements. Researchers over the last decade have proposed various

methodologies to attack this problem from multiple angles. Solutions such as cache partitioning [8,

10, 13] have gained significant traction as a mitigation strategy for contention at the LLC. Similarly,

1
After execution, what needs to be preserved is any (partial) output and state accumulated by the application during

execution that is required for successive invocations of the same or other applications.
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methods such as partitioning of DRAM banks and of the sustainable main memory bandwidth

have been proposed and analyzed in [9, 11, 32, 33]. Another class of approaches followed by the

researchers in the community pivots around the PRedictable Execution Model (PREM) originally

proposed in [15] and later extended to multicore systems [17, 31]. The first work to consider SPM

over cache for predictability include PRET [5]. In PREM, tasks execution is divided into memory and

computation phases. Main memory can only be accessed during memory phases. Hence, contention

over main memory is explicitly managed by making memory phases of different cores mutually

exclusive. To ensure fairness, TDMA or round-robin arbitration is used to decide which core is

allowed to perform a memory phase.

Three-phase Model: Given the inherently unpredictable nature of caches, scratchpad-based

multicore platforms represent alternative popular architectural designs for safety-critical systems.

These platforms provide software-managed (i.e., explicitly addressable) per-core fast memories that

are located in close proximity of each CPU. These go under the name of scratchpad memories, or

SPM for short, and are limited in size anywhere from tens to thousands of kilobytes. Because data

need to be explicitly moved in and out of an SPM, the original PREM model was extended [2] into

a three-phase execution model that involves load, execute, and unload phases for a given chunk of

computation — e.g., a job of a periodic task. The three-phase model has close similarities with the

Acquisition Execution Restitution (AER) model considered in [4]. Notably, the Scratchpad-centric

OS proposed in [25] demonstrated the concept of an operating system designed around the concept

of tasks scheduled and executed according to the three-phase model.

A key advantage of the three-phase model is the ability to offload memory load and unload phases

to a data engine such as a direct memory access (DMA). Doing so allows performing execution

phases on the CPU and load/unload phases carried out by the DMA in parallel [4, 12, 18, 24, 25, 27].

However, parallel execution of task on CPU and load/unload using a DMA requires splitting each

local SPM into two memory regions. One region is used to execute the current job, while the other

is used to load (resp., unload) the memory required (resp., produced) by the next (resp., previous)

job. To serve multiple cores, a TDMA arbitration of the DMA is implemented.

Task 
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Analysis

DMA

Other 
Tasks

W X S0 S1 X Y

S0

S1 Y S3

21 3 4 5 6

Other Cores Load Region A/B Unload Region A/B Wasted Slot

S2

X

S1

Z

Y Z

S2

Z

(Delta)

Fig. 1. Three-Phase Execution Model TDMA with M = 2 Cores

To better understand the core principles governing the execution and analysis of applications

according to the three-phase model, consider the example provided in Figure 1. Here, we focus on

one core and a task under analysis (first row) preempted by other tasks (second row). The SPM is

divided into two regions, namely A (green) and B (red). Following [3, 23–25], we assume that the

code of each task can be divided into a sequence ofS segments, which we denote as S0, S1, . . .., SS as

discussed in [24]. A typical technique to analyze task scheduling in this setup is to split the timeline

into a sequence of scheduling intervals. A scheduling interval is delimited by either the completion
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S0

S1 S2 S3 S4 S5

S6

Streaming Segments Terminal Segments

S7

S8

S9 S10

Fig. 2. Example control-flow DAG with highlighted streaming segments (magenta).
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Fig. 3. Streaming execution timeline corresponding to the control-flow path highlighted in Figure 2
.

of an execution phase of a segment of the current job or the completion of a load operation for

the segment of the next job, whatever occurs later. In Figure 1, the intervals are delimited by

vertical lines and numbered Interval 1 through Interval 6 . The corresponding payloads to be

loaded/unloaded and executed are indicated based on the segment name - S0 through S2 for the

task under analysis, X, Y, and Z for other tasks. During Interval 1 , Interval 2 and Interval 6 the

task under analysis is executed. Whereas, during Interval 2 , Interval 4 and Interval 5 other tasks

are executed. During each interval, (i) a segment of a job is executed from one of the SPM regions

(e.g., X in Region B during Interval 2 ) while (ii) the data produced by the previous segment (e.g.,

S0 in Region A) is unloaded from the other region and (iii) the data of next segment is loaded (e.g.,

S1 in Region A) using the DMA.

The time required to complete all the necessary DMA operations (1 load + 1 unload) in each

interval depends on the number of cores and the employed TDMA discipline. Under the coarse-

grained TDMA approach utilized in [25], the TDMA slot size 𝜎 assigned to a core is sufficient to

perform the load or unload operation in a single slot. With 𝑀 cores and the same slot size for

all cores, the worst-case memory time is Δ = 𝜎 · (2𝑀 + 1), as also highlighted in Interval 3 in

Figure 1. Note that the first slot in Interval 3 is wasted because the previous interval has not yet

been completed at the beginning of the slot, hence the unload operation cannot be guaranteed to

complete within it.

Streaming Segments: In the aforementioned works [12, 24–27] the parallelism that can be

achieved has important limitations. Specifically, an execution can overlap with load/unload phases
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only if they belong to different jobs. The first work to relax this limitation was [23]. In this case, a

single job might be executed over a sequence of consecutive intervals by defining the concept of

streaming segments. Streaming segments are produced through a tiling compilation pass where a

loop processing over a large chunk of data is broken down into smaller subsets of iterations (a loop
tile), each of which is encapsulated in a segment. With the exception of the last tile in the loop,

which comprises a terminal segment, while a tile executes it is possible to load the data for the next

segment in parallel. Hence, each such streaming segment can be immediately followed by another

segment of the same task. The application logic that is not part of a loop and cannot be converted

into a sequence of streaming segments is also encapsulated into one or more terminal segments,

with the same parallelism limitations as depicted in Figure 1.

In [23] a task is characterized by a Directed Acyclic Graph (DAG) that represents its control

flow. A simplified example is provided in Figure 2. When the source node (S0) is executed, it is

uniquely determined which branch the current job will follow to reach the sink node (S6). In other

words, the possible paths in the DAG represent conditional alternatives in the execution of the job.

Some of these paths might include one or more sequences of streaming segments, as it is the case

for the S0→S1. . .S5→S6 path highlighted in Figure 2. Source and sink nodes are always terminal

segments. Differently from [23], in this paper we do not consider tasks with alternative paths for

the sake of simplicity. Instead, we focus on jobs that consist of a sequence of processing segments,

like the sub-graph comprising segments S1-S5 in the top branch. Furthermore, we impose that each

segment, with the exception of the first one that is needed for job initialization, performs the same

type of computation on a different chunk of data. Thus one can think of the sequence of streaming

segments as multiple iterations of the same computational function invoked over different inputs.

To better understand how the three-phase model can be leveraged to pipeline computation

and data movement in a sequence of streaming segments, consider Figure 3 where we depict the

execution of segments S1-S5 from Figure 2 under the interference of other tasks on the same CPU

(segments X, Y, Z and W). In the figure, we have 11 scheduling intervals and we color-code in

magenta the data operations and segments where streaming is performed via an alternation of

swap-in/swap-out operations. The latter correspond to the load of new operands for the next

iteration and the unloading of generated partial outputs to/from the SPM region currently used

by the task. Please note that for simplicity, the schedule shown in Figure 3 does not include the

TDMA of other cores. In reality, there are other cores in the system.

Contribution: The key contribution of this paper is the proposal of a practical framework for the

adoption of the three-phase model in safety-critical systems with application workloads deployed

on user-defined hardware accelerators. Custom accelerators are a natural fit for the three-phase

model, since they are typically designed to operate on local memories, i.e. either banked SPMs

or FIFO queues. The challenge is to orchestrate accelerator execution and data movements in a

way to guarantee strict real-time requirements. Additionally, in light of the research attention

that the model has received on scratchpad-based platforms, we extend our framework to support

traditional CPUs. The latter is achieved by defining dedicated per-CPU scratchpad memories to

obtain a unified management strategy for accelerators as well as CPUs. The scratchpad-aided CPU

management strategy borrows from [23] and the existing literature referenced above. However,

what sets this work apart is that the proposed framework allows system designers to reason in terms

of application-level logic and data movements. The framework then provides end-to-end system

consolidation that also includes OS-level resource management and automatic code generation.
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3 APPLICATION AND PLATFORMMODEL
3.1 Application Model
In this work, we target platforms that allow the definition of custom accelerators and that provide

(potentially) multiple application CPUs, as described is Section 3.2. Multiple logically independent

set of applications are allowed to share the same platforms. In this case, they are isolated from one

another via the definition of a spatio-temporal partition, which we simply refer to as a partition.
Each partition is assigned dedicated hardware resources both in time and space. Spatial partitioning

is achieved by statically assigning hardware resources — e.g., accelerators, physical memory ranges,

I/O devices — to the applications sharing that partition; temporal partitioning is achieved by

ensuring that only one partition at a time has full access to shared hardware components. Most

importantly, access to the shared main memory subsystem is strictly managed such that non-

overlapping time slots are assigned to partitions during which they are allowed to access main

memory. In other words, a time division multiple access (TDMA) scheme is employed to schedule

access of partitions to main memory. Partitioning ensures freedom from interference, i.e., each

partition is unaffected by the behaviors of other partitions.

Because partitions behave independently from one another, for the purpose of our analysis, it

is enough to reason on the workload deployed on a single partition. To simplify the discussion,

we further assume that the partition of reference contains one general purpose CPU and an

arbitrary number of special-purpose accelerators. We then consider a set of sporadic real-time

tasks Γ = {𝜏1, . . . , 𝜏𝑁 } bound to the partition under analysis. 𝑇𝑖 denotes the minimum inter-arrival

time or period of task 𝜏𝑖 and 𝐷𝑖 represents its relative deadline: each task releases a potentially

infinite number of jobs, where the activation time of successive jobs is separated by at least 𝑇𝑖
time units, and each job must complete at most 𝐷𝑖 time units after its activation. We assume

constrained deadlines, i.e., 𝐷𝑖 ≤ 𝑇𝑖 . We omit the index 𝑖 when referring to a generic task to prevent

notation cluttering. The generic task 𝜏 is internally structured as a loop/sequence of 𝐼 iterations

of the same computational function F (X), where X represent the set of data operands required

to compute F . The data operands accessed during each iteration are a fraction of a larger input

to be batch-processed. A typical example are vision kernels executed over a sequence of video

frames. We assume no data dependencies between successive iterations, so that we can pipeline

the execution over multiple processing elements — e.g., specialized accelerators and CPUs
2
We

use P to denote the set of elements, where 𝐶𝑃𝑈 ∈ P represents the CPU in the partition under

analysis, while the other elements in P are accelerators.

We use set A = {𝑎1, 𝑎2, . . . 𝑎𝑘 } to denote the data elements (structs, arrays, matrices, or cor-

responding tiled subarray/matrixes) used in each iteration. These 𝑘 data elements include any

intermediate data produced in the current iteration and hence it holds that X ⊆ A. The computa-

tion in each iteration is expressed by a DAG F = (𝑉 , 𝐸), where 𝑉 is a set of vertices representing

operations on data, and 𝐸 is a set of edges representing data movements / dependencies. More in

details, each vertex 𝑣 ∈ 𝑉 is characterized by a processing element 𝑣 .𝑃𝐸, where 𝑣 .𝑃𝐸 ∈ P, meaning

that 𝑣 is bound to execute on a specific accelerator or on the general-purpose CPU.

Because each vertex corresponds to an intermediate computational block to compute F , we use
𝑣 .𝑓 𝑢𝑛𝑐 (·) to denote the data processing function performed by 𝑣 . When 𝑣 .𝑃𝐸 = 𝐶𝑃𝑈 , 𝑣 .𝑓 𝑢𝑛𝑐 (·)
corresponds to the semantics of a portion of binary code that is compiled to executed on the CPU.

When 𝑣 .𝑃𝐸 ≠ 𝐶𝑃𝑈 , the function corresponds to the operation performed by an accelerator. The

function takes a variable number of parameters depending on the operation-specific number of

input and output data elements. Data elements are uniquely identified in terms of their location

2
This assumption could be relaxed to only exclude dependencies that would stall the pipeline. In particular, read-after-read

(RAR) dependencies are always acceptable.
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in main memory. For simplicity, we impose the constraint that no two vertexes can use the same

accelerator. Formally: ∀𝑣 ′, 𝑣 ′′ ∈ 𝑉 : 𝑣 ′ ≠ 𝑣 ′′⇒ 𝑣 ′.𝑃𝐸 = 𝑣 ′′.𝑃𝐸 = 𝐶𝑃𝑈 ∨ 𝑣 ′.𝑃𝐸 ≠ 𝑣 ′′.𝑃𝐸.
Each edge 𝑒 ∈ 𝐸 is characterized by source 𝑒.𝑠 ∈ 𝐸 ∪ {⊥}, destination 𝑒.𝑑 ∈ 𝐸 ∪ {⊥}, and data

element 𝑒.𝑎 ∈ A. An edge 𝑒 with 𝑒.𝑠 ∈ 𝐸 ∧ 𝑒.𝑑 ∈ 𝐸 represents a data dependency and precedence

constraint between the two vertices, where 𝑒.𝑠 .𝑓 𝑢𝑛𝑐 (·) (that is, the function performed by the

source vertex) first writes to data element 𝑒.𝑎 and then 𝑒.𝑑.𝑓 𝑢𝑛𝑐 (·) (the function of the destination

vertex) reads 𝑒.𝑎. An edge 𝑒 with 𝑒.𝑠 =⊥ ∧𝑒.𝑑 ∈ 𝐸 represents a read dependency for 𝑒.𝑑.𝑓 𝑢𝑛𝑐 (·) on
input data 𝑒.𝑎 ∈ X in main memory; an edge 𝑒 with 𝑒.𝑠 ∈ 𝐸 ∧𝑒.𝑑 =⊥ represents a write dependency

for 𝑒.𝑠 .𝑓 𝑢𝑛𝑐 (·) on output data 𝑒.𝑎 ∈ X in main memory. We use function 𝑢𝑠𝑒 (𝑣) to denote the set

of data items used by 𝑣 ; formally, 𝑎 ∈ 𝑢𝑠𝑒 (𝑣) ⇔ ∃𝑒 ∈ 𝐸 : (𝑒.𝑠 = 𝑣 ∨ 𝑒.𝑑 = 𝑣) ∧ 𝑒.𝑎 = 𝑎.

Given two vertices 𝑣 ′, 𝑣 ′′, we say that 𝑣 ′ is an immediate precedecessor of 𝑣 ′′ (and equivalently, 𝑣 ′′

is an immediate successor of 𝑣 ′) if there is an edge between 𝑣 ′ and 𝑣 ′′: ∃𝑒 ∈ 𝐸 : 𝑒.𝑠 = 𝑣 ′ ∧ 𝑒.𝑑 = 𝑣 ′′;
we write 𝑣 ′ ∈ 𝑝𝑟𝑒𝑑 (𝑣 ′′) and 𝑣 ′′ ∈ 𝑠𝑢𝑐𝑐 (𝑣 ′). We say that vertex 𝑣 is a source if it has no predecessors.

We say that vertex 𝑣 is a sink if it has no successors. Finally, for computational function F to be

valid in our model, it must be deterministic: this means that the result of the computation must be

independent of the order in which individual processing functions are executed and data elements

are read/written, as long as all precedence constraints encoded by the edges in 𝐸 are respected. This

requires two conditions. First, a vertex 𝑣 cannot have two incoming edges 𝑒 ′, 𝑒 ′′ : 𝑒 ′.𝑑 = 𝑒 ′′.𝑑 = 𝑣

for the same data element: 𝑒 ′.𝑎 = 𝑒 ′′.𝑎; otherwise, we would not know whether 𝑣 .𝑓 𝑢𝑛𝑐 (·) should
read the value of 𝑎 from 𝑒 ′ or 𝑒 ′′. Second, for any pair of vertexes 𝑣 ′, 𝑣 ′′, if 𝑣 ′ has a write dependency
to main memory for a data element 𝑎 (i.e., ∃𝑒 ′ ∈ 𝐸 : 𝑒 ′.𝑠 = 𝑣 ′∧𝑒 ′.𝑑 =⊥ ∧𝑒 ′.𝑎 = 𝑎), and 𝑣 ′′ has either
a read or write dependency to main memory for the same data element (i.e., ∃𝑒 ′′ ∈ 𝐸 :

(
(𝑒 ′′.𝑠 =⊥

∧𝑒 ′′.𝑑 = 𝑣 ′′) ∨ (𝑒 ′′.𝑠 = 𝑣 ′′ ∧ 𝑒 ′′.𝑑 =⊥)
)
∧ 𝑒 ′′.𝑎 = 𝑎), then there must exist a directed path in the

DAG to which both 𝑣 ′ and 𝑣 ′′ belong; this guarantees that the order in which the dependencies to

main memory are handled is specified by the DAG precedence constraints.

Example: To better understand the proposed DAG-based model, let us introduce a concrete

example that will be used throughout the paper. We consider a set of data elements X = A =

{𝐴, 𝐵,𝐶}, where𝐴, 𝐵, and𝐶 are square matrices. The computation consists of a matrix multiplication

and addition: F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) +𝐶 . We use matrix-multiplication and addition kernel as an

example because these operations are building blocks of current state-of-the-art neural networks

and many signal processing applications such as convolution and others. Moreover, it provides

a basic example of which part of the kernel needs to be accelerated and which part can execute

on the CPU as we will show later in the paper. It should be noted that a user can always take a

neural network and accelerate first few layers which are generally very computation intensive on

the accelerator and last few layers on the CPU. However, exploring this a part of future work and

is out of the scope of this paper. The corresponding DAG representation is depicted in Figure 4

(note that some of the DAG parameters will be computed in next Section 4). The DAG has two

vertices, source 𝑣1 and sink 𝑣2. The first vertex corresponds to the 𝑣1.𝑓 𝑢𝑛𝑐 (𝐴, 𝐵,𝑂) ≡ (𝑂 := 𝐴 × 𝐵)
sub-operation and is bound to be executed on a matrix multiplication hardware accelerator (i.e.,

𝑣1 .𝑃𝐸 = 𝐴𝐶𝐶). The second vertex represents the 𝑣2 .𝑓 𝑢𝑛𝑐 (𝑂,𝐶) ≡ (𝑂 := 𝑂 +𝐶) sub-operation and

is executed on the CPU (𝑣2.𝑃𝐸 = CPU). Note that edges 𝑒1, 𝑒2 and 𝑒4 do not have a source vertex,

meaning 𝑒1 .𝑠 = 𝑒2.𝑠 = 𝑒4.𝑠 =⊥; edge 𝑒5 does not have a destination vertex, meaning 𝑒5 .𝑑 =⊥. To
compute 𝑣1, input data𝐴 and 𝐵 needs to be moved from main memory to the SPM of the accelerator

by the GDMA; hence, edges 𝑒1 and 𝑒2 represent global load operations. Similarly to compute 𝑣2,

the operand 𝐶 needs to be moved from main memory to the SPM of the CPU by the GDMA (edge

𝑒4). The operand 𝑂 corresponds to data produced in output by 𝑣1.𝑓 𝑢𝑛𝑐 (𝐴, 𝐵,𝑂) and thus it can be

transferred from the accelerator’s SPM directly into the target CPU’s SPM by the LDMA; hence,
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edge 𝑒3 represents a local data transfer. Finally, the output of 𝑣2 .𝑓 𝑢𝑛𝑐 (𝑂,𝐶) needs to be written

back from the CPU SPM to main memory through the GDMA; hence, edge 𝑒5 represents a global

unload operation.

LOCAL 
TRANSFER

O := AxB

PE = ACC

PE = CPU

e1 

O := O+C

L (v1 ) = 1
L(v2 ) = 2
use(v1 ) = {A, B, O}
use(v2 ) = {O, C}
triple(v1, A) = false
tripe(v1 , B) = false
tripe(v1, O) = false
triple(v2, C) = false
triple(v2, O) = true

DAG Parameters

e3 e5 
LOAD: A

e2 

LOAD: B LOAD: C
e4 

LOCAL: O UNLOAD: O

GLOBAL 
TRANSFER

𝓕 (A, B, C) = (A x B) + C

V1 V2

Fig. 4. DAG model for computational function F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) +𝐶

3.2 Reference Platform
We consider a multiprocessor system-on-chip (MPSoC) platform, composed of two main super-

blocks: (1) an array of special-purpose user-defined accelerators, and (2) a set of𝑀 general-purpose

application CPUs, divided into𝑀 partitions. An example is depicted in Figure 5. One key requirement

in the proposed framework is the ability to move data close to the corresponding processing element

before data items are consumed. This is in match with the typical processing model of specialized

accelerators, where data is first moved to either accelerator’s local memory or to an input FIFO,

and then the accelerator accesses the local resource.

GDMA

CPU M Accelerator

SPM

Main 
Memory

Region 0

Region 1

SPM SPM SPM

Crossbar Switch

LDMA MAcceleratorCPU 1 Accelerator

SPM

C
PU

 1
 S

PMRegion 0

Region 1

SPM SPM SPM

LDMA 1Accelerator . . .

. . . . . .

. . .

. . . . . .

. . .

Partition 1 Partition M

C
PU

 M
 S

PM

Fig. 5. Block Diagram of Reference Platform

Thus, we assume that each accelerator features one or more local SPMs. Each SPM stores a

set of data buffers, which are used to receive data elements the accelerator reads from and store

data elements it writes to. An accelerator can access a data buffer either randomly (through a

memory interface) or sequentially (through a FIFO streaming interface). All the SPMs are byte-

addressable, memory-mapped, and accessible by DMA engines. We also assume that the SPMs

are dual-ported, so that the accelerator can read/write from/to a data buffer while a DMA engine

accesses a different data buffer in the same SPM. While not required, we are particularly interested
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in supporting development workflows where custom accelerators are designed through HLS. This

is not a problem because two major FPGA manufacturers, Xilinx and Altera, provide such tools

through their respective Vivado HLS and Intel HLS tools.

In order to incorporate CPU processing in our model, we also assume that each CPU is associated

a private SPM. While general-purpose CPUs do not always have local SPMs, we consider platforms

in which user-defined hardware blocks can be instantiated, for example on FPGA. Following the

three-phase model, all instructions and data used by a CPU while executing a task segment must

be contained in the CPU’s SPM. Similarly to the accelerators’ SPMs, the CPUs’ SPMs are also

dual-ported and accessible by DMA engines. In addition, each CPU’s SPM is divided into two

regions, so that the CPU can execute a task from one region while a different task is loaded in the

other region. Each region contains multiple data buffers for the data elements accessed by the CPU.

Access to main memory is performed through a Global DMA engine (GDMA). The GDMA is

responsible for moving data (i) from/to main memory (ii) to/from an accelerator’s local SPM or

a CPU’s local SPM. Furthermore, we assume that each partition is associated with a Local DMA

(LDMA) engine that can be used to move data directly between two SPMs within that partition,

either the CPU’s SPM and an accelerator’s SPM or the SPMs of two different accelerators. Only

one GDMA transfer can be carried out at a time. However, since each processing element is

statically assigned to one partition, multiple LDMAs can be operated in parallel with the GDMA as

long as the LDMA transfers target different SPMs than the GDMA. We enforce such constraints

by implementing a TDMA-based schedule of the DMAs, where the partition under analysis is

assigned a slot of length 𝜎 every Σ time units. Specifically, a partition uses the GDMA during its

assigned TDMA slot, while it uses its LDMA during the interval of duration Σ − 𝜎 corresponding

to slots assigned to other partitions. Finally, an interconnection is needed to connect the various

components. We do not pose restrictions on the architecture of the interconnection, e.g. a crossbar,

multi-bus, NoC, etc, as long as it does not restrict parallelism between GDMA and LDMA transfers.

4 TASK TRANSFORMATION AND AUTOMATIC THREE-PHASES TASK SYNTHESIS
In this section we describe how applications that follow the generic DAG-based model described

in Section 3.1 can be transformed to execute on the platform described in Section 3.2 following

the three-phase model [23, 25]. Recall that a task 𝜏 is expressed as a sequence of 𝐼 iterations of

the DAG processing blocks that correspond to the aforementioned F (X) function. The output
of the transformation needs to be a sequence of streaming segments (see Section 2), each where

some processing and the necessary data transfers are performed. The key idea is that we can treat

vertexes and edges in the DAG as stages in a pipeline, so that each segment can execute multiple

stages in parallel on different iterations.

Figure 6provides the result of the transformation into the three-phase model of the DAG in

Figure 4, where the F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) + 𝐶 function is repeated for a number of iterations

𝐼 = 4. First note that when translating a generic task 𝜏 to execute on the considered platform (see

Section 3.2), a first special segment, namely S0, needs to be introduced. Indeed, when a new job of

𝜏 is released, the very first step must be dedicated to loading the code itself of the task—Interval 1 .

Only once the code starts executing (Interval 2 ), the actual streaming—and hence the remaining

segments—can be initialized and set in motion. Following our example, the first load is for operands

𝐴 (1) and 𝐵 (1) during Interval 3 , where the superscript notation refers to the iteration number,

from 1 to 4. This load allows the accelerator to perform the first matrix multiplication during

segment S1—Interval 4 . At the same time, during Interval 4 , the operands 𝐴 (2) and 𝐵 (2) for the
next iteration are loaded. Next, in Interval 5 , the operation (𝑂 (2) := 𝐴 (2) × 𝐵 (2) ) is performed on

the accelerator. Simultaneously, a local transfer is performed to pass 𝑂 (1) from the SPM of the
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accelerator to the SPM of the CPU. Because there is no guarantee about when the local transfer

will exactly occur during Interval 5 , CPU processing can only start in the successive Interval 6 .

To allow the operation (𝑂 (1) := 𝑂 (1) +𝐶 (1) ) to be carried out on the CPU during Interval 6 , the

operand 𝐶 (1) is also loaded in Interval 5 . The final output, i.e. the result of F (𝐴 (1) , 𝐵 (1) ,𝐶 (1) )
is written back to main memory during the unload operation depicted in Interval 7 . The same

sequence of operations applies until Interval 9 is reached where the last (𝑂 (4) := 𝑂 (4) + 𝐶 (4) )
operation is performed on the CPU and its result is moved to main memory in Interval 10 . Note

that we assume that all load operations for a segment can complete within one TDMA slot of size

𝜎 ; the same applies for the unload operations. Similarly, all local transfers must complete within

one window of length Σ − 𝜎 .

O(3)O(1)

S1
Task 

Under 
Analysis

GDMA

LDMA

S0 S1 S2

ACC

S3 S4

S0 S2 S3 S4 S5 S6

S3 S5 S4 S6 S6

21 3 4 5 6 7 8

Other Cores Load Region A/B UnLoad Region A/B Wasted Slot Local Transfer

S5

9 10

A(1)

B(1)
A(2)

B(2)

O(1):=
A(1) xB(1)

O(2):=
A(2) xB(2)

O(3):=
A(3) x B(3)

O(4):=
A(4) xB(4)

A(3)

B(3)

C(1)

O(1) :+= C(1) O(2) :+= C(2) O(3) :+= C(3) O(4) :+= C(4)

A(4)

B(4)

C(2)

C(3) C(4)

O(1) O(2) O(3) O(4)

O(2) O(4)
TCB

Fig. 6. Pipelined Streaming Execution Example.

In the following, we provide a general formulation for the transformation described above. We

first determine the number of segments S for the task, and then specify the operations carried

out in each segment. For ease of explanation, in this section we adopt an abstract model, where

each segment is associated with a list of operations, and we use function 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠, 𝑜𝑝) to denote

adding operation 𝑜𝑝 to the end of the list for segment index 𝑠 . However, in Section 5 we will then

show how operations are directly translated to actual API calls invoked by the CPU based on our

OS-level support layer. Therefore, our proposed algorithm can be used to automatically generate

the CPU code for each task, including allocating buffer, invoking the execution of each processing

function, and scheduling data movements.

More in details, we consider the following operations: (i) 𝑣 .𝑓 𝑢𝑛𝑐 (𝑝𝑎𝑟𝑎𝑚𝑠) denotes the execution
of processing function 𝑣 .𝑓 𝑢𝑛𝑐 (·) of CPU-bound vertex 𝑣 . Here, 𝑝𝑎𝑟𝑎𝑚𝑠 is a set of pointers to buffers

allocated in the CPU SPM that correspond to the function parameters. (ii) 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑣 .𝑃𝐸, 𝑝𝑎𝑟𝑎𝑚𝑠),
where 𝑣 .𝑃𝐸 is an accelerator. In this case, 𝑝𝑎𝑟𝑎𝑚𝑠 is a set of IDs of buffers allocated in the accelera-

tor’s SPM(s) to hold the function parameters. (iii) 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑙𝑜𝑐𝑎𝑙 (𝑠𝑝𝑚_𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑝𝑚_𝑑𝑒𝑠𝑡) denotes
a local transfer between source SPM buffer 𝑠𝑝𝑚_𝑠𝑜𝑢𝑟𝑐𝑒 and destination SPM buffer 𝑠𝑝𝑚_𝑑𝑒𝑠𝑡 .

(iv) 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑙𝑜𝑎𝑑 (𝑚𝑒𝑚_𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑝𝑚_𝑑𝑒𝑠𝑡) denotes a global load between main memory address

𝑚𝑒𝑚_𝑠𝑜𝑢𝑟𝑐𝑒 and SPM buffer 𝑠𝑝𝑚_𝑑𝑒𝑠𝑡 ; and (v) 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑢𝑛𝑙𝑜𝑎𝑑 (𝑠𝑝𝑚_𝑠𝑜𝑢𝑟𝑐𝑒,𝑚𝑒𝑚_𝑑𝑒𝑠𝑡) denotes
a global unload operation.

Finally, the placement of the 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_ operations must be carefully considered. CPU and

accelerator execution are under the control of the task, but the same is not true for GDMA and
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LDMA transfers: both DMAs must respect the TDMA schedule, and furthermore as we will detail

in Section 5, the schedule of DMA transfers must be modified in case of task preemption. Hence, in

our system memory transfers are controlled by the scheduler in the OS. As a consequence, for the

OS to know which transfers must be performed during a scheduling interval, the task must issue

transfer operations during the segment executed in the previous interval. Referring to Figure 6

as an example, the transfers of 𝐶 (1) , 𝐴 (3) and 𝐵 (3) performed in Interval 5 must be programmed

in segment S1 during Interval 4 . Note that no segment of the task under analysis is executed

in Interval 3 ; hence, the transfers performed during both Interval 3 and Interval 4 must be

programmed in S0. For this reason, the special segment S0 supports two lists of transfer operations:

we use index 𝑠 = −1 to refer to the list of transfers performed during Interval 3 , and 𝑠 = 0 for the

list of transfers performed in Interval 4 .

4.1 Pipelining and Number of Segments
We begin by determining the number of segments S required by the task. As shown in the example

in Figure 6, every data dependency between two vertices in the DAG adds two stages to the

processing pipelining: one stage for the local data transfer, and another stage for the execution on

the dependant vertex. More in general, the number of stages depends on the maximum length of

any path in the DAG. Hence, let us use 𝐿(𝑣) to denote the level of vertex 𝑣 , that is, the length of the

longest path in number of vertexes between any source and 𝑣 included; formally, 𝐿(𝑣) = 1 if 𝑣 is a

source, otherwise 𝐿(𝑣) = 1 +max𝑣′∈𝑝𝑟𝑒𝑑 (𝑣) {𝐿(𝑣 ′)}. The number of segments is then equal to one

(for Segment S0), plus the number of iterations 𝐼 , plus 2 additional segments for each vertex level

past the first:

S := 1 + 𝐼 + 2 · (max

𝑣∈𝑉
{𝐿(𝑣) − 1}). (1)

Following the same logic, the 𝑖-th instance of processing function 𝑣 .𝑓 𝑢𝑛𝑐 (·) is executed in segment

index 𝑠 , with 𝑠 = 𝑖 + 2 · (𝐿(𝑣) − 1).
Example: note that in Figure 6, where 𝐿(𝑣1) = 1 and 𝐿(𝑣2) = 2, 𝑣1.𝑓 𝑢𝑛𝑐 (𝐴, 𝐵,𝑂) is executed in

segments S1-S4, while 𝑣2.𝑓 𝑢𝑛𝑐 (𝑂,𝐶) is executed in segments S3-S6. The total number of segments

is 1 + 4 + 2 · (2 − 1) = 7.

4.2 SPM data buffering
At compile time and for each vertex 𝑣 , buffers are allocated at static addresses in the SPM of 𝑣 .𝑃𝐸 to

hold the data elements used by processing function 𝑣 .𝑓 𝑢𝑛𝑐 (·) [24]. Each buffer is associated with a

numeric ID. As discussed in Section 2, previous work used a double-buffering approach, where the

current segment executes using the data in one buffer, while the other buffer is used for transfer

operations.

More in general in our model, the number of buffers required by a data element 𝑎 ∈ 𝑢𝑠𝑒 (𝑣)
depends on the number of transfers for 𝑎. If 𝑣 has only either one incoming edge or one or

more outgoing edges for 𝑎, then double buffering is always sufficient. However, if 𝑣 has both

one incoming and one or more outgoing edges for 𝑎, then the order of data transfers must be

carefully considered. First, consider the case where the edges represent global transfers. Then,

double buffering can still be used as long as 𝑎 is unloaded from 𝑣 , thus leaving the transfer buffer

free, before it is loaded in the same buffer. The same consideration applies when all edges represent

local transfers, as long as outgoing transfer(s) from 𝑣 to the successor vertex(es) are performed

before the incoming transfer from the predecessor vertex to 𝑣 . As we will show in Section 5.3, our

scheduling logic can indeed guarantee that such transfer order is respected, with the exception of

any vertex 𝑣 bound to an accelerator that receives an incoming local transfer from a CPU-bound

predecessor. In such a case, triple buffering is required to avoid overwriting the current transfer
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buffer. Similarly, note that the relative order of global and local transfers cannot be guaranteed:

this is because they are performed in different TDMA slots which are not synchronized with the

interval start/end times. Hence, if an incoming edge calls for a local transfer while an outgoing

edge calls for global transfer or vice-versa, then triple buffering is also required. Formally, we

use predicate 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑣, 𝑎) to determine whether vertex 𝑣 requires triple buffering for data element

𝑎 ∈ 𝑢𝑠𝑒 (𝑣) : 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑣, 𝑎) ⇔ ∃𝑒 ′, 𝑒 ′′ ∈ 𝐸 : 𝑒 ′.𝑑 = 𝑒 ′′.𝑠 = 𝑣 ∧ 𝑒 ′.𝑎 = 𝑒 ′′.𝑎 = 𝑎 ∧
(
(𝑣 .𝑃𝐸 ≠ 𝐶𝑃𝑈 ∧ 𝑒 ′.𝑠 ∈

𝐸 ∧ 𝑒 ′.𝑠 .𝑃𝐸 = 𝐶𝑃𝑈 ) ∨ (𝑒 ′.𝑠 =⊥ ∧𝑒 ′′.𝑑 ∈ 𝐸) ∨ (𝑒 ′.𝑠 ∈ 𝐸 ∧ 𝑒 ′′.𝑑 =⊥)
)
.

Example: for the example in Figure 4, it holds 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑣2,𝑂) = 𝑡𝑟𝑢𝑒 , because 𝑣2 has both an

incoming local transfer for𝑂 , and an outgoing unload. All other data elements and vertexes can use

double-buffering; in particular, note that for the same data element𝑂 , it holds 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑣1,𝑂) = 𝑓 𝑎𝑙𝑠𝑒 .

We use function 𝑚𝑒𝑚(𝑎) to denote the address of data element 𝑎 in main memory; we use

function 𝑠𝑝𝑚_𝑖𝑑 (𝑣, 𝑎, 𝑘) and 𝑠𝑝𝑚_𝑎𝑑𝑑𝑟 (𝑣, 𝑎, 𝑘) to denote the ID and the SPM address, respectively,

of the 𝑘-th SPM buffer of 𝑎 for 𝑣 . Following the discussion above, if 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑣, 𝑎) = 𝑡𝑟𝑢𝑒 , then the

index 𝑘 ranges from 1 to 3, otherwise 𝑘 ranges from 1 to 2. For the first iteration, i.e. 𝑎 (1) , buffer
index 𝑘 = 1 is used; for the second iteration 𝑎 (2) , buffer index 𝑘 = 2 is used; while in general

for the 𝑖-th iteration 𝑎 (𝑖) , buffer 𝑘 = 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑎, 𝑖) is used, where 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑎, 𝑖) ≡ (𝑖 − 1)%3 + 1 if
𝑡𝑟𝑖𝑝𝑙𝑒 (𝑣, 𝑎) = 𝑡𝑟𝑢𝑒 , and 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑎, 𝑖) ≡ (𝑖 − 1)%2 + 1 otherwise.

4.3 Graph Transformation
Before we list the operations in each segment, a final graph processing step might be required

to avoid increasing buffer space. Specifically, consider Figure 7(i), which depicts the DAG for an

example computational function with three vertices. Here, vertex 𝑣1 transfers data element 𝑎3
to 𝑣3; however, we have 𝐿(𝑣1) = 1 and 𝐿(𝑣3) = 3, meaning that 𝑣1 and 𝑣3 are not consecutive

processing stages in the pipeline. This creates a problem with the local transfer of 𝑎3 between 𝑣1

and 𝑣3. Consider for example the first iteration 𝑎
(1)
3

: here, 𝑣1 executes on 𝑎
(1)
3

in segment S1, while

𝑣3 executes on 𝑎
(1)
3

in segment S5. If we perform the local transfer of 𝑎
(1)
3

in parallel with segment

S2, 𝑣3 needs two extra buffers for 𝑎3; if we perform it during S4, instead 𝑣1 needs two extra buffers;

and if we perform it during S3, both 𝑣1 and 𝑣3 require one extra buffer.

To avoid such complexity, for each local transfer edge 𝑒 : 𝑒.𝑠, 𝑒 .𝑑 ∈ 𝐸 such that 𝐿(𝑒.𝑑) > 𝐿(𝑒.𝑠) +1,
we perform a graph transformation. Specifically, we remove 𝑒 and substitute it with two edges

𝑒 ′, 𝑒 ′′ with 𝑒 ′.𝑠 = 𝑒.𝑠, 𝑒 ′.𝑑 =⊥, 𝑒 ′′.𝑠 =⊥, 𝑒 ′′.𝑑 = 𝑒.𝑑, 𝑒 ′.𝑎 = 𝑒 ′′.𝑎 = 𝑒.𝑎; basically, we change the local

transfer with a unload and a load to main memory. Figure 7(ii) shows the transformed graph from

Figure 7(i). Note that to remain consistent, the definition of 𝑡𝑟𝑖𝑝𝑙𝑒 (𝑣, 𝑎) must be applied to the

transformed graph.

4.4 Three-phase Task Synthesis
We can now present Algorithm 1 that generates the segments for computational function F given

a number of iterations 𝐼 . The key idea is to process the vertices of F in reverse topological order

(i.e., starting from the sinks); then for each vertex we add operations for executions, outgoing

local transfers, unloads, and then loads in this order to each corresponding segment list. There

is no need to add calls for incoming local transfers because the data transfer will be added as an

outgoing transfer when processing one of the immediate predecessors of the vertex later on. The

reverse topological order ensures that for each vertex, outgoing local transfers are performed before

incoming ones; as discussed in Section 4.2, this is required to support double buffering.

For each vertex 𝑣 , the algorithm enumerates all 𝐼 iterations. For the 𝑖-th iteration, the segment

index 𝑠 where 𝑣 .𝑓 𝑢𝑛𝑐 (·) executes is computed on Line 4 as discussed in Section 4.1. On Lines

5-14, the execution of 𝑣 .𝑓 𝑢𝑛𝑐 (·) is added to the operation list for segment 𝑠 . Note that the 𝑝𝑎𝑟𝑎𝑚𝑠
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LOCAL: a3

LOCAL: a2
LOCAL: a2

LOAD: a1

LOCAL: a2 LOCAL: a2

UNLOAD: a3

LOAD: a3 LOAD: a3

Fig. 7. Example DAG Transformation. (i): Original DAG. (ii): Transformed DAG after removing non-consecutive
local transfers.

set is constructed by listing all data elements in 𝑢𝑠𝑒 (𝑣), and employing functions 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑎, 𝑖)
and 𝑠𝑝𝑚_𝑖𝑑 (𝑣, 𝑎, 𝑘𝑎) (resp., 𝑠𝑝𝑚_𝑎𝑑𝑑𝑟 (𝑣, 𝑎, 𝑘𝑎)) to determine the buffer ID (resp., buffer address)

where 𝑎 (𝑖) is located in the accelerator’s or CPU’s SPM. In the same manner, Lines 15-27 add to

the operation list outgoing local transfers, unloads and loads. As discussed at the beginning of

this section, transfers must be programmed in the segment before the interval in which they are

performed. Hence, outgoing transfers and unloads are appended to segment 𝑠 at Lines 18 and 22,

while loads to segment 𝑠 − 2 at Line 26. Specifically, note that for 𝐿(𝑣) = 1, 𝑖 = 1, we obtain 𝑠 = −1
(example: loads of 𝐴 (1) and 𝐵 (1) in Interval 3 in Figure 6), while for 𝐿(𝑣) = 1, 𝑖 = 2, we obtain

𝑠 = 0 (loads of 𝐴 (2) and 𝐵 (2) in Interval 4 ): these are the loads operations programmed during S0

to start the pipeline.

5 OS SUPPORT AND SCHEDULING
In this section, we discuss how the proposed pipelined, streaming model detailed in Section 4 can be

realized at the OS level by modifying the programming interface and scheduling logic introduced

in [23]. We then show how to test the schedulability of the resulting system on a given core under

analysis.

5.1 Streaming API
Table 1 summarizes the proposed API to handle the segment streaming on both CPU and hardware

accelerators, together with the corresponding operations used in Section 4. Note that there is

no equivalent API call for the execution of 𝑣 .𝑓 𝑢𝑛𝑐 (·) on a CPU, since it simply corresponds to

a user-level function call. The RTOS tracks the buffers used by each task through the use of a

streaming table (ST). An entry in ST is generated when allocate_buffer is called in segment S0

and a buffer ID is returned.

Similar to [23], the RTOS manages DMA transfers of behalf of a task through the use of two

different queues: Streaming Wait Queue (SWQ) and Streaming Dispatch Queue (SDQ). We use two

separate queues so that transfer requests made by the current segment can be enqueued in the

SWQ, while the OS processes requests from the SDQ. The scheduler, as will be shown in Section 5.3,

and the dispatch function move the requests from the SWQ to the SDQ. Specifically, the dispatch
function informs the OS that the transfers issued so far are needed by the next segment; it is
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Algorithm 1 Automatic Segments Code Generation

1: procedure GenerateSegments(F , 𝐼 )
2: for 𝑣 ∈ 𝑉 in reverse topological order do

3: for 𝑖 = 1; 𝑖 ≤ 𝐼 ; 𝑖 ← 𝑖 + 1 do
4: 𝑠 ← 𝑖 + 2 · (𝐿(𝑣) − 1)
5: 𝑝𝑎𝑟𝑎𝑚𝑠𝑎𝑐𝑐 ← ∅
6: 𝑝𝑎𝑟𝑎𝑚𝑠𝑐𝑝𝑢 ← ∅
7: for 𝑎 ∈ 𝑢𝑠𝑒 (𝑣) do
8: 𝑘𝑎 ← 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑎, 𝑖)
9: 𝑝𝑎𝑟𝑎𝑚𝑠𝑎𝑐𝑐 ← 𝑝𝑎𝑟𝑎𝑚𝑠𝑎𝑐𝑐 ∪ 𝑠𝑝𝑚_𝑖𝑑 (𝑣, 𝑎, 𝑘𝑎)
10: 𝑝𝑎𝑟𝑎𝑚𝑠𝑐𝑝𝑢 ← 𝑝𝑎𝑟𝑎𝑚𝑠𝑐𝑝𝑢 ∪ 𝑠𝑝𝑚_𝑎𝑑𝑑𝑟 (𝑣, 𝑎, 𝑘𝑎)
11: end for

12: if 𝑣 .𝑃𝐸 = 𝐶𝑃𝑈 then ⊲ Execution

13: 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠, 𝑣 .𝑓 𝑢𝑛𝑐 (𝑝𝑎𝑟𝑎𝑚𝑠𝑎𝑐𝑐 ))
14: else

15: 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑣 .𝑃𝐸, 𝑝𝑎𝑟𝑎𝑚𝑠𝑐𝑝𝑢 ))
16: end if

17: for 𝑒 ∈ 𝐸 : 𝑒.𝑠 = 𝑣 ∧ 𝑒.𝑑 ∈ 𝐸 do ⊲ Local Transfer

18: 𝑘𝑠 = 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑒 .𝑎, 𝑖)
19: 𝑘𝑑 = 𝑖𝑛𝑑𝑒𝑥 (𝑒.𝑑, 𝑒.𝑎, 𝑖)
20: 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑙𝑜𝑐𝑎𝑙 (𝑠𝑝𝑚_𝑖𝑑 (𝑣, 𝑒 .𝑎, 𝑘𝑠 ), 𝑠𝑝𝑚_𝑖𝑑 (𝑒.𝑑, 𝑒.𝑎, 𝑘𝑑 )))
21: end for

22: for 𝑒 ∈ 𝐸 : 𝑒.𝑠 = 𝑣 ∧ 𝑒.𝑑 =⊥ do ⊲ Unload

23: 𝑘𝑠 = 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑒 .𝑎, 𝑖)
24: 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑢𝑛𝑙𝑜𝑎𝑑 (𝑠𝑝𝑚_𝑖𝑑 (𝑣, 𝑒 .𝑎, 𝑘𝑠 ),𝑚𝑒𝑚(𝑒.𝑎)))
25: end for

26: for 𝑒 ∈ 𝐸 : 𝑒.𝑠 =⊥ ∧𝑒.𝑑 = 𝑣 do ⊲ Load

27: 𝑘𝑑 = 𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑒 .𝑎, 𝑖)
28: 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠 − 2, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑙𝑜𝑎𝑑 (𝑚𝑒𝑚(𝑒.𝑎), 𝑠𝑝𝑚_𝑖𝑑 (𝑣, 𝑒 .𝑎, 𝑘𝑑 )))
29: end for

30: end for

31: end for

32: end procedure

used to separate the load operations in the first list of S0 (𝑠 = −1 in Algorithm 1), which are

needed in S1, from the load operations in the second list of S0 (𝑠 = 0), which are needed in S3. The

end_segment function informs the OS that the current segment has completed execution; if there

is still any pending GDMA or LDMA transfer in the current interval, or any accelerator has not

finished executing, the CPU is suspended until all GDMA and LDMA transfers complete and all

accelerators finish executing. We assume that the GDMA and LDMA generate an interrupt when

they finish performing a transfer; similarly, each accelerator generates an interrupt when it finishes

executing. Then, the OS scheduler is invoked. Finally, the wait function marks the end of the last

segment of the task. In our design, we also support polling to determine the completion status of

the accelerators.

As it will become clear in Section 5.3, an accelerator cannot be used concurrently by multiple

tasks. Therefore, for simplicity we assume that each accelerator is accessed by a single task. Such

assumption could be relaxed to allowmultiple tasks within the same partition to share an accelerator

by implementing a locking API, so that a job acquires all required accelerators upon starting and

releases them upon completion. The schedulability analysis would then need to be modified to
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incorporate the blocking time induced by locking. We discuss how the locking protocol could be

implemented and its impact on the analysis in Section 5.4.

Table 1. Proposed streaming API.

API Operation Description

buffer_id = allocate_buffer(uint64_t *address): - address is a static address in the SPM of either the CPU or an accelerator

execute_acc(int acc_id, int id1, ...) 𝑒𝑥𝑒𝑐𝑢𝑡𝑒
acc_id is the unique ID of the accelerator

id1, ... is a list of buffer IDs on which to execute the accelerator

load_buffer(int id, uint64_t *src, int size); 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑙𝑜𝑎𝑑 Reads size in bytes from the src address in main memory and writes at ID buffer in the SPM of CPU or accelerator

unload_buffer(int id, uint64_t *dst, int size) ; 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑢𝑛𝑙𝑜𝑎𝑑 Writes from the ID buffer in the SPM to the dst address in main memory

transfer_local(int src_id, int dst_id, int size); 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑙𝑜𝑐𝑎𝑙 Transfer from src_id buffer to dst_id buffer

dispatch(); - Force all buffer DMA requests to move from waiting queue to dispatch queue

end_segment(); - End segment execution

wait(); - End job and wait until the next task activation

5.2 Example: F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) +𝐶
For added clarity, Listing 3 details the generated code for the example introduced in Section 4.

We show the original code of a software-only, non-streaming implementation of the task in

Listing 2. Here, matrix_multiply implements the 𝑂 := 𝐴 × 𝐵 processing function in 𝑣1, while

matrix_sum_inplace implements the𝑂 := 𝑂 +𝐶 processing function in 𝑣2. In the code in Listing 3,

constants ACC_A1 to CPU_O3 represent the static address of each buffer in the SPM.

Listing 1. Preamble code for F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) +𝐶 operation.
# d e f i n e I 4

# d e f i n e ROWS 64

# d e f i n e COLS 64

# d e f i n e SZ ( s i z e o f ( f l o a t ) )

f l o a t A [ I ] [ROWS] [ COLS ] ; / ∗ I npu t Mat r ix ∗ /

f l o a t B [ I ] [ROWS] [ COLS ] ; / ∗ I npu t Mat r ix ∗ /

f l o a t C [ I ] [ROWS] [ COLS ] ; / ∗ I npu t Mat r ix ∗ /

f l o a t O [ I ] [ROWS] [ COLS ] ; / ∗ Output Mat r ix ∗ /

Listing 2. CPU code for task implementing F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) +𝐶 operation.
/ ∗ Preamble code . See L i s t i n g @\ r e f { l s t : preamble }@. ∗ /

i n t main ( ) {

wh i l e ( t r u e ) {

f o r ( i = 0 ; i < I ; ++ i ) {

ma t r i x _mu l t i p l y (&A[ i ] [ 0 ] [ 0 ] , &B[ i ] [ 0 ] [ 0 ] , &O[ i ] [ 0 ] [ 0 ] ) ;

ma t r i x_ sum_ inp l a c e (&O[ i ] [ 0 ] [ 0 ] , &C[ i ] [ 0 ] [ 0 ] ) ;

}

wa i t ( ) ;

}

r e t u r n EXIT_SUCCESS ;

}

Listing 3. CPU + Accelerator streaming code for task implementing F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) +𝐶 operation.
/ ∗ Preamble code . See L i s t i n g @\ r e f { l s t : preamble }@. ∗ /

i n t main ( ) {

wh i l e ( t r u e ) {

/ ∗ Segment S0 Begin ∗ /

acc_A1_ id = a l l o c a t e _ b u f f e r (ACC_A1 ) ; acc_A2_ id = a l l o c a t e _ b u f f e r (ACC_A2 ) ;

a c c_B1_ id = a l l o c a t e _ b u f f e r ( ACC_B1 ) ; a c c_B2_ id = a l l o c a t e _ b u f f e r ( ACC_B2 ) ;

acc_O1_ id = a l l o c a t e (ACC_O1 ) ; acc_O2_ id = a l l o c a t e (ACC_O2 ) ;

cpu_C1_id = a l l o c a t e _ b u f f e r ( C1 ) ; cpu_C2_id = a l l o c a t e _ b u f f e r ( C2 ) ;

cpu_O1_id = a l l o c a t e _ b u f f e r ( CPU_O1 ) ;

cpu_O2_id = a l l o c a t e _ b u f f e r ( CPU_O2 ) ;

cpu_O3_id = a l l o c a t e _ b u f f e r ( CPU_O3 ) ;

l o a d _ b u f f e r ( acc_A1_id , & ( ( u i n t 6 4 _ t ) ( A [ 0 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

l o a d _ b u f f e r ( acc_B1_ id , & ( ( u i n t 6 4 _ t ) ( B [ 0 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

d i s p a t c h ( ) ;

l o a d _ b u f f e r ( acc_A2_id , & ( ( u i n t 6 4 _ t ) ( A [ 1 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;
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l o a d _ b u f f e r ( acc_B2_ id , & ( ( u i n t 6 4 _ t ) ( B [ 1 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

end_segment ( ) ;

/ ∗ Segment S1 Begin ∗ /

l o a d _ b u f f e r ( cpu_C1_id , & ( ( u i n t 6 4 _ t ) ( C [ 0 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

e x e cu t e _ a c c ( mm_id_acce l e ra to r , acc_A1_id , acc_B1_ id , acc_O1_ id ) ;

t r a n s f e r _ l o c a l ( acc_O1_id , cpu_O1_id , ROWS∗COLS ∗ SZ ) ;

l o a d _ b u f f e r ( acc_A1_id , & ( ( u i n t 6 4 _ t ) ( A [ 2 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

l o a d _ b u f f e r ( acc_B1_ id , & ( ( u i n t 6 4 _ t ) ( B [ 2 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

end_segment ( ) ;

/ ∗ Segment S2 Begin ∗ /

l o a d _ b u f f e r ( cpu_C2_id , & ( ( u i n t 6 4 _ t ) ( C [ 1 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

e x e cu t e _ a c c ( mm_id_acce l e ra to r , acc_A2_id , acc_B2_ id , acc_O2_ id ) ;

t r a n s f e r _ l o c a l ( acc_O2_id , cpu_O2_id , ROWS∗COLS ∗ SZ ) ;

l o a d _ b u f f e r ( acc_A2_id , & ( ( u i n t 6 4 _ t ) ( A [ 3 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

l o a d _ b u f f e r ( acc_B2_ id , & ( ( u i n t 6 4 _ t ) ( B [ 3 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

end_segment ( ) ;

/ ∗ Segment S3 Begin ∗ /

ma t r i x_ sum_ inp l a c e ( CPU_O1 , CPU_C1 ) ;

u n l o a d _ bu f f e r ( cpu_O1_id , & ( ( u i n t 6 4 _ t ) (O [ 0 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

l o a d _ b u f f e r ( cpu_C1_id , & ( ( u i n t 6 4 _ t ) ( C [ 2 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

e x e cu t e _ a c c ( mm_id_acce l e ra to r , acc_A1_id , acc_B1_ id , acc_O1_ id ) ;

t r a n s f e r _ l o c a l ( acc_O1_id , cpu_O3_id , ROWS∗COLS ∗ SZ ) ;

end_segment ( ) ;

/ ∗ Segment S4 Begin ∗ /

ma t r i x_ sum_ inp l a c e ( CPU_O2 , CPU_C2 ) ;

u n l o a d _ bu f f e r ( cpu_O2_id , & ( ( u i n t 6 4 _ t ) (O [ 1 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

l o a d _ b u f f e r ( cpu_C2_id , & ( ( u i n t 6 4 _ t ) ( C [ 3 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

e x e cu t e _ a c c ( mm_id_acce l e ra to r , acc_A2_id , acc_B2_ id , acc_O2_ id ) ;

t r a n s f e r _ l o c a l ( acc_O2_id , cpu_O1_id , ROWS∗COLS ∗ SZ ) ;

end_segment ( ) ;

/ ∗ Segment S5 Begin ∗ /

ma t r i x_ sum_ inp l a c e ( CPU_O3 , CPU_C1 ) ;

u n l o a d _ bu f f e r ( cpu_O3_id , & ( ( u i n t 6 4 _ t ) (O [ 2 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

end_segment ( ) ;

/ ∗ Segment S6 Begin ∗ /

ma t r i x_ sum_ inp l a c e ( CPU_O1 , CPU_C2 ) ;

u n l o a d _ bu f f e r ( cpu_O1_id , & ( ( u i n t 6 4 _ t ) (O [ 3 ] [ 0 ] [ 0 ] ) ) , ROWS∗COLS ∗ SZ ) ;

wa i t ( ) ;

}

r e t u r n EXIT_SUCCESS ;

}

A potential downside of the presented code generation process is that it creates one code block

for each segment, as shown in Listing 3. If the number of iterations 𝐼 , and therefore the number

of segments, is high, this can result in a large code footprint. In this case, it is possible to adopt

an alternative code generation approach, where first the code of S0 is generated, and then each

further segment executes the code of one iteration in a loop over 𝑠 = 1...S − 1. The same logic

as in Algorithm 1 can be used, except that the expressions must be evaluated at run-time rather

than at compile time. Specifically, at each iteration over 𝑠 and for each vertex, we can compute the

value of 𝑖 by inverting the expression at Line 4 to obtain 𝑖 = 𝑠 − 2 · (𝐿(𝑣) − 1); then if 1 ≤ 𝑖 ≤ 𝐼 ,

we compute the buffer indexes and issue the corresponding execution or transfer. We decided to

describe Algorithm 1 and the example based on the loop-unrolled version of the generated code

because we believe it is easier to understand.
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5.3 Scheduling logic
We next discuss how the scheduling logic proposed in [23] must be modified to handle both GDMA

and LDMA transfers for buffered data elements
3
. In the three-phase model, scheduling decision

are made at the beginning of each interval. Specifically, the scheduler must decide which task to

execute (if any is active) in the next interval, so that it can load the required data and code (if it is a

different task than the one currently executed) in the current interval.

To understand the behavior of the DMA scheduler, we first present an example where other

tasks co-execute together with a task under analysis. Figure 8 depicts the same schedule as in

Figure 6, except that in this case, the scheduler decides to execute segments X, Y of some other

task(s) during intervals Interval 7 and Interval 8 (we assume that such task(s) do not require local

transfers). Note that again for simplicity, the figure does not include the TDMA of other cores.

During Interval 6 , the GDMA is used to load the code and data of X instead of the data for S4; the

data of S4, namely 𝐴 (4) , 𝐵 (4) and 𝐶 (2) , is instead loaded in Interval 8 , just before S4 is executed in

Interval 9 . We also do not perform the local transfer for 𝑂 (2) in Interval 6 , because such transfer

would move 𝑂 (2) to the SPM of the CPU, which is needed by other task(s); similarly to load data,

the transfer is moved to Interval 8 . Note this means that the accelerator holds a buffer on behalf

of the task under analysis during Interval 7 and Interval 8 while the task is preempted; hence,

the accelerator cannot be used by other tasks. Finally, note that no unload operation takes place

in Interval 9 , because the data of S3 was already unloaded in Interval 7 . If the task needed to

perform a local transfer from CPU to accelerator, than the local transfer for S3 would similarly

have to be performed in Interval 7 to free the CPU SPM.

O(2)
CODE 
(TCB)

GDMA

LDMA

Task 
Under 

Analysis

ACC

S0 S1 S2

Other 
Tasks X Y

S0 S1 S2

S3 S4 S5 S6

Load Region A/B UnLoad Region A/B

S3 X Y S4X S5 S6

Local Transfer

10 11 121 2 3 4 5 6 7 8 9

A(1)

B(1)
A(2)

B(2)

O(1):=
A(1) xB(1)

O(1)

O(2):=
A(2) xB(2)

O(3):=
A(3) x B(3)

A(3)

B(3)

C(1)

O(1) A(4)

B(4)

C(2)

O(2) O(3)

O(4):=
A(4) xB(4)

O(4)

C(3) O(3) O(4)C(4)

O(1) :+= C(1) O(3) :+= C(3) O(4) :+= C(4)O(2) :+= C(2)

Fig. 8. Example: Task Preemption.

Algorithm 2 shows the resulting steps taken by the scheduler at the beginning of an interval,

where we use 𝑆𝑖 to denote the segment executed in Interval 𝑖 , and 𝜏 (𝑆) to denote the task to which
segment 𝑆 belongs. The scheduler starts by determining the segment 𝑆𝑖+1 to be executed in the next

Interval
𝑖 + 1

at Line 1. If a segment 𝑆𝑖 is scheduled in Interval 𝑖 (Line 2), then it moves all transfer

requests in SWQ (if any) to SDQ of task 𝜏 (𝑆𝑖 ) (Line 3); this ensures that 𝑆𝑖 can place new transfer

3
Note that apart from streaming buffers, the GDMA is also used to load the code and static data of the task, and to unload

modified static data. For ease of presentation, we do not detail such operations since they follow the same logic presented in

Figures 1, 3 for previous work.
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requests in SWQ. The scheduler than processes all unload and local transfers from the CPU SPM

for segment 𝑆𝑖−1, and all loads and transfers to the CPU SPM and between accelerators for segment

𝑆𝑖+1. Note that for the former case, the transfer requests are found in the SDQ if 𝜏 (𝑆𝑖−1) = 𝜏 (𝑆𝑖 ),
since in this case Line 3 moved the transfers in the SWQ of 𝜏 (𝑆𝑖−1) to the SDQ; otherwise, the

transfer requests are still in the SWQ.

We assume that the send operation removes the selected transfers from the queue, and that it is

guaranteed to perform the transfers in the same order in which they appear in the queue. Recalling

the discussion in Section 4.2, based on the send order in the algorithm, it guarantees that unloads

are performed before loads, and furthermore because of the inverse topological order, outgoing

local transfers are performed before incoming local transfers, with the exception of accelerators

receiving local transfers from the CPU given that CPU→ ACC local transfers are sent first.

A final pair of notes regard the TDMA parameters, and the SPM utilization. Based on the described

logic, the slot size 𝜎 must be large enough to perform all load transfers for largest task in Γ, which
include at most one buffer for each data element that must be loaded from main memory for that

task. 𝜎 must also be large enough to perform all unload transfers for any task, again including a

single buffer per data element. However, we also require that the window Σ − 𝜎 be large enough to

perform all local transfers (again, on at most one buffer per data element) CPU→ ACC for any task,

plus all ACC→ ACC and ACC→ CPU local transfer for any task, either the same or a different

one. Since most tasks have more code/data to load than data to unload, and Σ−𝜎 is generally larger

than 𝜎 with a number of cores𝑀 ≥ 3, the DMA schedule is typically constrained by load transfers.

Finally, we consider the SPM utilization. Since each accelerator is only used by one task at a

time, an accelerator SPM only needs space for the buffers of any one task. However, the CPU SPM

must be divided into two regions, one for the task executed in the current interval, and one for the

task(s) executed in the previous/next interval. To ensure that each task can be executed from either

region, relocation support is needed either at the compiler level [25], or in the form of a dedicated

hardware component [27], or simply through virtual memory [7]; we assume the latter. In the

simplest case, each region must be sized so that it contains all the code, static data and CPU-bound

buffers for any one task. As discussed in [23], an improved solution can leverage the observation

that the CPU SPM never contains the code/data for more than two consecutive segments. Hence, a

region could be sized to contain only one buffer for data element, if it uses double buffering, or two

buffers for data element, if it uses triple buffering; the remaining buffer could be allocated in the

other region.

5.4 Schedulability Analysis
A schedulability analysis for the streaming model is presented in [23], under the assumption that

tasks are scheduled according to fixed priorities; without loss of generality, let them be indexed

based on priority, with 𝜏1 having the highest priority and 𝜏𝑁 the lowest. Since our model does

not change the way terminal and streaming segments are scheduled, the same analysis can be

employed; we summarize it below.

The analysis takes as inputs the length of each segment, which is computed as the maximum of

its execution time and the worst-case memory time Δ in any interval. For our model, the execution

time of each segment must be computed as the maximum between its CPU execution time and the

execution time of any accelerator used during the segment. The worst-case scenario for Δ is when

an interval starts right after the beginning of the TDMA slot, resulting in a GDMA time of 𝜎 + 2 · Σ;
note that since the LDMA only needs one consecutive time window to perform the local transfers,

its worst-case time is Σ − 𝜎 + Σ, which is lower than the GDMA. If all cores use the same TDMA

slot, i.e. Σ = 𝑀 · 𝜎 , this results in Δ = 𝜎 · (2𝑀 + 1), as discussed in Section 2. We also compute

Δ𝑠𝑖𝑛𝑔𝑙𝑒
to be the memory time required for only load transfers or only unload transfers; based on
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Algorithm 2 Scheduler logic in Interval 𝑖

1: Determine segment 𝑆𝑖+1 (if any)
2: if a segment 𝑆𝑖 is scheduled in Interval 𝑖 then

3: 𝜏 (𝑆𝑖 ) : Move transfers from SWQ to SDQ.

4: end if

5: if a segment 𝑆𝑖−1 was scheduled in Interval
𝑖 − 1

then

6: if 𝜏 (𝑆𝑖−1) = 𝜏 (𝑆𝑖 ) then

7: 𝜏 (𝑆𝑖−1) : Send unload transfers in SDQ to GDMA.

8: 𝜏 (𝑆𝑖−1) : Send CPU→ ACC local transfers in SDQ to LDMA.

9: else

10: 𝜏 (𝑆𝑖−1) : Send unload transfers in SWQ to GDMA.

11: 𝜏 (𝑆𝑖−1) : Send CPU→ ACC local transfers in SWQ to LDMA.

12: end if

13: end if

14: if a segment 𝑆𝑖+1 is scheduled in Interval
𝑖 + 1

then

15: 𝜏 (𝑆𝑖+1) : Send load transfers in SDQ to GDMA.

16: 𝜏 (𝑆𝑖−1) : Send ACC→ ACC and ACC→ CPU local transfers in SDQ to LDMA.

17: end if

the same logic, we have Δ𝑠𝑖𝑛𝑔𝑙𝑒 = 𝜎 · (𝑀 + 1). In the rest of the analysis, we use 𝐿𝑖 to denote the sum

of the lengths of all segments of task 𝜏𝑖 ; 𝑙
𝑓 𝑖𝑟𝑠𝑡

𝑖
, 𝑙𝑙𝑎𝑠𝑡𝑖 for the lengths of its first and last segment; and

𝑙𝑙 max

𝑖 for the maximum of Δ and the length of any segment of a task with lower priority than 𝜏𝑖 .

The analysis computes an upper bound 𝑅𝑖 to the time between the release of any job of task 𝜏𝑖
(the job under analysis) and the time when its last segment starts executing. 𝑅𝑖 is computed using

the following response time iteration:

𝑅𝑖 = 𝐿𝑖 − 𝑙𝑙𝑎𝑠𝑡𝑖 + Inter𝑖 (𝑅𝑖 ) + 𝐵 𝑓 𝑖𝑟𝑠𝑡

𝑖
+ 𝑙𝑙 max

𝑖 , (2)

where: (i) 𝐿𝑖 − 𝑙𝑙𝑎𝑠𝑡𝑖 represents the time required to execute all segments of 𝜏𝑖 except the last.

(ii) Inter𝑖 (𝑅𝑖 ) =
∑𝑖−1

𝑗=1⌈𝑅𝑖/𝑇𝑗 ⌉ ·𝐿 𝑗 bounds the interference caused by higher priority tasks. (iii) 𝐵
𝑓 𝑖𝑟𝑠𝑡

𝑖
=

2 · 𝑙𝑙 max

𝑖 bounds the blocking time suffered by the first segment of either 𝜏𝑖 or a higher priority task

executed after the arrival time of the job under analysis. In the worst case, the job under analysis

arrives just after the beginning of an interval where the segment of a lower priority task executes;

then, since the segment executed in an interval is decided at the beginning of the previous interval,

another lower priority segment can execute in the following interval, resulting in a blocking time

of 2 · 𝑙𝑙 max

𝑖 . (iv) The last term 𝑙𝑙 max

𝑖 represents the blocking time suffered by segments of the job

under analysis that follow a terminal segment, which in our model is only S1. This is because S1

cannot be executed directly after S0; hence, in the worst case a segment of a lower priority task

could instead be executed in between the two segments of the job under analysis (note that this

can happen in Interval 3 in Figure 8). The value of 𝑅𝑖 can then be used to check the schedulability

of the task set. Specifically, if the last segment of 𝜏𝑖 outputs data, then such data will be unloaded

to main memory no later than 𝑙𝑒𝑛𝑑𝑖 + Δ𝑠𝑖𝑛𝑔𝑙𝑒
time after the last segment of the job under analysis

starts executing. Therefore, assuming we require such operation to complete by the deadline, the

following is a sufficient schedulability condition: ∀𝑖 = 1...𝑁 , the iteration in Equation 2 converges

to fixed point 𝑅𝑖 such that 𝑅𝑖 + 𝑙𝑒𝑛𝑑𝑖 + Δ𝑠𝑖𝑛𝑔𝑙𝑒 ≤ 𝐷𝑖 .

As noted in Section 5.1, to allow an accelerator to be used by multiple tasks, we would need to

implement a suitable locking protocols. For example, we could employ the well-known priority

ceiling protocol [21], which for non-self-suspending tasks guarantees that the maximum blocking

time is equal to the length of a single lower-priority critical section. Specifically, we propose to
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treat each accelerator as a shared resource protected by an individual mutex; to avoid deadlock in

the case a task uses multiple accelerators, we require the task to lock all employed accelerators

at the same time in a fixed order. We discuss two possible ways in which the protocol could be

implemented, depending on when the lock(s) is acquired.

Lock before executing S1; the mutex is then unlocked once the last segment finishes executing.

Since the lock is acquired after S0, the length of the critical section of a lower priority task 𝜏 𝑗 is

equal to 𝐿 𝑗 − 𝑙 𝑓 𝑖𝑟𝑠𝑡𝑗
. The blocking time 𝐵𝑙𝑜𝑐𝑘𝑖 for the job under analysis is then equal to the maximum

value of 𝐿 𝑗 − 𝑙 𝑓 𝑖𝑟𝑠𝑡𝑗
over all lower priority tasks that lock an accelerator with ceiling higher or equal

to the priority of 𝜏𝑖 . The drawback with this approach is that the job under analysis effectively

self-suspends between the execution of its segments S0 and S1; hence, a lower priority job executed

in between those segments could re-acquire a lock and again block the job under analysis. Hence,

𝜏𝑖 suffers a maximum locking-induced blocking time equal to 2 · 𝐵𝑙𝑜𝑐𝑘𝑖 .

Lock before executing S0. This ensures that no lower priority task can execute between segments

S0 and S1 of the job under analysis, hence 𝜏𝑖 can only be blocked by one critical section. In addition,

term 𝑙𝑙 max

𝑖 in Equation 2 can be replaced by Δ𝑠𝑖𝑛𝑔𝑙𝑒
, since in the worst case the interval between S0

and S1 is occupied by load transfers (see again Figure 8). However, for the same reason, in the worst

case no segment can execute between segments S0 and S1 of all other jobs; hence, the blocking

time 𝐵𝑙𝑜𝑐𝑘𝑖 must now be computed as 𝐿 𝑗 + Δ𝑠𝑖𝑛𝑔𝑙𝑒
, and similarly in the computation of 𝐼𝑛𝑡𝑒𝑟𝑖 (𝑅𝑖 ),

term 𝐿 𝑗 must be replaced with 𝐿 𝑗 + Δ𝑠𝑖𝑛𝑔𝑙𝑒
. The resulting iteration for 𝑅𝑖 is thus:

𝑅𝑖 = 𝐿𝑖 − 𝑙𝑙𝑎𝑠𝑡𝑖 +
𝑖−1∑
𝑗=1

⌈𝑅𝑖/𝑇𝑗 ⌉ ·
(
𝐿 𝑗 + Δ𝑠𝑖𝑛𝑔𝑙𝑒

)
+max

(
𝐵
𝑓 𝑖𝑟𝑠𝑡

𝑖
, 𝑙𝑙 max

𝑖 + 𝐵𝑙𝑜𝑐𝑘𝑖

)
+ Δ𝑠𝑖𝑛𝑔𝑙𝑒 . (3)

Note that the initial blocking term is now computed as the maximum of 𝐵
𝑓 𝑖𝑟𝑠𝑡

𝑖
(in case no locking-

induced blocking occurs) and 𝑙𝑙 max

𝑖 + 𝐵𝑙𝑜𝑐𝑘𝑖 : in the worst case, the job under analysis can again

arrive just after the beginning of an interval where the segment of a lower priority task executes

and segment S0 of the job causing lock-induced blocking is loaded.

6 IMPLEMENTATION
We implemented an instance of the reference platform discussed in Section 3.2 based on a Xilinx

Zynq UltraScale+ MPSoC, specifically using the ZCU102 development board. The board is based on

a XCZU9EG SoC featuring a processing system (PS) that includes all the hard logic and a block of

tightly-coupled Programmable Logic (PL) implemented with FPGA technology. Figure 9 shows a

block diagram of the platform, configured to execute the example F (𝐴, 𝐵,𝐶) = (𝐴 × 𝐵) +𝐶 task on

each core.

The PS includes a four-core ARM Cortex A53, a dual-core ARM R5, as well as a Global direct

memory access (GDMA) engine and main memory (PS DRAM). We assume that one Cortex A53

application core is dedicated to non-real-time operations. Therefore, in our instantiation we consider

𝑀 = 3 cores using the remaining A53. GDMA and local direct memory access (LDMA) engines

scheduling responsible for global/local load/unload operations is implemented in one of the R5

processors. The PL is used to implement the LDMAs, the accelerators, and all SPMs; specifically, it

includes about 3 MB of block ram (BRAM) cells that can be used to synthesize SPMs. All SPMs are

double-ported, where each port is accessed through a dedicated SRAM controller. The A53 cores

share a Last-Level Cache (LLC), but otherwise execute using code and data in their private SPMs.

The R5 core has its own local Tightly-Coupled Memory (TCM).

Multiple interfaces exist between the processing system (PS) and the PL. In our implementation,

we use two High-Performance Master (HPM) interfaces in the Full-Power Domain (FPD), namely
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HPM0 and HPM1, and a single HPM port in the Low-Power Domain (LPD), referred to as LPD

for simplicity. The LPD interface is used by the GDMA to transfer data from/to main memory

to/from any SPM implemented in the PL. Conversely, the LPD port is used for configuration

commands towards any memory-mapped PL IP, i.e., LDMAs and accelerators. It is also possible to

program the LDMA and configure the IP using the HPM port. On the PL, we employ an Advanced

eXtensible Interface (AXI) interconnection [29] to which all DMAs and SPMs are connected. Such

interconnection does not limit parallelism between GDMA and LDMA transfers since it employs a

crossbar architecture.
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Fig. 9. Block Diagram of the proposed hardware design.

Following the considered use-case, we have implemented a Matrix-Multiplication (MM_IP)

accelerator through High-Level Synthesis (HLS) and have generated an IP that provides AXI buses

to read input data from SPM and write output results. As shown in Figure 9, each MM_IP is provided

with three dual-ported SPMs, one for each data elements A, B, and O. This allows simultaneous

access to all data elements. Since double-buffering is sufficient for all data elements, each SPM

includes two buffers. Each IP has a control interface that is used for configuring and starting the IP.

In the software stack, we use the Jailhouse hypervisor to partition the shared resources [16].

Jailhouse provides cache partitioning through page coloring to the guest RTOSes running on top of

it, performs code/data relocation for the load and unload phases of the three-phase model. Coloring

results in non-contiguous physical addresses being assigned to the guest RTOSes and would

normally force accessing SPM memories with a stride. To prevent wasting already limited SPM

space, static cache bleaching [7, 19] is performed on accessed performed by the CPUs towards SPM

addresses. The API described in Section 5.1 and related scheduling techniques were implemented in

the Erika Enterprise RTOS version 3. The Erika RTOS is open-source and OSEK/VDX certified [6].

Section 7.1 shows the evaluation of the API implementation in terms of time and memory footprint.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:22 Rohan, et al.

Table 2. API OS Overhead.

API WCET (ns) Code (Bytes) AVG API WCET (ns) Code (Bytes) AVG

allocate_buffer 949 76 46.24 execute_acc 210 100 200.05

load_buffer 798 400 178.58 unload_buffer 798 400 179.03

transfer_local 798 400 178.58 dispatch 767 112 197.32

end_segment 1565 284 79.11 Streaming Wait Queue (SWQ) - 16 -

Streaming Table (ST) - 248 - Streaming Dispatch Queue (SDQ) - 16 -

7 EVALUATION
7.1 OS API Overhead
We have compiled and measured the worst-case execution times of the proposed API functions in

Erika Enterprise RTOS [6] version 3 release 55 on top of the Jailhouse hypervisor running on the

Xilinx UltraScale+ ZCU102 MPSoC platform [28]. The segmented code of the application tasks that

includes the API calls is produced following Algorithm 1. It is then compiled and linked together

with the rest of Erika RTOS using the Gcc compiler version 7.2.1 for ARM64 architecture with the

-Os flag.

Table 2 shows the obtained worst-case execution times of the proposed API functions and tables

and the respective memory footprint. Erika does not support dynamic memory allocation, so we

must statically define the number of DMA requests and consequently the queue elements that can

be added into the queues. This number was defined to be 5 per task. We also consider that each

task has a maximum of 5 streaming buffers (one streaming table entry per each buffer). At compile

time, from the segmentation, we can retrieve the exact number of DMA requests and table entries,

so this can be defined statically without compromising the system. In total, the memory footprint

of the proposed API functions and tables is around 4096 bytes.

We ran each function 1000 times on the target platform, and collected the worst-case execu-

tion time (in nanoseconds) from these repetitions. Time was measured using a timer from Erika

(osEE_aarch64_gtimer_get_ticks function). We used the obtained WCET to inflate the CPU

execution time of each benchmark in the schedulability evaluation of Section 7.3. The API overhead

has minimal impact on the schedulability ratio of the system; with respect to the results in Figure 10,

removing the overhead improves the percentage of schedulable task sets by at most 0.4%.

7.2 Benchmarking (𝐴 × 𝐵) +𝐶
For our benchmarks we chose the same (𝐴 × 𝐵) +𝐶 kernel considered throughout the paper with

matrix sizes of 64𝑥64, 80𝑥80, 96𝑥96, 112𝑥112, and 128𝑥128. To construct a comparison baseline,

we first measure the execution time of the kernel executing from the SPM on the CPU without

acceleration. Next, we compare to the case where matrix multiplicationsMM (i.e., sub-operation

𝑂 := 𝐴 × 𝐵) are performed on hardware accelerator implemented in the PL via HLS. Conversely,

matrix addition MAdd (i.e., sub-operation 𝑂 := 𝑂 + 𝐶) is always performed on the CPU. For

our CPU-only implementation of MM (baseline), we use a tiling implementation for better cache

locality since the considered matrix sizes are larger than the cache size in our platform [14]. For

our hardware accelerators, we employ the matrix multiplication IPs generated by Vivado HLS [22].

For MM, Table 3 reports the observed runtimes for transfers and computational block for both

CPU-only (Column 6) and accelerator (Column 7) implementations. We also report the total size of

input (Column 2) and output (Column 4) operands in bytes. Whereas, Column 3 (resp., Column 5)

shows the time required to move the matrices from main memory to the SPM using the GDMA

(resp., from SPM to SPM using a LDMA). To run each of these kernels, (i) in the CPU-only case all

the three matrices are loaded from main memory to the CPU’s SPM; (ii) in the CPU + accelerator
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case two matrices (𝐴, 𝐵) are loaded from main memory to the accelerator’s SPM while a third matrix

(𝐶) is loaded from main memory to the CPU’s SPM. As such, regardless of the implementation, each

time the kernel is invoked, three matrices need to be loaded from main memory. As highlighted in

green in Table 3, the time to load a single matrix with the largest size is 146.02/2 = 73.01μs. Thus
we consider a slot size 𝜎 = 3 · 73.01 = 219.03μs to be large enough to fully load all the necessary

operands using the GDMA. The whole design on the PL was synthesized to run at 300 MHz.

Table 3. Run/Transfer Time of AxB + C with different Matrix Sizes

Benchmark

Input Size

Bytes

Input Transfer

Time (μs)
Output Size

(Bytes)

Output Transfer

Time (μs)
CPU

Time (μs)
Accelerator

Time (μs)
Ratio

MM

Two (64x64) matrices

32768

LDMA = 28.98

GDMA = 38.5

16384

LDMA = 15.1

GDMA = 20.58

571.05 81.53 7.00

MAdd

Two (64x64) matrices

32768

LDMA = 28.98

GDMA = 38.5

16384

LDMA = 15.1

GDMA = 20.58

36.91 - -

MM

Two (80x80) matrices

51200

LDMA = 45.15

GDMA = 60.15

25600

LDMA = 22.58

GDMA = 30.08

1133.12 128.98 8.79

MAdd

Two (80x80) matrices

51200

LDMA = 45.15

GDMA = 60.15

25600

LDMA = 22.58

GDMA = 30.08

51.45 - -

MM

Two (96x96) matrices

73728

LDMA = 63.55

GDMA = 83.63

36864

LDMA = 31.78

GDMA = 41.82

1963.27 185.28 10.60

MAdd

Two (96x96) matrices

73728

LDMA = 63.55

GDMA = 83.63

36864

LDMA = 31.78

GDMA = 41.82

74.92 - -

MM

Two (112x112) matrices

100352

LDMA = 86.5

GDMA = 113.83

50176

LDMA = 43.25

GDMA = 56.92

3115.99 251.83 12.37

MAdd

Two (112x112) matrices

100352

LDMA = 86.5

GDMA = 113.83

50176

LDMA = 43.25

GDMA = 56.92

99.46 - -

MM

Two (128x128) matrices

131072

LDMA = 111.81

GDMA = 146.02

65536

LDMA = 56.49

GDMA = 74.34

4669.64 315.11 14.82

MAdd

Two (128x128) matrices

131072

LDMA = 111.81

GDMA = 146.02

65536

LDMA = 56.49

GDMA = 74.34

142.98 - -

7.3 Schedulability
Finally, we evaluate the improvements in terms of schedulability by executing the discussed AxB

+ C kernel on either the CPU only (cpu in Figures 10-12, using the same approach as in [23]), or

on the CPU + Accelerator (acc). In both cases, schedulability is assessed using the test in [23],

as discussed in Section 5.4, considering the task set allocated on one application core. As in the

example in Section 4, we assume that the kernel is repeated 4 times.

For a given system utilization 𝑈 (𝑥-axis), we randomly generate 10,000 synthetic task sets as

follows: first, we pick the number of tasks in the task set in the range [5, 15]. Each task is randomly

assigned to one of the matrix sizes (from 64x64 to 128x128) in Table 3. Then, we uniformly generate

the utilization 𝑢𝑖 of each task in the task set [1], such that the sum of the tasks’ utilizations is equal

to 𝑈 . Finally, each task is assigned a period 𝑇𝑖 = 𝑒𝑖/𝑢𝑖 , where 𝑒𝑖 is the sum of the execution times

of all segments of the task when running on the CPU only. We define the utilization based on

the execution time of segments, and not their length as used in the analysis, because the segment

length depends on the memory time Δ, while the execution time is independent of such parameter

and thus allows us to better compare schedulability when varying the transfer times based on the

DMA speed.

Figure 10 shows the results for the ratio of schedulable task sets for both cpu and acc runs as we
increase the system utilization, using the transfer times in Table 3. To evaluate multiple mixes of

applications, we configure task generation to consider all the possible sizes measured in Table 3

(case "64–128") or only a subset of them, e.g. only matrices with sizes 96x96 through 128x128 for

the curve labeled as "96–128". Following our implementation in Section 6, we consider a system
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with𝑀 = 3 application cores, and for simplicity we assume that the same slot size 𝜎 = 219.03μs is
used for all cores. This results in a value Δ = 𝜎 · (2𝑀 − 1) = 1.533ms. We observe that schedulability

for cpu improves when we consider only the larger matrix sizes. This is because for sizes 64x64 and

80x80, the CPU-only execution time is smaller than the value of Δ, meaning that such benchmarks

are memory-bound rather than compute-bound. The improvement is even more significant in the

case of acc, since here, all 5 benchmarks are memory-bound. Note that for certain utilization ranges

and when all benchmarks are considered, acc actually performs worse than cpu. This is expected,
as the number of segments is greater for the CPU + accelerator case compared to the CPU-only

case (7 vs. 5); hence, when the benchmark is memory-bound, the sum of segment lengths under acc
is larger than that under cpu.
In summary, the results in Figure 10 indicate that the considered ZCU102 platform does not

provide sufficient memory throughput to support the bandwidth-hungry accelerators. Indeed, note

that the GDMA transfer time for the largest size matrix in Table 3 equates to a throughput of only

897 MB/s, which is much lower than the theoretical DRAM bandwidth of 19.2 GB/s. We conducted

a brief investigation into the issue. Our understanding is that the platform enacts throttling of

memory transactions that cross the HPM ports between the PS and the PL. At the time of writing,

we are not aware of an existing workaround for this problem.

The unexpectedly low PS-PL bandwidth appears to be a quirk of the considered platform.

To have a more general idea of the potential of the proposed framework, we investigate the

expected schedulability ratio in future platforms, such as the Xilinx Versal [30], where a better

DMA throughput can be achieved. In this architecture, two to four memory controllers are directly

connected to the PL fabric though a hardened Network-on-Chip (NoC); each NoC port supports

16 GB/s throughput, and the PL has access to multiple ports.
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Fig. 10. Schedulable task sets for CPU only and CPU + Accelerator varying the matrix size

Figures 11 and 12 show the ratio of schedulable task sets as we vary the DMA throughput for

cpu and acc, respectively. We consider all 5 matrix sizes in Table 3. Transfer times, and thus the

value of Δ, are computed by dividing the data size by the specified throughput. We also show the

theoretical infinite case where memory operations take zero time. Under this setting, acc supports
50% schedulability ratio for utilizations as high as 7.2, versus 0.8 for cpu, a 9x increase.
Finally, in Figure 13, the no locking case corresponds to the same scenario as in Figure 12 for a

DMA throughput of 16 GB/s, equivalent to one NoC port in Versal. Lock before S1 and lock before S0
correspond to the case where a single matrix multiplication IP is shared among all tasks, and one

of the two locking schemes discussed in Section 5.4 is employed. As intuitively expected, locking
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Fig. 11. Schedulable task sets for CPU only as a function of utilization, varying DMA throughput
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Fig. 12. Schedulable task sets for CPU + Accelerator as a function of utilization, varying DMA throughput
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Fig. 13. Schedulable task sets for CPU + Accelerator as a function of utilization, 16 GB/s DMA throughput

before segment S0 leads to better results for the generated task sets, because it ensures that each

job under analysis can suffer lock-induced blocking only once. Here, lock before S1 supports 50%

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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schedulability ratio for utilizations up to 5.25, versus 6.35 for no locking, a 17% decrease, in exchange

for saving FPGA area by sharing a single accelerator.

8 CONCLUSION AND FUTUREWORK
The framework proposed in this paper allows streaming of segments of tasks on CPU only or CPU

+ accelerators, depending on the nature of the task. This approach maximizes the use of hardware

resources while maintaining predictability. The paper demonstrates that by breaking tasks into

multiple CPUs and accelerators segments, both predictability and performance can be improved.

Furthermore, the framework provides developers with a way to analyze the performance gain

achieved by using accelerators. Overall, the proposed co-design framework provides developers

with a way to optimize the performance and predictability of their systems by using a combination

of CPUs and accelerators.
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