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ABSTRACT
The Avionic Full-Duplex Switched Ethernet (AFDX) is a
data network certified for avionic operations. AFDX closely
follows the IEEE 802.3 (Ethernet) standard for packet for-
warding. On top of that, bandwidth enforcement using traf-
fic shaping is performed to provide deterministic delivery
guarantees. The design of an AFDX network, however, im-
poses that bandwidth enforcement is performed at a coarse
granularity. This, together with the tight requirements on
transmission jitter, determines a low utilization of the phys-
ical links.

In this work, we propose traffic phase shifting (TPS) as a
way to increase the granularity of bandwidth assignment to
nodes of an AFDX network using logic time synchronization
among traffic sources. Specifically, we leverage the periodic
nature of real-time traffic and use phase-shifing to prevent
link congestion. This in turns allows a more fine-grained
bandwidth control via the AFDX protocol. We show that
TPS leads to significant improvements in terms of per-link
utilization without violating predictability.

1. INTRODUCTION
Modern aircraft are becoming increasingly complex both
in terms of on-board deployed hardware and from a soft-
ware perspective. Avionic systems are comprised of pro-
cessing units, sensors and actuators (end-systems) that are
deployed across the aircraft body and communicate over a
reliable network. From a networking perspective the growth
in complexity is both horizontal, as a higher number of inter-
connected end-systems become part of the avionic network,
and vertical, as end-systems transmit higher volumes of data
across the network.

The emerging bandwidth requirements, together with the
need for deterministic delivery guarantees have determined
the adoption of Avionic Full-Duplex Switched Ethernet (a.k.a.
AFDX) [10]. AFDX is capable of sustaining a bandwidth
that is three orders of magnitude higher than older avionic
network standards [9, 1]. AFDX reuses a consolidated packet
switching technology by conforming to IEEE 802.3 (Ether-
net). On top of that, full redundancy and per-flow band-
width control is enforced to ensure time predictability, de-
livery guarantees and fault tolerance.

Thanks to the additional traffic regulation mechanisms, AFDX
is able to provide hard real-time guarantees as long as the
network is operated below its saturation point. As such,
the AFDX network specification imposes strict configura-
tion constraints to prevent: a) overloading of network nodes
which may lead to packet drop and b) excessive packet queu-
ing time which may result in unacceptable transmission jit-
ter. However, these constraints heavily impact the achiev-
able channel utilization and thereby negatively affect the
number of end-systems that can be configured on the net-
work.

In this work, we propose a technique that exploits traffic
phase shifting and buffering (TPS) to significantly improve
channel utilization in AFDX networks, while ensuring deter-
ministic packet delivery guarantees. Specifically, TPS allows
different traffic flows that have a bursty periodic behavior
to be aggregated by time-shifting their packet release time.
As such, a) uncertainty about packet arrival at the AFDX
switches is reduced, and b) the granularity of bandwidth as-
signment is increased. These two properties allow for smaller
queues to be necessary at AFDX switches, while lowering the
bandwidth waste. TPS can be implemented in software by
exploiting time synchronization among traffic sources and
without modifying neither the underlying protocol nor the
AFDX switch hardware.

In summary, this work makes the following contributions:

• Propose TPS as a novel technique to increase the num-
ber of configurable network flows in an AFDX network
through traffic aggregation;

• Demonstrate that the proposed technique increases the
achievable network bandwidth while decreasing packet
backlog at the AFDX switches;

• Demonstrate that strict delivery guarantees are met
when TPS is used to perform traffic aggregation.

The rest of the paper is organized as follows. Section 2
provides an overview of the related work. Background in-
formation about AFDX networks is provided in Section 3,
while Section 4 introduces the terminology used in this pa-
per as well as the assumptions made to describe TPS. Next,
Section 5 analyzes bandwidth usage in AFDX and describes
the main properties of TPS. A heuristic algorithm to per-
form flow aggregation using TPS is presented in Section 6,
while a simulation-based evaluation of TPS is provided in
Section 7. Finally, the paper concludes in Section 8.

2. RELATED WORK
AFDX has become a commonly used network solution in
avionics systems due to its performance and standardized
design. This has resulted in many investigations and ex-
periments seeking to improve analysis and performance of
AFDX. Charara et al. [6] provided a proof of AFDX deliv-
ery guarantees and performed an extensive study to bound
AFDX end-to-end delay. This ensures the robustness and
timing of AFDX. By optimizing flow priorities, [11] proved
tighter bounds on the latency of flows and the queue size of
network nodes.

The work in [15] uses frame insertion to improve the de-
terminism of frame arrival. To decrease network load due
to frame insertion, a Sub-Virtual-Link (Sub-VL) aggrega-
tion technique was introduced. While this technique shows
some similarities with our approach, it remains profoundly
different from the proposed TPS. In fact, it relies on round-
robin multiplexing of Sub-VL packets to aggregate different



virtual-links. Conversely, the proposed TPS enforces a de-
terministic packet scheduling at the sources by restricting
packet emission times within specific conflict-free windows.
This way, packets from different flows can be aggregated
within the same virtual-link, realizing both bandwidth uti-
lization improvements and reducing packet backlog at the
AFDX switches.

By investigating the design of VLs, [2] proposed methods of
saving the valuable bandwidth of an AFDX network. The
first method involves computing the optimal Bandwidth Al-
location Gap and Maximum Frame Size for a given network
flow. The second method provides an algorithm for aggre-
gating messages into so called “super-messages.” The final
method is concerned with optimizing the problem of routing
VLs through the network.

Through the implementation of various strategies, [4] im-
proved the bandwidth that can be utilized by flows in sys-
tems composed of multiple networks. The first strategy
involved placing a Remote Data Concentrator (RDC) be-
tween a CAN bus and the AFDX network to implement
frame packing, which reduced AFDX bandwidth utilization
of streams from the CAN bus to the AFDX network. The
second strategy added Hierarchical Traffic Shaping to the
RDC to improve the performance of the CAN bus for streams
from the AFDX network to the CAN bus. Work has even
been done to improve the interconnection of AFDX with
other network architectures used in avionics systems [3]. It
is worth noting that many of these works have used Network
Calculus [14] as a framework for analysis.

Our work features some similarities with stream desynchro-
nization, also known as offset optimization. These tech-
niques represent industry practices applied to CAN networks
to improve the worst-case response time (WCRT) of periodic
data frames by assigning offsets to the transmission of pe-
riodic network flows. Methods to analyze WCRT of CAN
frames with offset relationships have been analyzed in [12,
21]. Although the proposed TPS performs offset assignment
to periodic flows, the mentioned techniques are profoundly
different in terms of applicability and goals. First, phase
shifting in TPS is used to aggregate traffic flows within
the same virtual-link in order to increase bandwidth utiliza-
tion while providing deterministic delivery guarantees. Con-
versely, the works on CAN focus on WCRT minimization
which represents a secondary objective in AFDX networks.
Second, due to significant dissimilarities in the nature of the
networks (e.g. broadcast vs. switched, priority-based vs.
bandwidth-regulated), different analysis methodologies are
required to derive conclusions about traffic behavior.

This work introduces TPS: a novel technique to improve
bandwidth utilization in AFDX using traffic phase shifting
and buffering. To the best of our knowledge, this is the
first work that explores the possibility to aggregate multiple
compatible flows over the same VL by enforcing strict packet
scheduling at the sources. We demonstrate that, apart from
achieving better bandwidth utilization, TPS reduces packet
backlog at the switches while providing deterministic deliv-
ery guarantees.

3. BACKGROUND
The evolution in the design process of modern aircraft has
determined that increasingly more electronic devices are in
control of critical functionalities, often replacing old me-
chanic, hydraulic, and pneumatic systems. For example, the
electronic fly-by-wire [7] system initially introduced on the
Enterprise space shuttle in 1977 became part of the standard
equipment of the Airbus A320 in 1988. Such equipment is
now the only control system in most of the recently produced
civil and military aircraft. Digital control systems have of-
ten been coupled with high-resolution sensors deployed all
over the aircraft body. As a result, the capability of moving
a large amount of data across an aircraft in an efficient and
reliable way has become a fundamental design constraint for
avionic systems.

These needs led to the development of the Avionics Full-

Figure 1: Overview of AFDX network compo-
nents [5].

Duplex Switched Ethernet (AFDX) [10] whose electrical and
protocol specifications are defined in the two standards: AR-
INC 664 [10] and IEEE 802.3 (Ethernet), respectively. In its
simplest formulation, the AFDX specification builds upon a
standard Ethernet network by adding explicit traffic band-
width enforcement and redundancy. Being based on the well
established Ethernet standard has determined two main ad-
vantages. First, by leveraging on a consolidated technology
base, it is able to deliver a bandwidth that is three orders
of magnitude higher than previous solutions, such as the
ARINC 429 [9] and the MIL-STD-1533 [1] bus. Second, by
reusing well understood packet switching strategies, it allows
a faster design-to-production cycle.

Figure 1 provides an overview of the elements in an AFDX
network. From the figure, it can be noted that legacy pro-
cessing units can be used to perform control, sampling, and
processing of sensor and actuation data. If the produced/re-
quired data need to be transferred to/from the AFDX net-
work, the traffic source/destination is paired with an AFDX
end system. The main purpose of the end system is to per-
form AFDX encapsulation of outgoing traffic and to unen-
capsulate incoming traffic. Next, the AFDX interconnect is
responsible for routing and packet delivery between groups
of end systems. A gateway, paired with an end system, can
also be added for Internet connectivity.

What sets AFDX apart from the underlying Ethernet stan-
dards and makes it suitable for avionics operations is the
mechanism of virtual links (VL). A virtual link is an abstrac-
tion provided by AFDX that allows the definition of stati-
cally routed, unidirectional data flows from a given source to
a group of destination hosts (multi-cast). The mechanism of
VLs allows aggregating and dispatching different data flows
on the same physical channel, while at the same time en-
forcing explicit bandwidth control. The goal is to provide
deterministic packet delivery guarantees. At the edge of each
end system, a static configuration groups the traffic gener-
ated by different applications into virtual links. Similarly,
at the AFDX interconnect, each VL is statically configured
to be directed toward a given number of hosts. As a result,
the traffic generated by an application will be encapsulated
inside a given VL and routed to the configured destinations.

In order to perform per-VL routing, each AFDX end system
produces Ethernet frames in which the 48-bit destination
field is structured in the following way: the most significant
24 bits contain an AFDX-specific constant; while the least
significant bits carry a unique identification number for the
VL (the VL ID). Each VL is subject to differential band-
width control on each AFDX link. This allows partitioning
of the physical channel in order to isolate transmissions be-
longing to different VLs. Bandwidth control is performed
by enforcing a minimum inter-spacing (BAG) in the trans-
mission of any two packets belonging to the same VL [10].
This operation is known in Network Calculus as traffic shap-
ing [14]. As shown in Figure 2b, an AFDX switch considers
the instant of transmission of the first byte of a packet as the
beginning and the end of a bandwidth allocation gap (BAG).
In order to perform bandwidth control, two parameters are
statically assigned to each VL:

1. Bandwidth Allocation Gap (BAG): minimal inter-



spacing time of two packets belonging to the same VL

2. Maximum Length (Lmax): maximum size in bytes
for a packet transmitted on the considered VL

The BAG parameter specifies the minimal interval of time
I that must elapse between the transmission of two AFDX
frames on the same VL. According to the AFDX standard [10],
the BAG is a 3 bits field whose content BAG is interpreted
as:

I = 2BAG ms (1)

Possible BAG values for a given VL range from 1 ms to
128 ms with power-of-two increments. From Equation 1,
it follows that a VL with a given BAG parameter will be
allowed to forward one packet every I ms on the AFDX
interconnect. The achievable bandwidth b of the VL can be
calculated once the second parameter, Lmax, is known for
the VL. Equation 2 can be used to calculate the achievable
bandwidth given the maximum size of a packet Lmax and
the assigned BAG.

b =
8 · 103 · Lmax

I
b/s (2)

Thanks to the incorporated bandwidth control mechanism,
an AFDX network is capable of enforcing a strict periodic-
ity over packets of the same VL. However packets belonging
to different VLs need to be multiplexed on the same phys-
ical line. Thereby, if the switch is currently transmitting a
packet for VL A, a ready packet from VL B is queued and
delayed even if IB ms have elapsed from the last transmit-
ted packet of VL B. As a result, potentially unpredictable
jitter could be accumulated when packets traverse AFDX
switches. According to the specification [10], an AFDX net-
work must be designed so that packets do not experience
more than a maximum amount of jitter Jmax = 500µs.

Finally, AFDX networks use traditional IEEE 802.3 (Eth-
ernet) physical links. However, the maximum bandwidth
BWmax of currently certified and implemented solutions is
equal to 100 Mb/s (i.e. IEEE 802.3 100BASE-TX).

4. TERMINOLOGY AND ASSUMPTIONS
Our solution allows the aggregation of compatible network
flows while preserving deterministic delivery guarantees on
the generated traffic. This can be done by performing traf-
fic phase-shifting (TPS) and buffering of packets. In other
words, we allow two or more traffic flows to appear as a sin-
gle VL to the AFDX switch, while TPS ensures that pack-
ets originated at the sources of the aggregated flows will not
reach the switch at the same time. Aggregation of several
flows in the same VL does not require additional support at
the switch level since AFDX natively supports packet multi-
casting.

Specifically, we show how TPS can be used to aggregate
multiple network flows that are characterized by bursty pe-
riodic traffic. The described technique: a) allows the allo-
cation of bandwidth that would remain unused in standard
AFDX configurations; and b) ensures deterministic delivery
and timing guarantees. This work describes how TPS can
be applied at the level of a single AFDX switch, i.e. focusing
on a single-hop AFDX network topology. While we restrict
the description of TPS on single-hop topologies, we believe
that our technique can also be extended to work on multi-
hop topologies. However, this aspect is currently out of the
scope of this work and we plan to investigate how TPS can
be extended on more complex topologies as a part of our
future work.

In order to capture the behavior of bursty periodic traffic,
we adopt a traffic model where each network flow has the
following characteristics: a) it generates at most s packets
exactly every T time units; and b) there exists a constant C
such that all the s packets are emitted before C within each
period T , given that C ≤ T . An example of bursty periodic
flow is depicted in Figure 2a. This formulation is rather

Figure 2: Bandwidth regulation for a bursty peri-
odic flow (a) crossing an AFDX switch. Both out-
puts from the switch without TPS (b) and with TPS
buffering (c) are shown.

generic and can be applied to a number of network elements
and sensors that produce their output in bursty sequences
of packets inter-spaced by the device-specific computation
(or sampling) time.

As we detail in Section 5, the proposed TPS modifies a given
network flow in two ways. First, it shifts the beginning of
the first period by a given amount φ such that 0 ≤ φ ≤ T . In
other words, TPS can modify the phase of a periodic network
flow. Second, within each period, it can buffer and delay at
the sources all the s packets of the considered flow for an
amount of time B, where C ≤ B ≤ T . Figure 2c depicts the
effects of TPS controlled buffering on packet transmission.

Since network flows are configured according to the VL ab-
straction, each flow is also assigned a value of BAG I when
configured on the AFDX network. Thus, we can write a flow
F as a 6-tuple of the form: F = {T, s, C, I, φ,B}. However
we use the simplified notation F = {T, s, C, I} whenever the
parameters φ and B are not used and equal to 0. We use
SF to indicate the set of all flows configured on the network,
while NF = |SF | represents the total number of configured
flows.

We assume that intermediate logic is placed between the
traffic sources and the AFDX switch, and that time synchro-
nization at a coarse granularity is maintained throughout the
system lifetime. Both assumptions can be easily satisfied in
real systems, considering two main aspects. First, AFDX
networks already require additional logic at the sources to
correctly encapsulate traffic1. Second, many avionic sys-
tems already require time-synchronization to achieve logi-
cal correctness. In fact, solutions such as PALS [17] and
TTA [13] achieve time-triggered logical synchronization in a
system of distributed nodes communicating over a reliable
network [19].

Note that the VL mechanism used by AFDX not only allows
per-flow bandwidth control, but it also provides a layer of
temporal isolation among flows. When TPS is used to aggre-
gate different flows together, we show that delivery guaran-
tees are ensured, as long as the behavior of the aggregated
flows reflects the design-time parameters. Notice that, to
make an AFDX network that uses TPS robust against flow
misbehavior, it is fundamental that the additional logic at
each source discards any packet violating the design-time
parameters.

1The ARINC 655 standard [8] introduces Remote Data Con-
centrators (RDC). RDCs are devices designed to aggregate
traffic from clustered sources connected to the AFDX net-
work and to perform proper packet encapsulation/unencap-
sulation.



Figure 3: NF as a function of Lmax (left y-axis), and
maximum achievable channel utilization as a func-
tion of Lmax (right y-axis).

5. TPS TO IMPROVE UTILIZATION
In this section, we identify the characteristics of network
traffic that lead to suboptimal channel utilization due to
the described AFDX mechanisms. Next we detail our solu-
tion, where traffic sources are clustered together providing
an increased amount of achievable bandwidth utilization.
At the same time, phase-shifting is exploited to decrease
unregulated packet queuing, ultimately preventing network
congestion.

5.1 Underutilized Bandwidth in AFDX
As mentioned in Section 3, the maximum bandwidth of the
physical medium in AFDX networks is BWmax = 100 Mb/s.
Moreover, since AFDX frames follow IEEE 802.3 encapsu-
lation, each packet is transmitted after a preamble of Pre =
4 bytes and is followed by an inter-frame sequence of Ifs =
12 bytes.

Due to the way bandwidth is enforced at the level of VL, it
follows that there exist an upper bound on the number of
VLs that can be configured on an AFDX network to ensure
deterministic packet delivery guarantees. Let us assume for
sake of simplicity that all the flows in SF have the same value
of Lmax and need to be configured with the minimum value
of BAG I = 1 ms. Under these assumptions, the maximum
number NF of different flows/VLs configurable on a AFDX
switch while ensuring deterministic delivery guarantees can
be calculated according to Equation 3.

Nbw
F =

⌊
10−3 ·BWmax

8 · (Pre+ Ifs+ Lmax)

⌋
(3)

On the other hand, the constraint on the maximum jitter
Jmax = 500µs imposes an additional constraint on the num-
ber of configurable VLs. Specifically, the jitter J caused by
queuing time at the switch can be calculated according to
Equation 4, while the resulting constraint on the number of
configurable VLs can be obtained using Equation 5.

J =
8 ·
∑NF−1
j=1 (Pre+ Ifs+ Lmaxj )

BWmax
µs ≤ Jmax (4)

N jitter =

⌊
0.5 · 10−3 ·BWmax

8 · (Pre+ Ifs+ Lmax)

⌋
+ 1 (5)

The plot in Figure 3 depicts how the number of configurable
1 ms BAG VLs varies as a function of Lmax, subject to
both bandwidth and jitter constraints. It emerges from the
plot and the mentioned equations that: a) the constraint on

Figure 4: Possible feasible configurations of AFDX
VLs when N jitter

F = 3

the jitter is always stricter than the bandwidth constraint;
and b) the number of configurable VLs rapidly decreases
as the maximum packet size increases. In the worst case,
with devices that generate packets of maximum allowed size
(1500 bytes), only 4 VLs with BAG equal to 1 ms can be
configured.

Consequently, meeting both bandwidth and jitter constraints
negatively impacts the achievable utilization of the AFDX
network. The dotted line in Figure 3 depicts the trend of
the maximum channel utilization that can be achieved un-
der the discussed constrains. From the picture, it can be
noted that it ranges from 40% when Lmax = 80 bytes to
49% when Lmax = 1500 bytes.

The maximum number of configurable VLs with 1 ms BAG
calculated in Equation 5 can also be interpreted as the num-
ber of slots available for the transmission of packets at the
highest achievable bandwidth. In fact, when NF > N jitter

F
VLs are configured, a total of NF packets can be queued for
transmission at the switch at the same time, leading to a
violation of the jitter constraint.

Note that even if all the VLs are configured with the max-
imum BAG of 128 ms, still no more than N jitter

F flows can
be configured on the network if no constraint is enforced on
their arrival time. Conversely, if additional knowledge about
packet arrival time is exploited, it is possible to produce ad-
ditional feasible configurations. For example, the AFDX
network could be configured to have (N jitter

F − 1) VLs with

1 ms BAG and 2 VLs of 2 ms BAG; or (N jitter
F − 2) 1 ms

BAG VLs, two 2 ms BAG VLs and four 4 ms BAG VLs, and
so on. Figure 4 describes these three possible configurations
when N jitter

F = 3.

5.2 BAG for Bursty Periodic Traffic
Given a generic flow F with the characteristics described in
Section 4, we now study how the BAG parameter can be
configured to meet delivery constraints.

Recall that AFDX considers the first bit of a packet as the
beginning and end of a bandwidth allocation gap (see Fig-
ure 2). It must always hold that within each period T , the
last of the s packets is transmitted no later than the end of
the period. This is fundamental to prevent the queue at the
AFDX switch from growing indefinitely. In order to assign
a value of I to a flow, we consider a single period T . Next,

we calculate the time P̂ from the beginning of the period at
which the last of the s packets will start being transmitted.



P̂ = max(C, I) + Jmax + I · (s− 1) (6)

The equation captures that s packets can be emitted by the
source at exactly C. If I is entirely contained inside C, the
first packet can start right after C and be queued for at
most Jmax. Otherwise, in the worst case, a packet of the
previous period was transmitted exactly at the end of the
period. Thus, AFDX will allow the first transmission for the
current period only at I + Jmax. Finally, since packets are
inter-spaced by I, a total of I · (s − 1) ms are required to
start the transmission of the last packet. However, for sake
of simplicity and without loss of generality, we will assume
in the rest of the paper that C ≥ I.

It follows that each flow must respect the constraint: P̂ ≤ T .
This constraint ensures that a finite amount of backlog is
present at the AFDX switch. Thereby, we can write:

P̂ = C + Jmax + I · (s− 1) ≤ T (7)

⇒ T − C ≥ I · s− I + Jmax (8)

since −I + Jmax < 0:

⇒ T − C ≥ I · s (9)

Thus, T − C ≥ I · s represents a sufficient condition for
flow feasibility. Note that this condition does not necessarily
mean that the traffic will be delivered on time from the point
of view of the application.

Let us consider a generic stream F = {T, s, C, I}. The
stream F needs to be configured on the AFDX network to
have a given BAG I. Given the values of s, T , and C it is
possible to derive the largest value of BAG Iideal (i.e. the
lowest bandwidth) that can be assigned to the flow while
satisfying the delivery constraints:

Iideal =

⌊
T − C
s

⌋
(10)

However, AFDX nodes can only express 8 values of BAG
ranging from 1 to 128 in power-of-two increments. Thereby,
the bandwidth allocation gap IAFDX under traditional AFDX
will be assigned as:

IAFDX = 2blog2
T−C

s
c (11)

To understand how the difference in granularity impacts
the bandwidth utilization, let us perform numeric consider-
ations. Suppose that a given flow FA is periodic every TA =
80 ms, releasing sA = 8 packets no later than CA = 17 every
period. In this case, an IidealA = 7 ms would be sufficient to
correctly deliver packets to destination. Under AFDX, how-
ever, the largest configurable BAG is IAFDXA = 4 ms. Un-
der this latter assignment, the last packet of each sequence is
transmitted no later than CA+IAFDXA ·(sA+1) = 53 ms, i.e.
27 ms before the end of the period. Every TA, The remain-
ing 6 slots with 4 ms BAG remain unutilized and cannot be
assigned to a different VL.

In other words, the difference between Equation 10 and
Equation 11 reveals an intrinsic waste of resources in the
way AFDX is capable of handling periodic bursty traffic.
This, in addition to the dimensioning constraints discussed
in Section 5.1, further reduces the achievable channel uti-
lization.

5.3 Key insight
To understand how TPS can be used to aggregate multiple
periodic flows, consider Figure 5. In the plot, we analyze two
periodic flows FA and FB . The first flow FA has parameters
FA = {TA = 7, sA = 2, CA = 1, IA = 2}, while FB = {TB =
7, sB = 1, CB = 1, IB = 4}. From Equation 10 we have that
BAGs of IA = 3 ms and IB = 6 ms respectively would be

enough to multiplex the flows, but in AFDX BAGs of 2 ms
and 4 ms need to be assigned (see Equation 11) instead.

Figure 5a illustrates the case of traditional AFDX assign-
ment where wasted packet slots are marked as “e” (empty).
Unused resources can be allocated if phase-shifting with
buffering at the sources is enforced so to allocate both the
flows using only one single 2 ms slot. Specifically, Figure 5b
shows how: a) buffering can be used to defer the arrival of
packets, and b) phase-shifting on the period of the traffic
flows can be used to prevent congestion from hitting the
channel. By doing so, packets in flows A and B are regu-
lated at a higher level, allowing them to both be configured
with a shared 2 ms BAG slot. This in turn frees slots for
additional traffic, whose packets are marked as “2” in the
figure.

TPS can be used in two ways. First, as shown in Figure 5,
the unused packet slots in a “master” flow are used to aggre-
gate one or more “slave” flows. In this case, the I parameter
of the master flow is left unchanged. A second possibility
consists in assigning a smaller value I of BAG to the mas-
ter flow. The result is a compression of the time needed to
dispatch the flow packets within the period. Consequently,
a larger number of empty slots are freed and made available
for additional slave flows.

For instance, consider the master flow FA = {sA = 8, TA =
80, CA = 17, IA}. FA requires to be configured with IA ≤
4 ms. When IA = 4 ms, no more than 3 slave flows with
same parameters could be aggregated. However, if a BAG of
IA = 1 ms is assigned instead, the transmission of the flow
packets can be buffered and postponed with TPS to occupy
1/10 of the 80 ms period. Therefore, 9 additional slave flows
with same parameters can be aggregated. In other words,
the number of VLs that can be additionally multiplexed can
be significantly increased by efficiently utilizing a single 1 ms
slot.

As we show in the following section, the benefit of the pro-
posed technique is twofold: a) reduction in the bandwidth
waste originating from the low granularity of BAG values
configurable in AFDX; b) reduction in the size of buffers re-
quired at the switch, i.e. AFDX node backlog. As we discuss
in Section 5.5, different flows can be aggregated if they sat-
isfy compatibility requirements. Nonetheless, a good design
practice is to aggregate flows that have the same criticality
level.

Given a set of flows and the discussed constraints, the prob-
lem of assigning values of φ and B to compatible flows in
order to perform aggregation can be formulated as an op-
timization problem. A heuristic algorithm to perform flow
aggregation is provided and described in Section 6.

5.4 AFDX model
To perform the analysis of our system and introduce the
proposed solution, we base our model on the Network Cal-
culus framework [14] and use some of the results obtained for
its extension to real-time systems, namely Real-Time Cal-
culus [20]. This mathematical framework has been used to
model a wide range of network nodes and traffic scenarios
and well fits our problem domain.

In Network Calculus, a flow of incoming packets can be seen
as a trace of events R(t), counting how many packets have
arrived at the server, an AFDX switch in our case, at time
t. Since reasoning for all the possible traces of a system
is infeasible, it is possible to reason about the bounds on
the number of packets that can reach the server in a time
window of length t. This takes the name of arrival curve
α(t) = {αu(t), αl(t)}. Where αu(t) represents the upper
bound on the number of emitted packets during an interval
of length t, while the lower bound is represented by αl(t).
Formally, it is said that α(t) is an arrival curve for a given
flow if and only if for any given flow trace R(t) it holds that:

∀s ≤ t : αl(t− s) ≤ R(t)−R(s) ≤ αu(t− s) (12)



Figure 5: Buffering and traffic phase shifting can be used to enforce BAG slot sharing on flows (b) compared
to traditional AFDX BAG assignment with waste of resources (a).

Similarly to the definition of arrival curve, the number of
packets that are processed/forwarded by a server in any
given time interval of length t takes the name of service
curve β(t) = {βu(t), βl(t)}. Given a backlogged traffic flow,
the modeled server will process a maximum of βu(t) packets
and a minimum of βl(u) packets during a time window of
length t. As in Real-Time Calculus, we will only consider
strict service curves.

In this framework, a periodic traffic flow as described at
the beginning of the section can be modeled with a stepped
arrival curve of the form:

αusrc(t) = s
⌈ t
T

⌉
αlsrc(t) = s

⌊ t+ T − C
T

⌋ (13)

In order to model the AFDX switch, we consider the time
at which the first bit of each packet is transmitted, which
corresponds to the beginning/end of the bandwidth alloca-
tion gap. Thus, a switch operating according to traditional
AFDX with negligible processing delay, will offer to a flow
configured with a BAG equal to I a service curve of the
form:

βuAFDX(t) =
⌈ t
I

⌉
βlAFDX(t) =

⌊ t
I

⌋ (14)

Consider a flow F with parameters F = {T = 80, s = 8, C =
17, I}. The plot in Figure 6 depicts the upper, lower bound
and a possible trace for such periodic flow. The highlighted
region between the αu(t) and αl(t) is the region in which a
trace for the flow can be contained.

5.5 Theoretical results
By performing phase-shifting and buffering of packets at the
sources, we effectively transform the original arrival curve of
the periodic flow (see Figure 6) into a new arrival curve with
the following characteristics:

1. packets are released at the latest instant of time inside
each flow period that guarantees a full delivery before
the expiration of the period using the assigned BAG;

2. flows that are aggregated on the same slot are shifted
with respect to each other so that any two packets from
two different flows are never emitted at the same time.

Figure 6: Upper, lower arrival curve and possible
trace for periodic flow F = {T = 80, s = 8, C = 17, I}.

In order to derive the new resulting arrival curve, we assign
two additional parameters for each considered flow: φ and
B. As mentioned in Section 4, φ represents the amount
of shifting within the period of a flow, while B represents
the instant of time within T at which buffered packets are
released to the switch. The parameters need to satisfy the
following constraints:

1. φ < T since a flow cannot be shifted more than an
entire period T ;

2. B ≥ C since non-arrived packets cannot be buffered
and thus released;

3. T − B ≥ I · s to make sure that once the packets are
released, there is enough time to transmit them with
a BAG I.

Moreover, for a set of aggregated flows with BAG I and
period T where F0 is the master flow and F1, . . . , Fn are the
slave flows, it must hold that:

1. φ0 = 0 since the master flow is never shifted;

2. Bi = T − I · si to always ensure the transmission of
packets from a given flow;



Figure 7: βlbuf (t) and βlbuf +AFDX flows FA = {TA =
80, sA = 8, CA = 1, φA = 0, BA = 72} and FB = {TB =
80, sB = 8, CB = 1, φB = 8, BB = 72}.

3. φi = φi−1 + I · si to deconflict arrival time of packets
from aggregated flows;

4. I ·
∑n
i=0 si ≤ T to ensure enough time for the trans-

mission of all the packets from the aggregated flows.

The effect of phase shifting and buffering can be modeled as
a service node that introduces a maximum processing delay
of φ+B, i.e. featuring a lower service curve of the form:

βlbuf (t) = s
⌈ t− φ−B

T

⌉
(15)

Thus, it is possible to chain the effects of buffer and AFDX
switch by calculating: βlbuf+AFDX = βlbuf ⊗ βlAFDX . The
result is provided in Equation 16.

βlbuf+AFDX(t) = βlbuf ⊗ βlAFDX =

s
⌊ t− φ

T

⌋
+
[
bt−φc−T

⌊ t− φ
T

⌋
−r
]
·
[⌈ t− φ−B

T

⌉
−
⌊ t− φ

T

⌋]
(16)

Figure 7 depicts βlbuf (t) and βlbuf+AFDX for two flows FA
and FB of parameters sA = sB = 8 packets, TA = TB =
80 ms, IA = IB = 1 ms, φA = 0, φB = 8 ms and BA =
BB = 72 ms. The value of B is selected by meeting the con-
straint B = T − I · s. Some important features can be high-
lighted. First, the region in which packets can be emitted to
the channel is significantly reduced thanks to the controlled
buffering that moves their arrival toward the end of each pe-
riod. Second, the release time B of packets from the buffer
ensures that packets, if buffered, are always released in time
to be transmitted, with the selected BAG, before the end of
each period. Third, that by properly picking the amount of
shifting for each flow it is possible to resolve packet collisions
at the sources so to a) maintain delivery guarantees, and b)
maximize the number of flows allocated on the same BAG
slot.

By employing buffering and shifting, we effectively allow dif-
ferent network flows to share the same BAG slot. This can
be done only with compatible flows. The first requirement
for two (or more) flows to be compatible is to have either
the same period, or periods that are multiple of each other
(harmonic)2. In avionic systems, this is often true since for

2Additional constraints need to be considered in order to
aggregate harmonic flows. Due to space constraints, we refer
the interested reader to our technical report [16].

ease of design and validation all the safety-critical compo-
nents are configured with a limited number of different rates.
Second, it is fundamental that the total maximum number
of packets after the aggregation can be transmitted on time
with the selected BAG. Finally, the discussed constraints on
φ and B must be satisfied for all the aggregated flows.

5.6 TPS Delay and Backlog
Given the service curve provided in Equation 16 and the
upper arrival curve in Equation 13, it is possible to reuse
some of the Real-Time Calculus results to compute delay
and backlog requirements for the AFDX switch. From [20]
we have that the maximum amount of delay on emitted
packets can be calculated as:

dmax = sup
λ≥0
{inf{t ≥ 0 : αusrc(λ) ≤ βlbuf+AFDX(λ+ t)}}

(17)
From Equation 17 it follows that in the worst case, the be-
ginning of the transmission for a packet in flow with arrival
curve of Equation 13 will be delayed by at most T + φ. As
a consequence, all the packets generated during a (shifted)
period will be transmitted before the beginning of the next
period. Hence the discussed delivery guarantees follow.

Similarly, the Real-Time calculus framework provides a for-
mula to calculate the maximum amount of backlog at the
network nodes of the system. The backlog calculation can
be performed according to Equation 18.

bmax = sup
λ≥0
{αusrc(λ)− βlbuf+AFDX(λ)}} (18)

The formula provides the total amount of memory (max-
imum backlog) required between the source buffer and the
AFDX switch. Per each flow, no more than s packets need to
be buffered within each period T . However, since the aggre-
gation of flows prevents packets from aggregated flows from
hitting the AFDX switch at the same time, the proposed
technique has two main benefits:

1. Packets are held in less expensive memories at the
sources, while waiting for the buffering timeB to elapse;

2. Since only the packets of one aggregated flow at the
time hit the AFDX switch, the buffer requirements for
a set SF of aggregated flows is maxSF {s}, instead of∑
SF

s.

6. TPS AGGREGATION ALGORITHM
Given a set of flows and the discussed constraints, the prob-
lem of finding suitable aggregations can be formulated as an
optimization problem. However, in Algorithm 1 we provide a
heuristic to perform the aggregation in time O(n logn), thus
making it suitable for online operations and acceptance-test
for additional flows. This heuristic produces as an output
the value of φ, B and I for each flow, given a set of n flows

F̂ = {F1, . . . , Fn}.
Initially, empty buckets are created to organize flows based
on their period (line 1). This in fact is the fundamental
requirement for flow compatibility. Next, at lines 2-5, ini-
tial values of BAG are assigned to flows according to Equa-
tion 11, and buckets are initialized. The main loop of the
algorithm goes from line 6 to 25. For each different value of
period in the flow parameters, aggregation is performed on
a bucket basis.

First, flows in the same bucket are sorted by initial BAG in
ascending order, and by number of packets s in descending
order. The flow at the top of the bucket, thus, is used as
master flow and its BAG is considered. The loop at lines
11-22 implements the aggregation logic.

The master flows do not change as long as it is possible
to aggregate an additional flow with the master. For this
reason, line 12 checks that all the packets from all the previ-
ously aggregated flows can be transmitted within the period.



Data: F̂ = {F1, . . . , Fn}, Nvls
Result: F̂ with updated φi, Bi, Ii
/* Create buckets for flows based on periods */

1 F̂T = ∅ for T ∈ {T1, . . . , Tn} ;
/* Split flows and assign initial BAG */

2 for i← 1 to n do

3 Ii = 2
blog2

Ti−Ci
si

c

4 F̂Ti ← F̂Ti + Fi
5 end
/* For each group of flows with same period */

6 foreach T ∈ {T1, . . . , Tn} do

7 Sort(F̂T by: I ascending, s descending)
8 cntpkts ← 0

9 Imaster ← FirstElement(F̂T ).I
10 aggrflows ← ∅

/* Aggregate flows until the total number of

packets can still be transmitted with the

same BAG */

11 foreach Fk ∈ F̂T do
12 if (cntpkts + sk) · Imaster ≤ T then
13 aggrflows ← aggrflows + Fk
14 cntpkts ← cntpkts + sk
15 end
16 else
17 ShiftFlows(T, cntpkts, aggrflows)

18 aggrflows ← Fk
19 Imaster ← Ik
20 cntpkts ← sk
21 end

22 end
/* Aggregate the leftover in a single flow */

23 if aggrflows 6= ∅ then
24 ShiftFlows(T, cntpkts, aggrflows)

25 end

26 end
/* Given a set of flows to aggregate, assign

appropriate values of phase shifting φ and

buffering B */

27 Function ShiftFlows(T, cntpkts, aggrflows) is
28 Fmaster = FirstElement(aggrflows)

29 minbag = Fmaster.I
30 curφ = 0
31 Fmaster.φ← 0
32 Fmaster.B ← T − Fmaster.s ·minbag
33 foreach F ∈ aggrflows − {Fmaster} do
34 curφ ← curφ + F.s ·minbag
35 F.φ← curφ
36 F.B = T − F.s ·minbag
37 end

38 end
Algorithm 1: Heuristic algorithm for flow aggregation

If the check is passed, the current flow is added to the set
aggrflows of flows to be aggregated together. If the condi-
tion at line 12 is not met, an appropriate amount of shifting
φ and buffering B is assigned to all the flows in aggrflows
through the ShiftF lows procedure (lines 27-38). In this
case, a new master is also selected as the next flow in the
bucket. The inner loop terminates when no more flows are
left in the bucket, and ShiftF lows is invoked on the leftover
flows in aggrflows (lines 23-25).

Given a set of flows to aggregate (aggrflows), the ShiftF lows
routine assigns values of phase shifting and buffering. The
first element in the set is the master flow. For the master, a
shift of φ = 0 is selected (line 31) and a value of B = T −I ·s
is assigned (line 32). Next, for each flow F a cumulative shift
factor curφ is calculated at line 34 and used as a value of shift
φ for the slave flows (line 35). Finally, B is calculated, at
line 36, as the latest time such that all slave-flow packets
can start transmission before T .

7. EVALUATION
In order to evaluate the benefits of the proposed technique,
we have added support for AFDX nodes and VLs in Net-
work Simulator 2 (NS2) [18]. NS2 is a discrete event simula-
tor that provides support for a number of network elements
and protocols, including: TCP, UDP, routing, unicast and
multicast protocols over both wired and wireless networks.
In order to carry out our evaluation, we have additionally
implemented a configurable AFDX node and queue, as well
as a periodic traffic source over UDP with the specifications
and parameters discussed in Section 5.23.

In our evaluation, we investigate those quantifiable aspects
of our technique that cannot be easily extracted from the
theoretical model because they mainly depend on the char-
acteristics of the considered network flows. These aspects in-
volve: (A) what is the saving in terms of BAG slots that arise
from the discussed aggregation; (B) what are the improve-
ments in terms of channel utilization that can be achieved
by performing flow aggregation; and (C) what is the trend
in the amount of required memory at the AFDX switch.

7.1 BAG Score
We have discussed how phase-shifting and buffering can be
used to perform flow aggregation. To quantify the benefits
of the proposed technique, we consider the number of BAG
slots that are freed for multiplexing additional network flows
when aggregation is in use. Specifically, we design our ex-
periment to generate a set of network flows with random
characteristics. The generation is performed until all the
1 ms slots are in use. Next, TPS is run on the same set of
network flows using the Algorithm 1. As a result of the ag-
gregation procedure, some of the flows in the generated set
may be clustered together, resulting in previously occupied
BAG slots to be freed. To quantify the saving in terms of
slots with a single number, we calculate a BAG score. This
score summarizes the number of available BAG slots using a
single index where higher weight is assigned to higher band-
width slots. The BAG score can be calculated according to
Equation 19.

BAGscore =

7∑
i=0

N
{2i}
free ·

1

2i
(19)

Where N
{2i}
free represents the number of free slots with 2i ms

BAG. Figure 8 depicts the trend of resulting BAG score for
the random sets of flows before and after performing aggre-
gation, as a function of the maximum packet length Lmax.
In this experiment, flows are randomly generated to have a
period T ranging between 200 ms and 1000 ms, with a num-
ber of packets s and a maximum emission time C uniformly
distributed across the length of the period. Unfeasible flows
are discarded.

3The developed code is available upon request.



Figure 8: BAG score for system with and without
flow aggregation.

As emerges from the picture, the proposed techniques offer a
remarkable improvement in the number of freed BAG slots
with smaller values of Lmax, while providing less benefits
for values of Lmax around 1000 bytes. This is not surprising
because, as depicted in Figure 3, the number of available
1 ms BAG slots for VLs is very low (below 10) for values
of Lmax beyond the 600 bytes boundary. This intuitively
means that less flows can be generated before exhausting
the available 1 ms BAG slots, and that, consequently, less
are the compatible flows that can be aggregated.

7.2 Channel Utilization
Next, we proceed to study the increase in the utilization that
flow aggregation can determine in comparison with what
is achievable on a standard AFDX network. Similarly to
the previous experiment, we randomly generate a series of
network flows that saturate all the available 1 ms BAG slots
according to traditional AFDX and its jitter constraint. The
obtained set of flows is used to study the achieved utilization
of traditional AFDX. On the same set of flows, aggregation
is performed like in the previous experiment. This time,
however, if the aggregation procedure results in a 1 ms BAG
slot being freed, an additional flow is generated and added
to the set. The aggregation procedure is invoked until no
1 ms BAG can be freed. Given the two obtained networks,
we simulate each systems for 20 seconds of virtual time and
extract channel utilization from the obtained event trace.

Figure 9 and Figure 10 report the obtained values for chan-
nel utilization normalized with respect to the theoretically
achievable value of utilization, calculated as in Figure 3.
Both the figures plot the resulting normalized utilization
as a function of the Lmax parameter. Moreover, Figure 9
was obtained using flows with periods between 200 ms and
1000 ms, while periods in the range 500 ms to 1000 ms are
considered for Figure 10.

The figures show three main features. First, we note that
a significant increase in the achievable channel utilization
is possible by using flow aggregation. The increase is be-
tween 40% to 70% with values of Lmax between 80 bytes
and 600 bytes. Second, we observe that the cutoff value of
Lmax after which the benefits in terms of utilization become
less substantial is the same as in the previous experiment.
This supports the idea that a limited number of BAG slots
translated directly into less opportunities for aggregation
and thus less improvements altogether. Finally, by com-
paring the two figures, we note that the achieved utilization
benefits do not depend heavily on how similar are the char-
acteristics of the flows. In fact, the same trend emerges even
if the possible range of flow periods varies consistently across
the two experiments.

Figure 9: Resulting normalized channel utilization
for random flows with periods between 200 ms and
1000 ms.

Figure 10: Resulting normalized channel utilization
for random flows with periods between 500 ms and
1000 ms.

7.3 AFDX Switch Backlog
Next, we study the trend in the amount of backlog at the
AFDX link under two different situations. In this case, like
in our first experiment, we randomly generate flows until
saturation of a traditional AFDX network. Then, we study
the backlog when aggregation is not performed compared to
the case where the proposed technique is in use. The status
of the queue is depicted across the 20 seconds of simula-
tion with a 0.1 second interval between each measurement.
The maximum number of queued packets in each 0.1 second
interval is considered.

Figure 11 depicts the trend for the queue size with values of
Lmax equal 80 and 300 bytes. A sharp improvement in the
amount of packets queued at the AFDX switch is obtained
for smaller values of Lmax throughout the simulation time.
The gain in terms of backlog becomes less substantial but
still significant with a value Lmax = 300 bytes. Additional
results available in [16] reveal that the system exhibits more
comparable performances for larger values of Lmax, even
though TPS always achieves equal or better performance.
An interesting feature can be noted in the figure: when no
aggregation is performed, at time 0 a peak in the number
of queued packets is visible, which periodically reappears



Figure 11: Queue length in packets with Lmax =
80, 300 bytes.

during the simulated time. This is not surprising since peri-
ods are in phase and the transmission of packets may occur
toward the beginning of each period. Conversely, the phase-
shifting necessary for flow aggregation limits the amount
of packets simultaneously reaching the AFDX switch. This
demonstrates the effectiveness of TPS in retaining packets
at the source buffers, where memory is less expensive and
can be distributed among network nodes.

8. CONCLUSIONS AND FUTURE WORK
The steady growth in the complexity of avionic networks
requires high-bandwidth solutions to be employed. On the
other hand, the correct behavior of safety-critical software
components communicating over the network represents a
key design-time aspect. As a result, reliability and packet
delivery guarantees constitute a strict requirement for an
avionic network. In the context of avionic networks, AFDX
represents a trade-off between performance and necessary
determinism.

In our work, we first consider specification-imposed con-
straints on the configuration of an AFDX network. Our
analysis about their impact on the number of configurable
network flows and achievable bandwidth reveals an intrinsic
resource underutilization. With this in mind, we propose
TPS: a technique that allows the aggregation of network
flows through traffic shifting and buffering at the sources.
We demonstrate that TPS leads to better channel utiliza-
tion, allows for an increased number of nodes to commu-
nicate over the network, and reduces the queue size at the
AFDX switches. At the same time, we show that delivery
guarantees are always met, making TPS suitable for hard
real-time operations.

As a part of our future work, we plan to extend TPS to
further increase achievable bandwidth through packet-level
aggregation. Moreover, we intend to investigate whether a
similar technique can be used to aggregate traffic flows with
non-harmonic rates. Finally our plans include the evalua-
tion of TPS using real AFDX switches and PALS for time-
synchronization of traffic sources [17].
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