
On-Chip Control Flow Integrity Check for
Real Time Embedded Systems
Fardin Abdi Taghi Abad∗, Joel Van Der Woude∗, Yi Lu∗, Stanley Bak∗

Marco Caccamo∗, Lui Sha∗ , Renato Mancuso∗, Sibin Mohan†

∗Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
†Information Trust Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Email: {abditag2, jvande31, yilu1, sbak2, mcaccamo, lrs, rmancus2, sibin}@ILLINOIS.EDU

Abstract—Modern industrial plants, vehicles and other cyber-
physical systems are increasingly being built as an aggregation of
embedded platforms. Together with the soaring number of such
systems and the current trends of increased connectivity, new
security concerns are emerging. Classic approaches to security are
not often suitable for embedded platforms.

In this paper we propose a hardware based approach for checking
the integrity of code flow of real-time tasks whit precisely predictable
overheads that do no affect the critical path. Specifically, we employ
a hardware module to perform control flow graph (CFG) validation
at run-time of real-time component. For this purpose, we developed
a compile-time, binary-based, CFG generation tool. In addition, we
also present our implementation of a CFG integrity checking module.
The proposed approach is aimed at improving real-time systems
security.

I. INTRODUCTION

Many safety-critical systems such as advanced automo-
tive/avionics systems, medical equipment, transportation system,
power plants and industrial automation systems employ embedded
real-time systems. These appear in the roles of controllers, physi-
cal sensors or other tasks, depending on the actual system. These
real-time systems are usually responsible for the most critical
components in the system. In most cases, the proper functioning
of such components is of the utmost importance; otherwise, they
could lead to loss of life and/or injury to human beings and also
result in significant damage to the system(s) and/or environment.

On the other hand, embedded systems in general were tra-
ditionally known to be invulnerable to malicious activities. In
fact, this was the case because of their physical isolation [30].
However, recently such systems are more interconnected or even
controlled over the internet. Moreover, there is more monetary and
adversarial motivations for malicious activities in recent times.
Examples of such malicious activities include: the W32.Stuxnet
worm that highlighted the possibility and effectiveness of an
attack on a nations critical infrastructure [26], malicious code
injection into the telematics units of modern automobiles [7], [16]
and attacks on UAVs [23] among others. Such attacks motivate
a closer inspection of the security of industrial control systems
everywhere.

While general-purpose processors are opening doors for new
defensive techniques through increased parallelism, clock speed
and memory size, many real-time embedded systems are con-
strained by timing requirements and small onboard memory
sizes. Moreover, schedulabiliy of hard real-time tasks needs to
be guaranteed, even with the additional overheads incurred by
(any) security techniques. Given their tight constraints, traditional

techniques to prevent against cyber attacks are not necessarily
feasible; they either require components that do not necessary
exist in simple embedded system (such as trusted operating
system or memory management units) or the overheads imposed
by them is not predictable enough for providing guarantees that
are necessary for such systems. New defenses that are designed
with the limitations of embedded/realtime systems in mind are
required to adequately protect these systems.

In this paper we present a hardware based security approach
with predictable overhead for embedded real-time systems. We
check for the control flow integrity of the real-time task. We
propose adding an on-chip control flow monitoring module
(OCFMM) to the processor core with its own isolated memory
unit. OCFMM has direct hooks into the processor that enable it to
track the control flow of the program. we also present methods
for (a) determining the control flow graph (CFG) of tasks that
execute on the processor and (b) loading them on to the memory
units in advance. OCFMM monitors the run-time control flow
and compares it to the stored CFG. Hardware implementation of
OCFMM and the isolation of its memory unit from the rest of
system eliminates the possibility of any attacks on the OCFMM
unit itself. We also take advantage of a hardware stack mechanism
to keep track of call and return addresses (similar to SmashGuard
[20]). In this paper, we also present our tool for generating the
control flow graph from a binary without the need to modify the
binary or access to source code.

What makes our proposed technique effective and applicable
to embedded real-time systems? First, software updates of these
types of systems is rare. In fact, their software is updated only
when the system administrator needs to change the application of
the system or when some system settings are modified Therefore,
any overheads due to the generation a new CFG profile of the
program and loading it into the OCFMM is acceptable. Second,
the overhead incurred by OCFMM is finite and predictable.
Therefore, it is well-suited for hard real-time systems in need
of formal verification. Finally, Our technique does not require
components that may not exist in simple embedded systems (e.g.,
trusted operating systems or memory management units). The
security guarantees and predictability provided by our OFCMM
technique, make this technique very effective for embedded real-
time components in safety-critical systems. .

In the following sections first, we introduce different types of
attacks, then describe the attack model and our assumptions. In
section III-C, the approach for generating control flow graphs and
also OCFMM design and its detection algorithm is described. In



section IV, some experiments in addition to performance analysis
is presented. Section VI talks about related work and the last
section concludes the paper.

II. ATTACKS

In this section we provide an overview on the popular types
of attacks on embedded systems that modify control flow of the
program. Monitoring the control flow of the program would help
us detect these attacks.

A. Buffer Overflow

The CWE/SANS list of the top 25 most dangerous program-
ming errors lists buffer overflows as the third most dangerous
vulnerability [3]. A buffer overflow is an attack that exploits a
lack of sanitization in performing I/O operations which involve
inbound data transfers. Specifically, when the bounds of incoming
data are not checked properly, an attacker is able to write more
data than intended, overwriting nearby data and compromising
the code logic [19]. Buffer overflow vulnerabilities can affect
different regions of a program’s memory, such as stack or heap.

Exploiting a stack overflow, the attacker is able to overwrite
the return address of the current stack frame. In this way, it is
possible to redirect the execution to an almost arbitrary code
block. The other common case of a buffer overflow is called heap
overflow. In a way that is similar to what explained above, heap
overflow vulnerabilities allow an attacker to write data on the
heap exceeding the boundaries of a buffer. The same techniques
employed in a stack overflow attack can be set in place.

It should be noted that in both stack overflow and heap overflow
attacks, another way to redirect the execution flow is to overwrite
a control variable, such as a branching condition. In this way,
the attacker is able to alter the normal behavior of the code flow,
for instance driving the execution into unauthorized sequences of
instructions.

B. Return-into-libc

Return-into-libc is an attack which leverages on a buffer
overflow in order to direct execution towards a libc function that
has been included in the compiled binary, thereby requiring no
shellcode to be injected. For instance, a call to the library function
system() can be forged, passing /bin/sh as an argument [2] and
leading to the execution of a command line interpreter. Return-
into-libc is a particularly powerful attack because it is able to
bypass protection measures that disable the execution of code
from stack or heap regions: one of the most common defenses
against buffer overflows attacks [1].

C. Return-oriented-programming

Like the return-to-libc, the aforementioned return-oriented-
programming is a more general technique that allows the exe-
cution of malicious code bypassing memory protection defenses.
As explained in [22], once an attacker is able to overwrite a
function return address, he can chain the execution of small
preexisting code fragments to produce arbitrary program behavior.
A known technique involves searching for instructions that alter
the control flow, typically return instruction, and then scanning
preceding bytes for instructions that can be used for the attack.
Such instruction snippets are called “gadgets” and are chained
together via a buffer overflow exploit. Specifically, the vulnerable
stack is injected with the sequence of addresses of the employed
gadgets, making sure that the address of the first gadget overwrites

the original return address. Once the first gadget is executed, the
trailing return instruction determines the next on the stack to be
executed, thus giving control to the second gadget. Similarly,
subsequent gadgets are executed and the desired behavior is
produced. According to [22], any sufficiently large quantity of
code can contain a set of gadgets that are Turing-complete,
providing full functionality.

D. Code injection

The term “code injection” refers to a technique that leverages
on the control over an existing process in a system (e.g. an
already compromised one) to spread the attack to other software
components of the same system. Usually, the aim is to inject
code into a process with high privileges from a low-privileged
one. As explained in [31] this type of attack can be carried on
using APIs of the NTCreateThread() family on Windows
platforms. In this way, the attacker is able to execute any function
which exists in the context of the targeted executable. On Linux
platforms, the ptrace() system call can be used to manipulate
the execution flow of the attached process. Additionally, on both
Windows and Linux platforms, code injection can be performed
leveraging on APIs that allow programs to load shared objects into
running processes. DLL (SO respectively) injection attacks can
be performed against Windows (Linux respectively) platforms in
order to gain full control of open file descriptors, intercepting I/O
and executing functions within the context of the victim process
[31].

III. CONTROL FLOW MONITORING

In this section we detail the proposed methodology. The
assumptions under which we are able to perform threat detection
are presented. Furthermore, a detailed explanation of how CFG
run-time checking can be effective against the attack techniques
presented in the previous section is provided.

A. Trusted Initialization

The proposed technique requires the system to be initialized
safely. As explained in section III-C, together with the standard
system bootstrap procedure, a CFG needs to be correctly produced
from the binary and loaded into the OCFMM memory.

It is important to underline that the assumption of a trusted
initialization sequence is realistic for embedded systems. Firstly
because the supply chain for industrial controllers and systems
is generally supervised. Second, because it is often the case that
before such systems become operative, physical access to them
is restricted to trusted personnel only. Third, because typically
network connections are established only after the bootstrap
sequence is completed. Once the initialization sequence completes
and the proposed detection module is booted, the system can
establish connections to untrusted networks and become fully
operational. Since a trusted initialization is performed at system
boot, there is no need to secure bootstrap code executed before the
critical components are loaded and the detection module starts.
Instead, intrusion detection and execution flow inspection can be
performed after the initialization phase is completed.

B. Attack Model

As previously mentioned, we do not consider attacks which
require physical access to the targeted system. The reason is
twofold. First, because our focus is on embedded devices, with
particular attention to industrial plant control systems, whose



physical access is generally restricted. Moreover, assuming un-
trusted physical access to this class of systems raises a whole
gambit of options to maliciously impact the functionality.

On the other hand, we do assume that the attacker has
networked access to the system, by means that an interface is
available through a remote connection or indirect channels. For
example, it includes attacks that are set in place infecting USB
devices that are connected at a later stage to the targeted system
or to an intermediate machine that is networked with the fianal
target. We also assume that the industrial control system has
zero-day vulnerabilities, unknown to the administration personnel,
which could be leveraged by an attacker. This is a realistic
assumption given the lifecycle of many embedded devices, as they
can be running legacy code for decades without being updated or
rewritten. Furthermore, we are following an open design policy,
by means that we assume an attacker to have access to the source
code of the program on the controller and a complete knowledge
of the hardware design.

Additionally, in this paper we are only targeting the attacks that
are altering the control flow graph. However, our technique does
not offer sufficient protection from attacks that modify the data
values of the victim process without diverting its behavior from
a legal sequence of execution blocks. These attacks can harm
system in two main ways. First, attackers can overwrite the value
of function pointers, redirecting execution to an unauthorized code
fragment. In order to address this issue, it is enough to prevent the
executable code from using pointer-based function calls. This is a
reasonable assumption for embedded real-time controllers, whose
code exhibits a high level of determinism. Second, attackers can
manipulate the values that affect the physical behavior of the
considered system. For instance, tampering the variable encoding
the target temperature in a thermal controller, would impact the
safety of the physical plant. In order to prevent such attacks,
Simplex [21] can be used as an additional safety envelope for the
output channels.

C. Architecture
The majority of the attacks discussed in Section II share a

fundamental aim: arbitrary code execution. Thereby, it follows
that by monitoring the execution flow of a program, and cross-
validating it against the expected CFG, we are able to detect
attacks that maliciously affect the execution flow. We refer back
to [5] for the formal analysis of this method.

Figure 1 presents the high-level architecture. The OCFMM is
placed on the same chip with the processor and can directly
access program counter (PC) and instruction register (IR) with the
provided hooks into the processor. Accessing PC and IR does not
require any additional operation to be executed on the processor.

Fig. 1. High level architecture of a processor with OCFMM

Generating the control flow graph of the executable program
we want to protect is the first step of our technique. We first

describe the control flow graph generation procedure and then
detail the OCFMM.

D. Control Flow Graph Extraction

We have developed a tool to generate the CFG from compiled
binary. This approach guarantees backward compatibility with
legacy code bases, without the need to rewrite existing executables
or having access to their source code. It is also flexible across
different architectures with only minor changes required in order
to adapt the CFG generation procedure to the targeted ISA.

We define a “block” as the basic unit of a control flow.
Each block is defined as the longest sequence of instructions
contained between two control flow statements, i.e. between two
statements encoding any variation of a branch, jump, call, or
return instruction. Each block is described using three pieces of
information: a unique block ID; the address of the first instruction
in the block; and its size (number of instructions in the block).

First, during an initialization step, we scan the whole binary
executable to identify blocks, according to the mentioned criteria,
and to assign unique IDs. Next, starting from the block which con-
tains the entry point of the executable under analysis, it is possible
to incrementally build the control flow graph. Specifically, for the
block considered at each iteration, we need to know which blocks
can be reached next. For conditional jump/branch instructions,
we identify a Yes-Block and a No-Block, as the blocks which
execute after the current block if the condition of the jump/branch
is satisfied or not, respectively. It is enough to store the IDs of said
destination blocks in the final CFG. In general, Yes-Blocks can
be directly extracted from the branching instruction itself, while
No-Blocks start with the subsequent instruction, or vice versa1.
For unconditional jumps and branches, as well as direct function
calls, there is no distinction between Yes-Blocks and No-Blocks,
so that just the ID of the target block is stored.

For return instructions, there is no need to store any Yes/No-
Block because the execution return address depends on the mem-
ory offset of the corresponding call instruction. We developed
a hardware stack in order to handle call/return instructions as
explained in the next subsection.

The control flow of a program can be seen as a graph G =
(V,E), where each vertex v ∈ V represents a block and each
edge e ∈ E represents a valid control flow between two blocks.
An example of control flow graph for the code shown in Figure 2a
is reported in Figure 2b.

Despite the existence of loops in the graph, we can use a graph
traversal algorithms to get the control flow information of each
block. In this paper, we use Depth First Search (DFS), starting at
the main function. Therefore, this will be the root of the spanning
tree, and will be called “main” block.

As previously mentioned, the first step to generate the CFG is
to parse the disassembled code into distinct blocks and to assign
each block a unique ID. Once this step is done, our algorithm
proceeds from the main block. The algorithm which generates the
complete control flow graph in a recursive manner is described
in figure III-E. The main block has ID = 1, so that the CFG
generation begins by calling recursive_CFG(1).

Finally each block profile contains starting address of the block,
IDs of Yes-block and No-Block and block size. Conversely, For

1The arrangement of blocks after branching instructions depends on the
compiler used to generate the binary file. Branch prediction strategies may vary
how a conditional jump is encoded from the source code.



Fig. 2. Assembly code of a sample program (a) and resulting control flow graph
(b).

Algorithm 1 recursive CFG(current block)
if current block.processed == true then

return
else if current block.last inst is unconditional jump or branch
or direct call then

current block.processed = true
current block.Yes-Block = target block;
current block.No-Block = target block;
recursive CFG(target block);

else if current block.last inst is Conditional jump or branch
then

current block.processed = true
current block.Yes-Block = target Block ;
current block.No-Block = current block + 1 ;
recursive CFG(current block.Yes-Block);
recursive CFG(current block.No-Block) ;

else if current block.last inst is return then
current block.processed = true
current block.Yes-Block = 0 ;
current block.No-Block = 0 ;

end if
return

indirect calls or jumps (as they can result from a function pointer
or a jump table) we must enumerate all the possible instruction
targets. This enumeration requires a more in-depth analysis and it
is currently left as a future work. A naı̈ve implementation would
be allowing an indirect call or jump to any target memory address.
However, this would determine security issues, e.g. exposing to
return-to-libc attacks.

E. Detection Mechanism

At a high-level description, the detection module is in charge of
comparing the control flow of the running program with the CFG
loaded into the dedicated memory at boot time. If a mismatch
occurs, it raises a detection flag.

In the proposed design shown in Figure 1, the OCFMM storage
unit is where the CFG profile of the program is loaded. When
execution begins, the profile for the main block (with ID equal

to 1) is fetched. Thus, what are the next valid states becomes
available to the detection module.

Similarly, during the execution of a given block, CFG profiles
for the possible next blocks are pre-fetched. Our module con-
tinuously checks that the execution remains inside the current
block. On the other hand, whenever it detects that a change
in the executing block occurs, it validates the current address
of the program counter against the possible, previously fetched
destination addresses. If there is a match, execution is not affected,
otherwise a detection flag is raised, allowing the system itself or
the administration personnel to take appropriate actions.

As previously stated, in addition to conditional and uncon-
ditional branches, it is necessary to handle function calls. In
order to correctly handle call/return instructions we rely on a
stack module implemented in hardware using a FILO buffer.
When a function is called, the address at which to return is
pushed onto a hardware stack. When the function call returns,
the address of the corresponding call is popped from the top of
the stack. The detection module verifies that execution is resumed
at such address. Again, if a mismatch is observed, detection flag
is raised. The main idea behind this implementation is similar to
SmashGuard [20].

The basic algorithm used to check control flow integrity is
reported below. This algorithm is executed every time that the
value of PC changes. In this algorithm, PC is the current value
of the program counter and B is the descriptor of a block
of control flow, which contains {pc, n, Y es-Block,No-Block}.
B.pc represents the address at which the control flow block B
begins. B.n is the number of instructions contained in block B.
Finally, B.Y es− Block and B.No− Block encode the control
flow blocks that may occur after B, as explained in Section III-D.

Algorithm 2 Detection Algorithm
if Instruction is a call then

push PC + 4
end if
if Instruction is a return then

newB = pop()
if newB.pc == PC then

B = newB;
else

raise detection flag;
end if

else if PC == (PC Previous + 4) AND (PC < B.pc + B.n)
then

return ;
else

if PC belongs to B.Yes-Block then
return

else if PC belongs to B.No-Block then
return

else
Raise detection Flag

end if
end if
return



F. Predictable Over Head

In hard real-time system, safety and reliability of system is
only guaranteed if critical tasks of the system finish before their
relative deadlines. Therefore, system designer, needs to perform
extensive schedulability analysis to ensure this condition would
not be violated. Due to this, techniques that alter execution time
of the tasks in an unpredictable manner, cannot be applied to
this class of systems such as most of the techniques employing
randomness or obfuscation.

Having this constraint in mind, we have designed our technique
such that incurred overhead on each block is precisely predictable.
The reason of the overhead is that for some very small execution
blocks, the time required to load the block information from
OCFMM memory is longer than the time required for executing
the instructions of that block, therefore execution needs to be
halted until the block information is fully loaded.

However, for each block, the upper bound on the halting time
could be simply calculated. If ei is the minimum execution time
of ith instruction in the block, m is the access time for OCFMM
memory and nk is the number of instructions in kth block. Then
we have the following for upper bound of overhead on kth block,

overhead(k) =

{
m−

∑nk

i=1 ei, if m >
∑nk

i=1 ei

0, otherwise

With the worst case overheads of every block, upper bound of
overhead on every piece of program is calculable, too. System
designer can use these information to generate new worst case
execution times for tasks in order to verify schedulability of the
task sets in hard real-time systems.

IV. EXPERIMENTS AND EVALUATIONS

In order to test and verify applicability of our approach, he
integrated our proposed control flow integrity checking module
into the design of the LEON3 soft-core processor. LEON3 is a
32-bit synthesizable VHDL model of a SPARC V8 processor.
We implemented a single core processor without virtual memory
on Xilinx Virtex-5 LXT FPGA ML505 evaluation platform. We
utilized excess fabric on the FPGA to implement our module with
hooks into the 7-stage pipeline of the LEON3. Our aim was to
introduce minimal changes to the design of the LEON3 and we
could detect changes from the CFG by only hooking into the
program counter (PC) and instruction register (IR).

In our prototype implementation due to limitations of the FPGA
board, we did not add an external memory unit for OCFMM.
Instead we implemented a SRAM unit on FPGA fabric. This
implementation works for our prototype experimental set up while
it restricts maximum size of the CFG profile and consequently
the size of our program. For future work, we will implement an
external storage memory unit for OCFMM. Having a dedicated
memory unit eliminates any limitations on the size of executable
in addition to loading CFG profile during update. In addition, due
to limited size of hardware stack, our preliminary experiments we
run under the assumption that there is no nested calls deeper than
200 levels.

We performed the first experiment on a PID controller designed
for temperature control in an industrial unit. The program reads
a value entered by user as a reference temperature and generates
a relative output signal. PID controller code consists of the
following components: simple function for reading the reference

input and the control loop. In every execution of the loop, first the
function responsible for reading the sensor values is called. Next,
output is calculated based on the read values and printed on the
output port. After running the CFG generation tool, 240 execution
blocks were detected. In this version of our implementation, size
of information of each block is 9 bytes. Consequently, size of
CFG profile generated for this program 2160 bytes.

In the first experiment, we simulated the code replacement
attack by loading a modified binary onto the processor where one
of the jump destinations is different from the expected address
resulting in a different CFG. OCFMM was able to detect the
mismatch and detection flag was raised.

In the second experiment, we simulate control flow graph
modifications due to overwriting a return address in stack. We
used the same program as the previous experiment where the the
value read from sensor is written into an unbounded buffer. A
malicious sensor output written to this buffer would overwrite
the return address in the stack, and would take the execution
flow to the address of attacker’s desire. Our approach successfully
detected the CFG mismatch with the expected CFG and raised
the detection flag.

These experiments, validates applicability of OCFMM.

V. FUTURE WORK AND LIMITATIONS

There is much more work to be done to improve our technique
and expand its effectiveness and applicability.

Our future plan is to further advance our implementation by
replacing on-chip SRAM unit of OCFMM with an external one.
Additionally, in order to mitigate the overhead caused by halting
execution of small blocks or slow external memories, we are
planning to use a CFG profile caching mechanism to pre-fetch
profile of multiple levels in advance. This would eliminate the
need to halt the processor for short blocks as the information are
already present in the cache, consequently reduce the overhead.

Even though our technique, as is proposed in this paper,
provides a predictable overhead, but due to lack of full implemen-
tation, we have not yet provided comprehensive measurement on
the overhead. In our future work, after adding the caching mech-
anism and external memory, we perform extensive measurements
on the performance and logic overhead.

We hypothesize that by using additional hooks into the proces-
sor to determine current privilege level stored in the MMU, our
module would be able to distinguish between multiple tasks and
monitor the control flow of each. Securing the whole system by
detecting and securing some critical components of the system is
the another direction of research that we are currently working
on.

Finally,continued research into methods of preventing local
variables from being overwritten by a buffer overflow is needed
to provide reasonable assurance against that form of attack.

VI. RELATED WORK

There has been a large body of work on achieving higher
security through constraining control flow. However, the major
difference between these works and ours is that most of these
techniques are not targeting embedded real-time systems and
therefore, either have not considered their real-time constraints
or their constraints due to their embedded nature.

There is a line of research that uses secrets to mitigate the
vulnerabilities. Point guard [9], stores code addresses in an



encrypted form in data memory. [6] uses address obfuscation for
security purposes. [8], [11], [25], [29] also rely on secret values
in order to prevent intruder from being able to easily predict
and modify pointer addresses. However, some of these techniques
require binary code rewriting or source code analysis, they cannot
be formally verified and would open an additional vulnerability
(keeping the secret values).

Additionally, there are number of other defenses against buffer
overflow attacks [10], [13], [14], [18], [20]. However, some of
the techniques either could not protect from return-to-libc [13],
[18], [20] or required a trusted operating system [10], [13], [14].
[20] only protects from attacks on the function return address.

Moreover, directly trying to integrate security solutions that
have been developed for general purpose systems to embedded
RTS [15], [17], [24], [27], [28] may not always be the best
solution. For example, [4] requires software to be rewritten and
overhead is sometimes as high as 20 percent. These are not
always cognizant of the underlying nature of embedded RTS, e.g.,
attempts to integrate cryptography into embedded RTS should be
compliant with the strict scheduling policies of such systems or
memory lock down techniques would not be useful on embedded
RTS without virtual memory.

The closest work to ours for embedded systems is [12] where
a separate stack for return addresses is implemented in hardware.
This work, only covers function return attacks and cannot guar-
antee control flow integrity guarantees.

VII. CONCLUSION

In conclusion, we have introduced on-chip control flow mon-
itoring to enforce control flow integrity in embedded real-time
systems. The solution presented is well suited for simple embed-
ded real-time systems that do not have a Memory Management
Unit (MMU) and have strict timing requirements. Additionally, it
introduces finite and predictable overhead in terms of execution
time and does not require any modifications to the source code
or any sort of binary rewriting. This allows the technique to
be applied to legacy code, propriety programs, or third party
products. This technique was able to detect modifications to
the control flow graph of an executing program preventing the
attackers from return-into-libc, return-oriented-programming, and
Code injection. The technique was successfully implemented as
a modification of LEON3 soft core.

VIII. ACKNOWLEDGEMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant numbers CNS-1035736 and CNS-1219064. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect
the views of the NSF.

REFERENCES

[1] Getting around non-executable stack @ONLINE, 1997.
[2] Advanced return-into-lib(c) exploits (PaX case study) @ONLINE, 2001.
[3] 2011 cwe/sans top 25 most dangerous software errors @ONLINE, 2011.
[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In

Proceedings of the 12th ACM conference on Computer and communications
security, CCS ’05, pages 340–353, New York, NY, USA, 2005. ACM.

[5] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Transactions on Infor-
mation and System Security (TISSEC), 13(1):4, 2009.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient
approach to combat a broad range of memory error exploits. In Proceedings
of the 12th USENIX security symposium, volume 120. Washington, DC.,
2003.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive
experimental analyses of automotive attack surfaces. In USENIX Security,
Aug 2011.

[8] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier. Formatguard: Automatic protection from printf format string
vulnerabilities. In Proceedings of the 10th USENIX Security Symposium,
volume 3, 2001.

[9] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard tm: protecting
pointers from buffer overflow vulnerabilities. In Proceedings of the 12th
conference on USENIX Security Symposium, volume 12, pages 91–104,
2003.

[10] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, volume 81, pages 346–355, 1998.

[11] R. Doe. The pax project @ONLINE, 2004.
[12] A. Francillon, D. Perito, and C. Castelluccia. Defending embedded systems

against control flow attacks. In Proceedings of the first ACM workshop on
Secure execution of untrusted code, pages 19–26. ACM, 2009.

[13] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th
ACM conference on Computer and communications security, pages 272–
280. ACM, 2003.

[14] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via pro-
gram shepherding. In Proceedings of the 11th USENIX security symposium,
volume 6, 2002.

[15] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi. Security as
a new dimension in embedded system design, 2004.

[16] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experi-
mental security analysis of a modern automobile. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 447 –462, may 2010.

[17] M. Lin, L. Xu, L. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu. Static
security optimization for real-time systems. IEEE Transactions on Industrial
Informatics, 5(1), Feb. 2009.

[18] M. Milenković, A. Milenković, and E. Jovanov. Hardware support for code
integrity in embedded processors. In Proceedings of the 2005 international
conference on Compilers, architectures and synthesis for embedded systems,
pages 55–65. ACM, 2005.

[19] A. One. Smashing the stack for fun and profit @ONLINE.
[20] H. Ozdoganoglu, T. Vijaykumar, C. E. Brodley, B. A. Kuperman, and

A. Jalote. Smashguard: A hardware solution to prevent security attacks on
the function return address. Computers, IEEE Transactions on, 55(10):1271–
1285, 2006.

[21] L. Sha. Using simplicity to control complexity. Software, IEEE, 18(4):20
–28, jul/aug 2001.

[22] H. Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and communications security, CCS ’07, pages 552–
561, New York, NY, USA, 2007. ACM.

[23] D. Shepard, J. Bhatti, and T. Humphreys. Drone hack: Spoofing attack
demonstration on a civilian unmanned aerial vehicle. GPS World, August
2012.

[24] S. Son, R. Mukkamala, and R. David. Integrating security and real-
time requirements using covert channel capacity. Knowledge and Data
Engineering, IEEE Transactions on, 12(6):865 –879, nov/dec 2000.

[25] N. Tuck, B. Calder, and G. Varghese. Hardware and binary modification
support for code pointer protection from buffer overflow. In Microarchi-
tecture, 2004. MICRO-37 2004. 37th International Symposium on, pages
209–220. IEEE, 2004.

[26] US-CERT. ICSA-10-272-01: Primary stuxnet indicators. Aug. 2010.
[27] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime

hypervisor control-flow integrity. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 380–395. IEEE, 2010.

[28] T. Xie and X. Qin. Improving security for periodic tasks in embedded
systems through scheduling. ACM Trans. Embed. Comput. Syst., 6(3), July
2007.

[29] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization
for security. In Reliable Distributed Systems, 2003. Proceedings. 22nd
International Symposium on, pages 260–269. IEEE, 2003.

[30] M.-K. Yoon, S. Mohan, and L. Sha. Securecore: A multicore architecture
for intrusion detection in real-time control systems. In IEEE Conference on
Real-Time and Embedded Technology and Applications Symposium. IEEE,
2013.

[31] G. Yucheng, W. Peng, L. Juwei, and G. Qingping. A way to detect computer
trojan based on DLL preemptive injection. In Distributed Computing and
Applications to Business, Engineering and Science (DCABES), 2011 Tenth
International Symposium on, pages 255–258, 2011.


