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Abstract—Recently, the complexity of safety-critical cyber-
physical systems has spiked due to an increasing demand for
performance, impacting both software and hardware layers.
The timing behavior of complex systems, however, is harder
to analyze. Real-time hardware resource management aims at
mitigating this problem, but the proposed solutions often involve
OS-level modifications. In this sense, software verification is key
to build trust and allow such techniques to be broadly adopted.
This paper specifically focuses on CPU cache management,
demonstrating that OS-level hardware management logic can be
verified at the source code level in a modular way, i.e., without
verifying the entire OS.

I. INTRODUCTION

In the last decade, there has been an uptrend in the com-
plexity of safety-critical real-time systems. Such a trend is
the result of an ever increasing demand for performance, fea-
tures and efficiency. Multi-core platforms and heterogeneous
hardware largely represents the industry’s answer to such an
increase in computational demand. As the hardware grows in
complexity to match the demand for performance, it becomes
increasingly hard to fully understand or to predict its timing
behavior.

Unfortunately, the loss of timing predictability makes real-
time analysis significantly harder, with two unwanted con-
sequences. First, the inability to produce tight upper-bounds
on workload worst-case execution time (WCET) leads to
overprovision and waste of hardware resources. Nonetheless,
the decreasing cost of hardware components partially mitigates
this problem. Second, safety-critical systems are required to
undergo a rigorous certification process in order to be consid-
ered for large-scale deployment. Difficulty in determining the
logical and temporal correctness of a system heavily impacts
certification costs. These costs easily surpass the sheer cost of
hardware components by several orders of magnitude.

A number of works [9], [20], [12] have proposed OS-level
mechanisms to explicitly manage those hardware components
that, if unregulated, represent major sources of unpredictabil-
ity: i.e. shared CPU caches, DRAM memory, and I/O subsys-
tem. Management techniques proposed in the literature have
been shown to achieve substantial real-time benefits. Yet, many
industries are reluctant to widely adopt such solutions due to a
fundamental lack of confidence about the correctness of their
implementation. The fear is justified considering that hardware
management mechanisms often operate at high-privilege level,
and thus their misbehavior can lead to substantial failures.

This work represents a first step toward the verification
of system-level components that implement hardware man-
agement techniques for real-time purposes. In fact, in this
work we demonstrate that it is possible to verify the logic
of a kernel-level component at the source code level in a
modular way; i.e. without verifying the entire OS that can be
assumed verified or trusted. Specifically, this paper presents
the verification approach for Colored Lockdown [11]: a real-
time last-level cache management scheme implemented in the
Linux kernel. Colored Lockdown is part of a larger framework
of hardware resources management techniques for multi-core
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platforms that goes under the name of Single Core Equivalence
framework (SCE) [12], [13].

The rest of the paper is structured as follows. In Section II
we provide an overview of the related work. Section III
provides the required background knowledge for this work. A
high-level description of our verification approach is discussed
in Section IV, while additional implementation details are
provided in Section V. Next, a brief evaluation is reported
in Section VI. Finally, concluding remarks and possible future
extensions are discussed in Section VII.

II. RELATED WORK

As increasingly higher level of assurance is required from
safety-critical systems, there has been an uptrend in the
popularity of verification methodologies. A consistent body
of works has used the “verified by design” approach. In this
context, the SPARK language and toolkit [3] provide extensive
capabilities to reason about the correctness of applications at a
source code level. In the SPARK environment, verification is
performed with a combination of static analysis and deductive
verification. Deductive verification on the other hand, has been
widely used on industrial use-cases [7], [10], [4]. Similarly, the
level of assurance provided by formal static analysis based
on abstract interpretation often represents a good trade-off in
terms of scalability [16], [6].

Automated assertion checking is often used as an alternative
to deductive verification. With this approach, it is typically
possible to confine the explored state space to a manageable
subset that is fundamental for the considered properties/asser-
tions. Among the different techniques for assertion checking,
bounded verification is often used for source code debugging.
A number of consolidated tools implement assertion checking,
e.g. SLAM [2], TASS [19], and CBMC [5] used in this paper.

Recent works have explored the use of verification tech-
niques to validate application-level software in the domain of
control systems [8], aerospace and avionic software [21], and
railways systems [15]. In seL4 [14], the design and verification
of an entire OS is proposed. While closely related to [14],
we take a fundamentally different approach: we consider
certified systems where new kernel-level functionality can be
introduced to improve/optimize performance and demonstrate
how modular verification of OS-level code can be performed.
Finally, many works perform verification of the interaction
between kernel modules and OS routines [17], [1]. Conversely,
we focus on the verification of kernel-level logic that interacts
with (i) kernel sub-routines, (ii) virtual memory, and (iii) CPU
cache space.

III. BACKGROUND

The philosophy behind SCE is that performance in a multi-
core system can be analyzed and certified using a modular
approach with respect to the rest of the system. In order to
attain this goal, four main components are used in SCE to
mitigate inter-core interference arising from a correspondent
number of major sources [18], [12], [22], [23], [11]. Apart
from other components used to manage DRAM and I/O,
Colored Lockdown [11] is used to perform deterministic
allocation of real-time task data and instruction in last-level
shared cache. When Colored Lockdown is used, the portion



of task memory allocated in cache will exhibit 100% hit rate.
In this paper, we specifically focus on verifying the OS-level
logic of Colored Lockdown. In this section, we provide an
overview of the design of Colored Lockdown and briefly
describes its internal components.

On multi-core systems, the timing of an application running
on core A can be affected by a logically unrelated application
running on core B if they share cache space. This timing inter-
dependence goes under the name of “inter-core (performance)
interference”. The goal of Colored Lockdown [11] is to use
cache locking to address inter-core interference while pro-
viding a trade-off between efficiency and flexibility. Colored
Lockdown involves two main stages: an offline profiling stage;
and an online cache allocation stage.

Profiling: during the offline stage, each real-time task is
analyzed using a memory profiler [11]. When the task runs
in the profiling environment, memory accesses are traced and
per-page access statistics are maintained. Next, (i) pages of the
task’s addressing space are ranked by access frequency; and
(ii) a profile is produced identifying frequently accessed (hot)
pages by their relative position in the addressing space. The
final profile can be used online to drive the cache allocation
phase. Given the produced profile, two mechanisms are used
to provide deterministic guarantees and a fine-grained cache
allocation granularity, described below.

Page Coloring: last-level caches in modern multi-core plat-
forms are typically set-associative physically indexed caches.
As such, multiple main-memory pages can be mapped to
a given set of shared cache pages. Pages in the same set
are said to have the same “color”. Pages with the same
color can be allocated across cache ways, so that as many
pages as the number of ways can be simultaneously allocated
in last level cache. Any application page can be re-colored
transparently to the application by only manipulating physical
memory and page-table translations. Colored Lockdown relies
on this mechanism to reposition task memory pages within the
available colors, in order to exploit the entire cache space.

Lockdown: real-time applications are dominated by peri-
odic execution flows. This characteristic allows for an op-
timized use of last level cache by locking hot pages first.
Relying on profile data, Colored Lockdown first colors fre-
quently accessed memory pages to remap them on available
cache ways; next, it exploits hardware cache locking support to
guarantee that such pages (once prefetched) will persist in the
assigned location (locked), effectively overriding the default
cache replacement policy.

IV. VERIFICATION APPROACH

This section provides an overview of the approach followed
to verify the main properties of Colored Lockdown. We first
establish the boundaries of the performed verification; next,
we discuss what memory model is being considered; and
finally we describe what components of the hardware/OS are
abstracted.

Verification Strategy: we perform source-level verification
via bounded model checking of the main block of code that
is responsible for the allocation of memory pages in last-level
cache within the Colored Lockdown module. The considered
code is compiled as a Linux kernel module and runs at the
highest level of privilege in the target platform. Verifying its
correctness is therefore of great value.

In order to perform cache allocation, the Colored Lockdown
module tightly interacts with the rest of the Linux kernel in
two main ways: (i) it uses data from many descriptors used
in the kernel; (ii) it invokes memory manipulation/translation
procedures provided by the Linux kernel. The code base of the
entire Linux kernel is too large and complex to be formally
verified. For this reason, we restrict the verification to that
portion of the cache allocation logic that is directly related to

Colored Lockdown.
In order to focus the verification on the important compo-

nents, we abstract the behavior of any invoked kernel routine,
as detailed in Section V. For instance, a routine used to
allocate a new generic memory page is abstracted as a function
that returns an unsigned integer. The return value is non-
deterministic, and such that: (i) it is aligned to the memory
page size; and (ii) it is within the range defined by the bit-
width of the considered memory layout.

Similarly, only sub-fields of kernel data structures that
are relevant to verification are initialized by the verification
routines. A portion of the initialization procedure is parameter-
dependent, so that different cache allocation scenarios can be
analyzed.

Verification Boundaries and Assumptions: the hardware-
level properties that are abstracted mostly concern the behavior
of a typical cache controller that allows per-line cache locking.
Hence, we make the following assumptions. First, we assume
that the initial status of the cache is unknown. This reflects
the status of a cold cache at the time of Colored Lockdown
allocation. Second, we assume that the considered cache
is physically indexed1. Third, we consider that the bits of
the physical address that encode the index of a cache line
correspond to the least significant bits following the cache
offset bits. Hence, the structure of a physical address from the
cache controller’s perspective from most to least significant
bit is: tag bits, index bits, offset bits. Since we consider cache
controllers that support per-line locking, we assume that a
special instruction is available to set a lock bit on a per-line
basis. Once the lock bit has been set, the cache line cannot be
evicted from cache. Finally, we assume that a cache look-up
for a locked line will result in a cache hit.

We verify an implementation of Colored Lockdown as a
Linux kernel module. The same logic, however, can be ported
across different OS’s, assuming that they provide kernel-
level routines with similar semantics. In order to focus our
attention on the target module, we assume that the descriptors
belonging to the OS and used by Colored Lockdown have
been correctly initialized (see Section V). Next, we assume
that profile information about the process under consideration
have been correctly passed from user-space to kernel-space.
Finally, we assume that all the virtual memory pages of the
process have a valid mapping in physical memory. The latter
assumption is typically verified in RTOS’s that do not perform
demand-paging. Under Linux, this behavior can be achieved
using the mlockall system call.

Memory Layout Specification: our verification is paramet-
ric with respect to the memory layout and cache controller
configuration. Thus, it is possible to re-run the verification
procedure on a specific memory/cache configuration and with
a variable number of pages to be allocated, i.e. profile pages.
The following five parameters suffice to fully define the
considered memory subsystem as well as the address structure
from the cache controller’s perspective:
(1) Ps: Number of bits in a virtual address that encode the

offset of a byte in a memory page, also known as page
shift;

(2) Bw: Bit-width of a physical address in the considered
platform, e.g. 32 for 32-bit architectures; 48 for 64-bit
architectures2.

(3) O: Number of bits in a physical address that encode the
offset of a byte within a cache line;

(4) I: Number of bits in a physical address that encode the
index in cache of a cache line;

(5) W : Associativity – i.e. number of ways of the cache.

1Last-level caches in multi-core platforms are typically physically tagged and indexed.
2Despite the bit-width of CPU registers is 64 bit, the memory subsystem typically

works with 48 bit addresses. This results in 256 TB of addressable memory and a 4-
level page tables layout is used.



Given the five parameters above, the rest of the parameters
used to perform cache locking can be derived: size of a
memory page; size of a single cache line; number of lines
and pages (i.e., available colors) per way; number of cache
sets; bit-width of the cache tag; and total size of the cache.

One more parameter controls the amount of memory that
is allocated in cache for the process under consideration. This
parameter defines a generic number of pages that is prefetched
and locked in cache as a result of the coloring/locking logic.
By default, all the pages are considered as process’ heap pages.
This however does not affect the generality of our approach
since there is no difference in the way pages belonging to
various regions are handled.

Verified Properties: a set of core properties of Colored
Lockdown was successfully verified. The target of the verifica-
tion is twofold: (i) that cache allocation is correctly performed
when profiling data are correctly specified from user-space,
and the amount of memory to be locked in cache is smaller
than the cache size; and (ii) that the status of the system
and cache is overall consistent. Note that using the current
verification infrastructure, additional system/cache properties
can be verified. The verified properties can be summarized as
follows:
(1) If the number of pages to be allocated in cache is less or

equal to the number of available cache space in pages,
cache allocation for the considered process is entirely
performed. Otherwise, no cache allocation is performed;

(2) If cache allocation is performed, then all the physical
memory mapped to each virtual address within the range
selected for allocation will be locked in cache;

(3) No more than the total number of locked pages are set
as locked in cache at the end of the Colored Lockdown
procedure;

(4) All the temporary kernel-level resources required by Col-
ored Lockdown to execute are released at the end of the
procedure.

Verification Challenges: we hereby summarize the chal-
lenges that had to be addressed to perform source-level veri-
fication of Colored Lockdown as a OS-level component. One
of the first challenges we encountered in the attempt to verify
a Linux kernel module was the large number of dependencies
with the kernel source code that a module can exhibit. Three
main type of dependencies exist: data type dependencies,
procedural dependencies, and logic dependencies.

A Linux kernel module uses several types that are defined
and exported by the kernel. Many of these types are complex
C-language structures interconnected via pointers. Obviously,
only a subset of the fields in such structures are required
for focused verification. CBMC v. 5.2 [5], the source code
verification tool we used, employs slicing to eliminate unused
variables and reduce verification complexity. However, we
found this to be inadequate for our target system. The first
challenge was to manually prune the definitions of kernel-
level structures to exclude all the irrelevant fields. In order
to overcome this issue, we have incrementally transferred
into the verification sandbox a number of kernel headers and
systematically stripped them of unneeded data types and fields.
For instance, one of the imported files was sched.h that
in the Linux kernel defines constants and types relevant for
process management. The file is about 2700 lines long in
a typical Linux source tree. In the first pruning, we only
maintained the process descriptor definition, reducing the file
length to about 370 lines. Next, we identified the only two
fields required for verification out of the 170+ fields included
in a typical process descriptor.

The second type of dependency is procedural dependency.
The code that needs to be verified uses at top level a set of
routines defined in the kernel code. To reduce the state space
and the amount of code logic to be verified, one challenge
consists in abstracting the semantics of the invoked procedures

(if possible) and making a reasonable assumption on their
output. In Section V we describe as an example the abstraction
performed on the kernel procedure get_user_pages.

Finally, many logic dependencies exist between the state
of the kernel and the verified module. This problem sets
our verification approach apart from verification of standalone
components. In fact, the Colored Lockdown module expects
the status of a number of kernel-level descriptors to be
initialized and valid. Some of these descriptors are created at
boot-time, while others are constantly updated upon system
events. Hence, it would be unfeasible to verify the code
responsible for their initialization. To tackle this challenge,
we have first identified all the logic dependencies. Next, we
have introduced an initialization routine that either explicitly
sets each referenced variable to its expected value or assumes
its value to be within the expected range. A closer look at the
initialization procedure is provided in Section V.

Overall, CBMC revealed a good maturity in handling C
source code. However, when verifying kernel-level code, we
have encountered a few glitches that need to be carefully
addressed to avoid false negatives in the verification process.
Relatively simple workarounds have been found for all the
encountered glitches. Such problems, however, can represent
a serious overhead in the verification process when reasoning
over a large base of system-level code.

The first problem we encountered regards the way void
pointers are handled in CBMC. The standard C semantics en-
forces that the increment of a void * data type is performed
at the granularity of a single byte. Consider the following code:

int void_test(void)
{

void * ptr = (void *)(1 << 12);
ptr += 0x100;
return (ptr == (void *)0x00001100UL);

}

The code compiles without warnings/errors under a standard
GCC compiler. The expected return of the test function
is always 1 under standard C-pointer arithmetic. However, a
CBMC verification instance that relies on this behavior will fail.
Running CBMC 5.2 on the considered procedure, produces the
following output:

Counterexample:

State 21 file ./cbmc_test.c line 18 function void_test thread 0
----------------------------------------------------

ptr=NULL (00000000000000000000000000000000)

State 22 file ./cbmc_test.c line 18 function void_test thread 0
----------------------------------------------------

ptr=NULL + 4096 (00000000000000000001000000000000)

State 23 file ./cbmc_test.c line 19 function void_test thread 0
----------------------------------------------------

ptr=NULL + 3840 (00000000000000000000111100000000)

Violated property:
file ./cbmc_test.c line 58 function main
assertion return_value_void_test$1
(_Bool)return_value_void_test$1

VERIFICATION FAILED

Clearly, State 23, which should reflect the pointer’s status
after the increment in the considered code extract, reports a
wrong pointer value. This triggers a verification failure. A
possible workaround consists in performing the pointer value
increment after a conversion to unsigned long3.

The second issue requires a longer explanation and due to
space constraints we omit a detailed description. Briefly, CBMC
seems to exhibit a glitch in the propagation of a variable value
after it has been assigned using a bitwise operator. Consider
the following snippet:

3The unsigned long type has typically the same width of a pointer.



int retval = 1;
for (...) {

retval &= bool_function(...);
}
if (retval) ...

In this case, CBMC produced verification counterexamples
that reported the execution of the if block even though the
state value of the retval variable was 0 (false);

In our verification, we found that many subtle interactions
in system-level code are hard to fully capture at a source level.
Consider the following case. Colored Lockdown performs re-
coloring of a process page. For this purpose, a new physical
page is allocated and its content copied from the original page,
appropriately modifying the page tables of the process under
consideration. This behavior is “correct” as far as Colored
Lockdown is concerned. However, if no action is taken to
de-allocate the original page correctly, Colored Lockdown
can indirectly trigger a fault somewhere else in the system
as the original page descriptor remains in an inconsistent
state. Similar interplay problems can occur when a module
accesses a data structure without acquiring the required lock.
In a typical multi-threaded application, this problem would
be easy to detect since all the execution flows are known.
The problem is however significantly harder to solve without
knowing where in the kernel potential data races can arise.

Finally, a challenge that affects source-level verification
at large, is the quick increase in complexity as the state-
space expands. In our verification attempt, we were able to
overcome the vast majority of challenges described in this
section. In spite of this, verification settings with realistic
parameters required significant computational resources. We
provide additional insights on the feasibility and limits of our
verification approach in Section V.

V. VERIFICATION DETAILS

In this section, we provide additional details about the
performed verification. First, we discuss how the cache hard-
ware is modeled; next, we discuss the initialization of kernel
structures and OS state. A detailed overview about how cache
and memory layout are initialized is also provided. Finally, we
detail the structure and verification statements used to verify
the core properties of Colored Lockdown.

Cache Model: traditional source-level verification tools,
including CBMC, do not provide primitives to model platform
hardware behavior. For this reason, we use a supporting data
structure to maintain the cache state and to perform assertions
on its state. Colored Lockdown allows deterministic allocation
of memory pages in cache. Thanks to coloring, the mapping
set is explicitly controlled. Conversely, the decision about
the allocation way is left to the cache controller. The key
insight, however, is that when the replacement policy attempts
to allocate a line with a certain set, and the line for that set
is marked as locked in a given cache way, the way cannot
be selected for eviction. Thus, as long as a number of lines
less or equal to the cache associativity is locked, each locking
request can be satisfied. It follows that the logical view of a
cache is a 2D structure (sets vs. ways). One index (set index) is
derived from the physical address being allocated; while the
other index (way index) is non-deterministically determined
by the replacement policy.

Following this structure, the cache status is defined as:
1 typedef struct {
2 void * addr;
3 char locked;
4 } cache_line_t;
5
6 typedef cache_line_t cache_set_t [CACHE_ASSOC];
7 typedef cache_set_t cache_t [CACHE_NSETS];
8 cache_t cache;

In the listing above, CACHE_ASSOC and CACHE_NSETS
refer to the number of sets and to the number of ways

(associativity), respectively. Note that there is no need to
record the value of the cached data, as we are only concerned
with hit/miss behavior. Hence, only cached address and locked
status are being tracked.

The assumption we make about the initial state of the cache
is that no line is currently locked. As such, we initialize the
locked state on all the cache elements as 0, and assign a non-
deterministic value to the address field.

Profile Structure and Initialization: as stated in Sec-
tion IV, we assume that profiling information has been passed
from user-space to kernel-space before the lockdown proce-
dure is invoked. Hence, for verification purposes, we explicitly
initialize the kernel structures that hold kernel-side profile
data. In Colored Lockdown, profiling data is provided via the
Linux CGROUP virtual file-system interface. For a task for
which a profile has been loaded via the CGROUP interface,
a custom structure, namely struct task_profile is
associated with the task descriptor. The most relevant fields
of the structure are: (i) number of memory regions with pages
to be locked; (ii) list of descriptors for memory regions with
data to be locked; (iii) total number of pages to be allocated
in cache; (iv) list of descriptors for pages to be locked.

Since the state of the struct task_profile object
is assumed to be valid, an initialization routine was added.
The routine allocates enough data to contain the full list of
memory regions and memory pages. These parameters are set
at profile loading time, hence they are known at the time
Colored Lockdown is invoked. In the context of this paper,
they constitute parameters for the creation of a verification
instance. A default scheme is used to associate memory
pages to areas. This choice however does not compromise the
generality of the verification, as there is no difference in the
way pages in different areas are handled.

Within each memory region’s descriptor, only the index
that the considered region has in the list of kernel-maintained
virtual memory areas (VMA) is initialized. The logic that
resolves such a (relative) index into an absolute range of virtual
memory addresses is part of the Colored Lockdown logic.
Hence, it is part of the verification.

Task Descriptor Setup: when Colored Lockdown is in-
voked as a system call by a task, it heavily relies on infor-
mation contained within the kernel-maintained task descriptor
struct task_struct to perform cache allocation. When-
ever any system call is invoked in the kernel, a globally visible
expression, namely current, expands to a pointer to the
struct task_struct object for the calling process. For
verification purposes, the object pointed by current needs to
be initialized. The following is an extract of the task descriptor
setup routine:

1 int pages;
2 struct vm_area_struct * prev_vma;
3 struct vm_area_struct * cur_vma;
4 /* ... */
5 prev_vma->vm_start = 0x08048000UL;
6 current->mm->mmap = prev_vma;
7 pages = nd_int();
8 __CPROVER_assume(pages >= AREA_MINPAGES && pages <= AREA_MAXPAGES);
9 prev_vma->vm_end = prev_vma->vm_start + (pages << PAGE_SHIFT);

10 /* Link VMAs */
11 cur_vma->vm_start = prev_vma->vm_end;
12 prev_vma->vm_next = cur_vma;
13 /* Use cur_vma to setup next VMA */

The first area in the list of VMAs is typically the text (i.e.
the executable code) section of a process. The start of the first
area is taken as the default address at which code is logically
placed in compiled executables (line 5). The address of the
first VMA descriptor is recorded inside the current object
(line 6). Next, a non-deterministic number of pages between
the established boundaries is generated in lines 7–8, and the
end of the first VMA is set accordingly (line 9). As VMAs
are initialized, they are placed in an unidirectional linked list
(lines 11–12).



Colored Lockdown Procedure: the Colored Lockdown
module also performs a series of initialization routines as soon
as it is loaded (once) into the kernel. The routines mostly
initialize cache parameters and buffers required to perform
page coloring. Due to space constraints, we omit the details
about how initialization is performed inside the verification
environment.

When Colored Lockdown core logic is invoked as a system
call, the sequence of operations can be summarized as follows:
(1) Access to profile structure and validation of current

object – to make sure Colored Lockdown is performed
on the right task;

(2) Derivation of virtual addresses for each memory page in
the profile to be allocated in cache;

(3) Resolution of virtual addresses into physical addresses and
cache color calculation;

(4) Check of color availability in cache and assignment of first
available color;

(5) If each page has been assigned a color, perform page re-
coloring (as needed) and lockdown.

Hereby, we provide a few extracts of kernel logic that are
relevant to understand the interaction with CBMC. The first
point is trivially verified because we assume that profile data
passing and Colored Lockdown invocation is performed cor-
rectly. The second step largely uses data in the current de-
scriptor initialized as described in Section V. Next, in order to
translate the virtual addresses of pages to be allocated, Colored
Lockdown uses a kernel routine, namely get_user_pages.
The get_user_pages routine represents an entry point for
a number of page-wide kernel operations that can be selected
via a flag parameter. When invoked with no flags, the
function takes as input a range of (virtual) addresses and a task
descriptor and returns an array of pointers to page descriptors.
Each page descriptor corresponds to a page in the selected
range. In Linux, the value of the pointer to a page descriptor
is always a linear translation of the described page’s physical
address. Hence, knowing the pointer to the page descriptor
for a page is equivalent to knowing its physical address. The
get_user_pages logic is fairly complex, but since it is part
of the kernel, it sits beyond our verification boundaries. As
such, we have abstracted much of its functionality as follows.

1 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start,unsigned long nr_pages, int write, int
force, struct page **pages, int *locked)

2 {
3 struct page * page_ptr;
4 assert(nr_pages == 1);
5 assert(write == 0);
6 assert(force == 0);
7 assert(tsk == current);
8 assert(mm == tsk->mm);
9 page_ptr = __CPROVER_uninterpreted_void_ptr(tsk, mm, start);

10 __CPROVER_assume(page_ptr >= mem_map && page_ptr < (mem_map +
MAX_PAGES));

11 __CPROVER_assume(((unsigned long)page_ptr & ((1 << sizeof(
struct page)) - 1)) == 0);

12 *pages = page_ptr;
13 return 1;
14 }

First, a set of asserts on the passed parameters is performed
(lines 4–8), to verify the expected value of a number of
parameters when get_user_pages is called within Colored
Lockdown. An uninterpreted function is used (line 9) to
construct a valid return value for the routine. In general, the
returned value can be any pointer to a page_struct object
(line 11) with a value between mem_map4 and the end of
that portion of kernel memory where page descriptors are
stored (line 10). For any specified parameter value of tsk,
mm and start, the same page pointer should be returned
by successive invocations of get_user_pages. Hence the
use of an uninterpreted function at line 9. The derivation of

4In a Linux kernel, this symbol represents the beginning of the array of page
descriptors.

physical addresses from page descriptor pointers follows a
similar logic.

In the following step the availability of colors is checked.
The check is performed using an internal structure that re-
members the color associated to each page to be allocated.
The step is performed with minimal kernel interaction. When a
“conflict” page is encountered, i.e. a page with an unavailable
color, the module selects the closest available color. It also
marks the internal descriptor for the page to reflect the change.
At this stage, no recoloring is performed, hence no final
changes are carried out.

If the procedure has determined that there exist enough
available space to perform cache allocation, the following
actions are performed. First, the module performs re-coloring
of all the conflict pages. Second, it executes a cache lock-
down operation on each line of each profile page. In the
considered architecture, the lockdown is performed using a
dedicated assembly instruction, namely DCBTLS5. In order to
perform verification, however, we also update the status of the
structure used to model the cache. More in detail, we invoke
the lock_line procedure on each address corresponding
to every line in a page being allocated. The lock_line
procedure is reported below.

1 void lock_line(void * addr)
2 {
3 unsigned int index = get_index(addr);
4 unsigned int way = nd_int();
5 __CPROVER_assume(way >= 0 && way < CACHE_ASSOC);
6 __CPROVER_assume(!cache[index][way].locked);
7 cache[index][way].addr = addr;
8 cache[index][way].locked = 1;
9 }

The procedure is invoked on physical addresses, hence it
is easy to calculate the cache index of the line, i.e. the cache
set where the line will map (line 3). Since no specific cache
replacement policy is assumed, the way selected for the alloca-
tion is generated as a non-deterministic integer (nd_int(),
line 4) between 0 and the number of available ways (line 5).
The ways where a line has been previously locked in the same
set are excluded (line 6), as per assumed hardware behavior.
Finally, with selected set/way, line locking is carried out as in
lines 7 and 8.

To complete the verification, after Colored Lockdown is
invoked, we check that: (i) every physical address (at the
granularity of single cache lines) in pages to be allocated, as
per the profile, can be found in our cache structure; and that
(ii) no more locked lines than what specified in the profile is
marked as locked.

VI. EVALUATION

In this section, we provide a brief evaluation of the time
required to perform verification using the proposed approach.
The evaluation has been performed under two memory/cache
layout scenarios using CBMC version 5.2 on a workstation
machine featuring a 28-core Intel Xeon E5-2658 CPU running
at 2.10 GHz with 32 GB of RAM. Unfortunately, CBMC only
uses only one core and it is not possible to parallelize the
verification effort due to the large amount of memory required
to acquire each sample.

In the first scenario, we consider a 32-bit system (Bw =
32) with the following memory layout: memory pages of size
256 bytes (Ps = 8); a cache line size of 64 byte (O = 6);
and a way size of 512 bytes (I = 3), so that each cache
way can entirely hold 2 memory pages. We study the length
of the verification for an increasing number of profile pages
and cache associativity. Moreover, we set the timeout for the
verification to 2 hours. The results for this setup are reported
in Figure 1.

5This instruction is common to PowerPC-based platforms, such as Freescale MCPxxx
and QorIQ P40xx platforms.
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In the figure, we use logarithmic scale to visualize in a
compact way the runtime of the considered scenarios. As
can be seen, the verification runtime can require from few
milliseconds to entire hours, depending on the complexity of
the system. For a low number of pages and higher associativity,
we consistently observe peaks in execution time. We believe
that these peaks originate from the increased flexibility of in-
cache placement, which negatively impacts the size of the
state space. In general, as the number of pages is incremented
with a fixed associativity, the increment in runtime follows
a regular trend and is exponential in time. Intuitively, this
arises from the exponential increase in state space size to be
explored by CBMC. It can also be noted that the verification
time sharply decreases in those instances of verification that
are not supposed to succeed. These cases, highlighted in the
figure, correspond to those setup where the cache space is
insufficient to carry out allocation, and where verification fails
as it should. In this cases, CBMC stops after encountering
a verification counter-example, hence it does not perform a
complete exploration of the state space. Unfortunately, cases
beyond associativity 6 consistently timeout in our evaluation.

In a second scenario, we evaluate the verification time for a
more complex memory/cache layout by fixing the associativity
to 1 and varying the number of pages. We consider a 32-bit
system with 4 KB memory pages (Ps = 12), 64 byte cache
line size (O = 6), and a way size of 64 KB (I = 10). In
this layout, a single cache way can contain up to 16 memory
pages. The results are depicted in Figure 2.

As shown in the figure, a sharp increment in runtime is
observed at 6 profile pages. Although not included in the
graph, any verification attempt for pages beyond that boundary
runs longer than the selected 2 hours timeout threshold.
Nonetheless, even with the current approach, verification is
feasible on a general-purpose machine for a limited number
of profile pages.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we focused our attention on verification of
kernel-level cache management logic. We have demonstrated
that it is possible to perform verification by reasoning di-
rectly on the system-level C code of the target module. Key
properties for advanced kernel-level features were verified in
a modular way with respect to the rest of the OS logic.
In our approach, we relied on bounded model checking via
CBMC. The work opens many possibilities for improvement.
As a part of our future work, we will investigate how to
include elements of deductive verification to allow verification
of more complex scenarios. Additionally, we will attempt
verification of complementary real-time hardware kernel logic
with the goal of establishing an industry-ready, verified real-
time resource management framework.
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