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Abstract—An increasing demand for high-performance sys-
tems has been observed in the domain of both general purpose
and real-time systems, pushing the industry towards a pervasive
transition to multi-core platforms. Unfortunately, well-known and
efficient scheduling results for single-core systems do not scale
well to the multi-core domain. This justifies the adoption of
more computationally intensive algorithms, but the complexity
and computational overhead of these algorithms impact their
applicability to real OSes.

We propose an architecture to migrate the burden of multi-
core scheduling to a dedicated hardware component. We show
that it is possible to mitigate the overhead of complex algo-
rithms, while achieving power efficiency and optimizing pro-
cessors utilization. We develop the idea of “active monitoring”
to continuously track the evolution of scheduling parameters
as tasks execute on processors. This allows reducing the gap
between implementable scheduling techniques and the ideal fluid
scheduling model, under the constraints of realistic hardware.

I. INTRODUCTION

An increasing demand for high-performance systems has
been observed in the domain of both general purpose and
real-time, safety-critical systems. Overall, the systems involved
range from desktop computers to data-centers, and smart-
phones to embedded platforms. Within the range of different
system configurations, purposes and platforms, the problem
of scheduling the workload on multiple processing units in
parallel is a common and crucial point. A plethora of advanced
scheduling techniques has been proposed, extensively studied,
and implemented in real-time systems. However, while heavy
duty processing algorithms (like video compression) have been
promoted to first-class system components and often imple-
mented as a co-processor, schedulers have been traditionally
implemented in software at an OS-level. As a result, little work
has been done on exploring the potentials of using dedicated
hardware as system scheduler.

The increasing demand for high-performance and energy
efficient systems has pushed the industry toward a perva-
sive transition to multi-core platforms. Optimal and efficient
scheduling algorithms (namely, RM and EDF) exist for the
problem of scheduling real-time tasks on uniprocessor plat-
forms. Unfortunately, many well-known scheduling results for
single-core systems do not scale well to multi-core, and often
exhibit sub-optimal performance if applied outside the single-
core domain due to scheduling anomalies [1]. For example, a
scheduling anomaly occurs when an increase in the period of
a task (resulting in a lower overall CPU utilization) makes
a previously schedulable taskset not schedulable anymore.
Due to scheduling anomalies, no algorithm with job-level
dynamic priorities is optimal on multiprocessor [2], [3]. It
follows that no optimal algorithm for multiprocessor can be
easily implemented in an event-driven fashion (i.e. performing
scheduling decisions at the job level).

Conversely, in order to achieve optimal resource usage on

multiprocessor systems, less restrictive and more computation-
ally intensive algorithms need to be implemented [4]. These
belong to the class of those algorithms with unrestricted dy-
namic priorities and full migrations. However, the complexity
and computational overhead of these algorithms impact their
applicability to real OSes. For example, consider a system
with m processors and n tasks: the most efficient implemen-
tation of Pfair [5], known as PD2 [6], has a complexity of
O(min(n,m ∗ log n)). Similarly, POGen [7] - a scheduling
algorithm for bus transactions - has a complexity of O(n2∗h),
with h being the length of hyperperiod for the considered n
bus transactions.

In this work, we explore the possibilities offered by mod-
ern architectures to implement multi-core scheduling policies
with unrestricted dynamic priorities on a dedicated hardware
module freeing the embedded processors from the scheduling
duty. In fact, by migrating the scheduling responsibilities to a
specialized hardware module, we show that it is possible to
significantly mitigate the undesirable overhead of mentioned
algorithms, while achieving power efficiency and optimizing
processors utilization. We propose an architecture for hardware
schedulers that revolves around the idea of “active monitoring”
to achieve a fine granularity on the way task priorities are
calculated and updated. This is possible because our architec-
ture continuously tracks the evolution of scheduling parameters
as tasks execute on processors. We show how employing
active monitoring simplifies the implementation of complex
scheduling algorithms with unrestricted dynamic priorities;
furthermore, under the constraints of realistic hardware, the
proposed hardware scheduling engine helps reducing the gap
between implementable scheduling techniques and the ideal
fluid scheduling model [8].

The rest of the paper is organized as follows. First,
Section II introduces some background concepts about task
models and multiprocessor scheduling. Section III reviews
prior research work that proposed the adoption of hardware
schedulers. Next, in Section IV, a detailed description of the
proposed architecture is provided. Section V carries out a case
study on the implementation of a LLF hardware scheduler as
an instance of the proposed architecture, while an extensive
evaluation is provided in Section VI. The paper concludes in
Section VII, where we provide the plan for our future work.

II. BACKGROUND AND MOTIVATION

Processor scheduling is the problem of allocating process-
ing time to tasks in a system. In real-time systems, tasks are
commonly defined according to the periodic task model, also
known as Liu and Layland model [9]. The periodic task model
represents the simplest formulation for real-time tasks. Each
periodic task is described by two parameters: a worst-case



execution time (WCET) e and a period p. At each instance
of time that is multiple of p, a new job of the considered
task is released. Thus, it becomes active and available to the
scheduler for execution. Each released job has to execute for
at most e units of time and has to complete before a new job
of the same task is released (this means e is strictly smaller
than p).

A collection of periodic tasks (a taskset) is said to be
feasible on a given number of processors m if there exists
an assignment of active tasks to processors, for each instant of
time, so that each task meets its timing constraints. A taskset
is said to be schedulable by a given algorithm A if A ensures
that all the timing constraints for the taskset are met when
scheduling on m processors. A scheduling algorithm A is
said to be optimal if any feasible taskset is determined to be
schedulable by A.

The periodic task model is the simplest abstraction of
processing tasks that needs to obey strict timing constraints.
Less constrained models have been proposed in literature. For
instance, in the sporadic task model [10], [11], the period of
a task defines the minimum inter-arrival time between two
jobs of the same task. An additional parameter d encodes
the relative deadline for each released job. Further relaxations
have been proposed in [12], [13], [14], [15]. Often, adding
expressiveness to a task model directly impacts how tight the
schedulability results can be.

A. Multiprocessor Scheduling
Since the manufacturing industry is heavily oriented to-

wards multi-core and many-core processors [16], the problem
of efficiently scheduling real-time tasks on multiprocessor
platforms is not only related to a tangible need, but is also
facing new issues in the scalability of scheduling algorithms.
Traditionally, scheduling algorithms for multiprocessors have
followed two directions: partitioning and global scheduling.
In partitioned algorithms, tasks are statically assigned to pro-
cessors, so that each processor can run a local uniprocessor
instance of a scheduling algorithm. In this case, optimality
results for uniprocessor scheduling are valid in a single par-
tition. However, task allocation to partitions is an NP-hard
problem [17]. Moreover, systems with a strict task-to-processor
assignment can enter a configuration in which the load on
different cores is extremely unbalanced. Global scheduling al-
gorithms, instead, assign priorities to all the tasks in the system
and dispatch the top-priority ones on the available processors.
Unfortunately, however, it has been shown that optimality
results for scheduling algorithms on uniprocessor systems are
not valid when multiprocessor platforms are considered [17].

Following the classification provided in [4], scheduling
algorithms can be classified according to (A) the way pri-
orities are assigned to tasks and (B) the degree of allowed
migration. In this work, we consider only global algorithms
with unrestricted migrations (i.e. jobs can be migrated at
any time). The priority assignment schemes can vary from
static assignment, dynamic at job level, up to dynamic and
unrestricted. Rate-Monotonic (RM) [9], Earliest Deadline First
(EDF) [9] and Least Laxity First (LLF) [18] are examples from
each respective category. It is known that global scheduling
algorithms with job-level dynamic priorities cannot be optimal
on multiprocessor [2]. It follows that scheduling algorithms
belonging to the least restrictive class (with dynamic and

unrestricted priorities) are more powerful than algorithms
belonging to the former class, since they can exploit mul-
tiprocessor resources more efficiently. In general, scheduling
policies with unrestricted priorities can generate a high number
of preemptions. As a result, tasks can experience poor cache
performance. However, extensive studies [19], [20], [21] have
shown how cache resources can be managed to be insensitive
to process migrations and context-switches.

Since the number of cores in multiprocessor systems con-
tinues to grow, the size of schedulable tasksets can increase
linearly too. In this case, algorithms that have sub-optimal
performance but are implementable with a lower overhead have
been largely preferred, since they scale well with the workload
size.

For example, global EDF belongs to the class of job-level
dynamic algorithms. Thus, it requires that the priority-based
ordering of active tasks is maintained only at the boundaries
of jobs. It follows that ordered insertions in a queue can
be performed, achieving a complexity as low as O(log n).
Conversely, let us consider Pfair: an optimal algorithm for
multiprocessor with unrestricted dynamic priorities. An im-
plementation for Pfair has been proposed in [6], which has
a complexity of O(min(n,m ∗ log n)). The problem of task
scheduling has several similarities with scheduling of network
flows and bus transactions. To understand how algorithmic
complexity affects overhead, the case of POGen [7] - a bus
transactions scheduler - represents a good example. POGen
uses slotted time and the notion of scheduling interval to per-
form scheduling: the scheduler is activated at the beginning of
each scheduling interval and, each time, a table driven schedule
for all the slots within current scheduling interval is computed.
A sufficient utilization bound for POGen is Upogen = L−1

L ,
where L is the greatest common divisor (gcd) of all the
transaction periods. The complexity of POGen is O(n2 ∗ h),
where h is the length of hyperperiod for the considered n bus
transactions. In the case of POGen, if periods were chosen
with gcd = 1 msec, scheduling interval set to L = 1 msec
and slot size between 10 − 100 µsec, the corresponding
utilization bound is between 90% and 99% and the measured
overhead is up to 3% for n = 40 transactions. However,
the scheduling overhead becomes quickly unacceptable for a
software implementation of POGen if larger transaction sets
(n > 40) need to be scheduled at run-time. Similarly, the slot
size (as in the case of Pfair) affects the run-time overhead of
the scheduler.

B. The Need For A Hardware Scheduler
The high complexity factor has caused that algorithms

with dynamic and unrestricted priorities have been neglected
(from an implementation point of view) in favor of simpler
ones sacrificing resource utilization. However, the performance
loss in many-core architectures due to the deployment of a
restricted scheduling algorithm can become significant and
justify a shift in the role that schedulers play in multiprocessor
systems. Specifically, we propose an innovative architecture
with hardware scheduling engine for multiprocessor systems,
delegating to a specific hardware circuit the responsibility of
efficiently dispatching tasks to cores.

Since the development of silicon-based circuits has hit the
frequency wall, resource specialization has been extensively
used to optimize power efficiency and offload complexity from



general purpose components. Graphic adapters as well as DSPs
have already been going down the specialization road for years.
Moreover, a task scheduler is a critical component that is
mandatory on any system that needs to differentiate between
different execution flows. Thus, specialization for schedulers is
the natural evolution for architectures with a massive number
of cores.

We envision a new paradigm to implement hardware sched-
ulers using “active monitoring”, which can have a number of
benefits:

1) Through active monitoring, the previously neglected
class of complex but powerful global scheduling al-
gorithms with unrestricted dynamic priority becomes
practically feasible. Thereby, the proposed architec-
ture represents a pre-requisite toward the deployment
of a class of optimal scheduling solutions.

2) RTOSes can be structured in a way that entirely relies
on a dedicated circuit for scheduling. This offloads
the burden of implementing software schedulers, sim-
plifying their structure and making them less prone
to programming bugs. In fact, the dedicated hardware
module would represent an highly engineered ar-
chitectural component, whose behavioral correctness
would be extensively tested as a part of processor
(family) design. Conversely, such validation effort
would be systematically off-loaded from the devel-
opment process of any scheduler-free RTOS.

3) Specialization can combine the advantages of com-
plex and powerful scheduling algorithms with power
efficiency, since processor time is not wasted anymore
to multiplex tasks and can be almost completely
allocated for useful computation. Similarly to the case
of GPUs, a scheduler is a components that: (a) needs
to be part of nearly every system; (b) since it performs
a very specific task, can be assigned to a simpler unit
(e.g. no floating-point unit is normally required); and
(c) can be optimized with specialized resources (e.g.
a hardware priority queue).

III. RELATED WORK

Hardware schedulers have been largely employed in net-
working to address the challenge of scheduling packet flows
according to QoS and timing requirements [22], [23]. Such
systems employ simple fixed priority schemes and the main
purpose of a hardware packet scheduler is usually ensuring that
packet switching is performed with the minimum overhead.
Thus, works in this directions have contributed in developing
fast FIFO queues and priority queues that are able to remain
consistently sorted upon insertion/deletion of entries.

Experimental schedulers implemented in hardware for real-
time purposes have been studied in the past as a way to
support accurate tick resolution in task handling and reduce
the interrupt handling time by offloading scheduling tasks
from CPUs. In the Spring kernel [24], system processors are
included in the architecture to offload the scheduling algorithm
from processors that have application workload. In [25], [26],
SpringNet is presented, where a specific coprocessor that
calculates the priority of the task to be scheduled according
to adjustable metrics becomes part of the design of a real-
time oriented system. Similarly, FASTHARD [27] proposes
an implementation of a scheduler for single processor systems

in which the scheduling algorithm is entirely computed in
hardware using a specialized processor.

In [28], a reconfigurable hardware scheduler that allows
choosing among three scheduling algorithms (static priority,
RM and EDF) is proposed. The implemented scheduler is used
to dispatch periodic tasks on a single-core system. Moreover,
a high-level user interface is provided to create the desired
RTOS/scheduler configuration to be deployed on target sys-
tems. Simulation experiments are carried out to validate the
implementation of scheduler and RTOS.

An external scheduler, called Booster, is developed in [29].
The proposed scheduler runs on an external peripheral con-
nected to the CPUs through a communication bus. Although
the scheduling is offloaded, the communication delay still
makes a fine-grained control of tasks unfeasible and its ac-
curacy is subject to interferences from the I/O subsystem.
Similarly, in [30], a comparison between a standard Linux ker-
nel scheduler and a peripheral hardware scheduler connected
through a PCI bus is presented, which highlights the potential
of a dedicated scheduling circuit for systems composed of
interconnected CPU boards.

Some works have investigated the benefits of hardware
schedulers in symmetric multiprocessor platforms like the one
considered in this work. Specifically, in [31] a many-core
architecture is proposed which includes a hardware scheduler
to dispatch workload across 256 RISC cores. The results
derived from a real implementation underline the benefits for
general purpose computing, in terms of reduction of overhead
and load balance, coming from a specialized scheduler. How-
ever, little investigation is carried out about the benefits of
such an architecture for real-time systems. Conversely, [32]
provides an accurate description on how a Pfair [5], [33]
scheduling algorithm for multiprocessor can be implemented
in hardware. The work is particularly relevant for real-time
systems since a class of algorithms derived from Pfair is
known to be optimal on multiprocessor. Even though a detailed
hardware complexity evaluation is provided, this work does not
aim at providing an overall system perspective on hardware
schedulers for real-time systems and their broader impact.

In the HPC domain some studies [34], [35] have demon-
strated how scheduling duties can be offloaded to a specific
processor, allocating almost full resources for computation
of application workload on the remaining units. Although
this approach can be beneficial in application domains where
hardware resources are over-provisioned and power efficiency
is not a strict constraint, it has a limited applicability to real-
time embedded systems. First because if an entire general
purpose processor can be dedicated to scheduling, the need
for an optimal scheduling algorithm is not justified. Second,
because such assignment would determine a waste of all those
processor resources (floating point units, cache levels and so
on) that are not frequently used for scheduling computation.
Third because the performance of a specialized scheduler
would be comparable to those of a general purpose processor,
requiring lower voltage, frequency and thus achieving higher
power efficiency.

Our work is set apart from the mentioned literature because,
to the best of our knowledge, we bridge the gap between
theoretical studies on complex unrestricted-priority scheduling
algorithms and massive multiprocessor hybrid systems that



can easily integrate specialized circuits to optimize workload
distribution and resource utilization. As such, we investigate
and evaluate the possibility of using “active monitoring” to
implement in hardware a class of scheduling algorithms that:
(A) feature near-optimal or optimal performance on multi-
processor platforms; (B) become easy to implement when
relying on active monitoring; (C) ultimately offload the burden
of computing scheduling from cores allocated to application
workload. Finally, we propose as a case study about the hard-
ware implementation of a Least Laxity First (LLF) scheduler,
normally considered as one of the algorithms with highest
overhead.

IV. PROPOSED ARCHITECTURE

In this section, we provide an overview of the proposed
architecture, detailing how it can allow using complex real-
time scheduling algorithms to improve resource utilization on
multiprocessor platforms.

A. Overall Structure
The structure of the proposed architecture is shown in

Figure 1. As can be seen from the figure, the architecture is
essential yet general in its components and allows a straight-
forward implementation of nearly any scheduling algorithm
that involves complex priority calculations and frequent queue
reordering operations. We propose an architecture that is
suitable for multi-core platforms and that can be adapted to
many-core architectures with a limited number of changes to
that portion of the communication interface that is responsible
for delivering scheduling decisions.

Fig. 1. Overview of the proposed architecture.

As can be seen in the figure, the scheduler is interfaced with
a bulk of general purpose processors on which the application
workload is dispatched. The pool of general purpose processors
runs a stripped version of a RTOS which completely relies on
the hardware module to schedule tasks. The RTOS and thus
the processors communicate with the hardware module through
an interface composed of global and banked registers. On

the other end, the hardware scheduler stores task parameters
and configuration options in internal registers. These internal
registers are used by the scheduling controller to compute the
scheduling algorithm, as well as to keep its internal state. In
addition, the hardware scheduler provides a number of active
task monitors: one per each task that can be supported.

B. Hardware Scheduler Architecture
We propose an architecture for hardware schedulers that

use the idea of “active monitoring” to achieve a fine granularity
on the way task priorities are calculated and updated. Specif-
ically, what makes active monitoring a powerful technique is
that it allows us, under the constraints of a realistic hardware,
to bring the scheduling model closer to the idea of fluid
scheduling. In fact, our architecture continuously tracks the
evolution of task parameters as tasks execute on processors.
As we show in Section V, the achievable granularity is
proportional to the achieved synthesis frequency.

1) Communication Interface: The communication interface
represents a bidirectional gateway for data flowing from and
to the processors that carry either configuration parameters or
pieces of scheduling information. The interface is divided into
three main parts.

The first part comprises a set of global memory mapped
registers that are seen coherently from each processor. This set
of registers is used for system-wide configuration purposes:
at system start-up or at task creation, the host RTOS can
program the hardware scheduler with the parameters of the
considered taskset1. In our architecture design, the number of
supported tasks represents an adjustable parameter that will
assume a fixed value in the final hardware synthesis. As such,
the configuration parameters of the tasks are sent serially to
the scheduler using only a pair of interface registers. A specific
command is sent to validate the transmitted set of parameters.
Since the taskset configuration is only performed at bootstrap
time, having a serialized interface does not represent a scal-
ability issue. Instead, the set of registers described below are
used for potentially concurrent task handling commands.

The second part consist of the banked register: all the cores
access them in the same range of addresses, but each of them
sees a different copy of the mentioned registers. This structure
has the advantage of allowing the RTOS code to be simpler and
more generic. The set of banked registers is used to carry two
main pieces of information: first, the scheduler puts in each
banked register the task ID to be scheduled on the targeted
processor. Second, a processor can signal the termination of a
task to the scheduler using its own banked register.

The interrupt lines that wire the hardware scheduler to
the processors represent the third portion of the interface.
As previously mentioned, each processor keeps computing
application workload until the scheduler module instructs the
processor to perform a context-switch to a different task. As
soon as the scheduler, according to its policy, determines that
a different task needs to be executed on a given processor,
it places in the corresponding banked register the task ID of
the new task and asserts the interrupt line for the targeted

1The parameters sent to the scheduler should be inclusive of all the pieces
of information needed to schedule the taskset and depend on the considered
task model. For instance, period, WCET and deadline would be sufficient for
sporadic tasks



processor. It is responsibility of the RTOS to correctly handle
the interrupt and perform the context-switch.

2) Active Task Monitors: The ability of the proposed
scheduler to perform active monitoring on the scheduled real-
time tasks is offered thanks to the addition of a series of
active task monitors. A hardware scheduler which follows the
proposed architecture internally implements a number of task
monitors that is the same as the number of supported tasks. In
their simplest formulation, active monitors are counter registers
whose status can be dynamically configured by the scheduling
controller.

Each task monitor is updated at the boundary of an internal
clock cycle. For each scheduling monitor, three aspects can be
dynamically configured: (A) the status of the monitor (counting
or stopped); (B) the counting step, as the difference between
two consecutive values of the monitor; (C) the counting
direction, i.e. if the counter is being incremented or decre-
mented. The scheduling controller, thus, has the responsibility
to regulate the behavior of task monitors so that the contained
value is reflective of the task priority. For example, as we show
in Section V, to implement a LLF scheduler, it is enough that
a task monitor is configured to be monotonically decreasing
for active, non-scheduled tasks and stopped for active and
currently scheduled tasks. The task monitors are logically
independent hardware modules, and, as such, their update can
progress in parallel at the clock boundary.

3) Scheduling Controller: The scheduling controller is the
main block of the module which implements the actual logic
of the desired scheduling algorithm. In its simplest formula-
tion, it has three main responsibilities. First, it is responsible
for pre-processing and storing the configuration parameters
passed through the global registers. This is done to initialize
the scheduling mechanism. Second, it directly controls the
behavior of the task monitors configuring their step, status and
direction at each scheduling decision. Third, it is responsible
for selecting the m top-priority tasks to be scheduled on the
corresponding m processors and communicating the schedul-
ing decisions through the previously described interface. The
selection of the top-priority tasks can be performed in a range
of different ways.

For a limited number of tasks and processors, simple
combinatorial logic can be set in place to query the status
of the task monitors and find those tasks with the lowest (or
highest) value of the monitored quantity. This is the approach
followed in the proposed case study in Section V. However, as
the number of tasks and processors to be supported increases,
a more efficient hardware priority queue can be implemented
in which each item is a task and whose ordering is kept
consistent as the update of task monitors progresses. Similar
queues have been largely studied and implemented for network
applications [36], [37] and can scale with logarithmic factor
with respect to the number of contained items.

Although we propose a structure for a hardware scheduler
that is rather generic, some optimizations can be placed to
reduce context-switches and migrations on the RTOS side.
The first obvious optimization is ensuring that a scheduling
interrupt is sent to a target processor only in the case in which
the new task to be scheduled is different from the one selected
at the previous decision. Moreover, it may happen that the
pool of tasks selected to be scheduled at a given time includes

some tasks that were already been selected at the previous
scheduling decision. In this case, under the assumption that
all the processors are equivalent, it is important that said
tasks continue executing on the currently assigned processor.
Once again, for a limited number of processors and tasks, this
optimization can be implemented using simple combinatorial
logic, but a dedicated mix & match module can be added
to the scheduler to perform dispatching decisions on top of
scheduling decisions.

4) Overhead and Scheduling Granularity: The overhead
of a traditional operating system corresponds to the amount of
processor time spent to update task priority queues, perform
context-switches, update internal structures and so on. Thus, if
we consider an OS using a periodic interrupt with a period of
Tintr, with a handling time of σ, its overhead can be computed
as a utilization factor Ut = σ

Tintr
. Thus, in a system with n

tasks, the overall overhead utilization factor will be [38]:

Uov = δ

n∑
i=1

Ni
pi

+ Ut (1)

Where δ is the cost of a context switch and Ni is the
maximum number of context switch that a given task with
period pi can be subject to. The value of Ni strictly depends
on the considered scheduling algorithm.

The presence of a dedicated hardware scheduler eliminates
the need of a periodic interrupt for scheduling purposes. In
fact, the hardware scheduler forwards interrupts to the main
processor(s) only when a new scheduling decision needs to
be taken. Thus, in our architecture, the amount of overhead
only depends on the number of context switches performed by
the considered scheduling algorithm, leading to an improved
overhead factor of:

U ′ov = δ

n∑
i=1

Ni
pi

(2)

In a system that adheres to a fluid scheduling model, the
minimum distance between two successive decisions tends
to zero. However, this cannot be achieved in real systems
for two main reasons: (A) events can only occur at the
boundary of a clock cycle; (B) allowing scheduling decisions
(and thus context-switches) with an arbitrarily low inter-arrival
time, would result in an unacceptable overhead. We call this
parameter the scheduling granularity. It is clear that, for
real implementations, a trade-off needs to be found between
scheduling granularity and resulting overhead, which in turns
depends on the selected algorithm. In the next section, we
show how a LLF scheduler can be implemented with a high
granularity and a fixed 1% overhead.

5) Advantages: The advantages of the proposed archi-
tecture range from scalability benefits to flexibility and are
summarized below.

The first and most important benefit is that a hardware
scheduler that follows the proposed architecture makes practi-
cal to use complex scheduling algorithms that would introduce
an undesirable overhead if implemented in software at an
OS-level. Such algorithms often exhibit improved resource
utilization with respect to simpler or more restricted ones.
The set of implementation options include algorithms from



the less restrictive class mentioned in [4], which features tasks
with dynamic unrestricted priorities. In Section V we detail
how a LLF scheduler can be implemented and provide the
basic ideas on how EDZL [39], MLLF [40] and EDF could
be implemented as well using the proposed architecture.

The resulting hardware complexity, moreover, can scale
well with the number of cores and supported tasks. In fact,
the number of required internal registers grows linearly with
the number of cores. Similarly, the number of required task
monitors linearly increases with the number of supported tasks.
Similarly, the number of required interrupt lines scale linearly
with the number of cores. Finally, as previously mentioned,
hardware priority queues can allow implementations where the
number of required hardware resources scale logarithmically
with the number of entries [36].

Furthermore, the proposed architecture features all the
benefits of providing a real-time system, as well as a general
purpose system with a dedicated scheduler module. Besides
offloading the application processors from expensive compu-
tation of scheduling and increasing the power efficiency of
the system, other benefits include: simplifying the design of
OSes; increasing their robustness; as well as removing the
dependency between the overhead of context-switches and the
number of handled tasks; and increasing the power efficiency
through specialization.

6) Current Limitations: Our current implementation
presents some limitations that can be overcome by extending
the set of parameters exchanged through the interface and/or
increasing the complexity of the scheduling controller.

First, in this work we focus on real-time tasks that obey
the periodic model. Periods can be interpreted as minimum
inter-arrival times and explicit deadlines can be added to
the list of parameters to implement a scheduler that adheres
to the sporadic task model. Similar changes can be made
to implement algorithms for more expressive task models.
Furthermore, we plan to extend the proposed architecture, as
a part of our future work, showing how a shared resource
model and different types of servers for aperiodic tasks can be
supported by the architecture.

Finally, additional extensions to the set of considered task
parameters can allow deploying hardware schedulers for mixed
criticality systems and non-real-time systems. For example,
direct control can be given to either a user or a peripheral in
the system to selectively and dynamically prioritize a subset
of tasks.

V. CASE STUDY: BARE METAL OS + LLF
This section presents a case study to demonstrate how

the proposed architecture can be instantiated to realize hard-
ware real-time schedulers that implement complex algorithms.
Specifically, we focus on the implementation of a Least Laxity
First (LLF) [41] scheduler.

A. Why LLF?
LLF scheduling algorithm, which assigns a higher priority

to a task with smaller laxity (slack time) is an optimal schedul-
ing algorithm on single processor platform. Unfortunately, it
has been proven to be non-optimal [18] on multiprocessor
systems. In an extensive study [42], a schedulability test for
LLF has been developed. As summarized in Figure 2, the

study highlighted how, on multiprocessor, LLF (and other
variants based on laxity calculation) can (A) achieve similar
performance to Pfair, which is known to be optimal, and (B)
largely outperform both Pfair and global EDF on instances of
sporadic taskset with density λ2 greater than the number of
processors m.

Fig. 2. Simulation results for EDF, Pfair, EDZL and LLF over 100,000
random tasksets on a four-processor platform, as presented in [42].

Unfortunately, however, in its theoretical formulation, a
laxity tie determines that an infinite number of context-
switches is produced by the algorithm. Moreover, since LLF
adheres to a fluid scheduling model in which the priority of
a job can change in an unrestricted manner throughout its
execution, it has been traditionally considered as unpractical
for real applications.

By choosing LLF for our case study, we demonstrate that
it is possible to build realistic systems that employ a class
of scheduling algorithms that have been reputed unpractical
from an implementation point of view, despite their promising
theoretical properties. Specifically, we show that the proposed
architecture is able to: (A) implement algorithms that follow
a fluid scheduling model at a fine granularity by using active
monitoring; (B) engineer the implemented scheduler to have a
fixed and customizable overhead.

B. Platform for Proposed Architecture
In this case study, we use a hybrid platform to benefit

from a multi-core embedded processor while at the same time
being able to implement a dedicated hardware LLF scheduler.
Specifically, we have used a ZedBoard development board
based on the Xilinx Zynq Z-7020 SoC which features a
dual-core ARM Cortex-A9 MPCore operating at a frequency
of 667 MHz. The application cores are coupled with an
Artix 7 FPGA featuring 85k logic cells and including 140
blocks of RAM of 36 Kb each. The block of programmable

2In a sporadic taskset, the density is calculated as λ =
∑

i
ei

min(di,pi)
.



logic can be used to both change the interconnections of the
processor subsystem with the I/O peripherals and to implement
custom user-defined additional logic. Thus, we deploy our LLF
scheduler inside the FPGA block, having a fully operating
dual-core embedded processor.

1) Host OS: Linux could be selected as the OS that runs
on top of the embedded ARM cores. This would have the
great advantage of enabling a fast development of user-space
benchmarking applications and full interactivity with a wide
range of I/O peripherals. Unfortunately, however, the Linux
kernel heavily relies on periodic timer interrupts to perform
scheduling, book-keeping of resources and interact with I/O
devices. Since our aim is to explore the benefits of a system
design that does not interrupt the CPU to perform scheduling,
the option of using a Linux OS presents several disadvantages.
In particular, it would require a non-trivial effort to modify the
Linux kernel so as to exclude the scheduling features while
implementing a backward-compatible scheduler in hardware.

For this reason, we have developed an essential bare-metal
RTOS, called PicOS, on top of the hardware initialization code
provided by Xilinx as part of the board support package (BSP).
This bare-metal OS provides basic primitives for the definition
of periodic tasks, interaction with devices and debugging, but
it does not implement any scheduling primitive. In fact, it
completely relies on interactions with the hardware scheduler
to schedule/de-schedule tasks.

2) Observed Granularity and Overhead: Once a schedul-
ing algorithm is synthesized (in our case on an FPGA), the
obtained synthesis frequency fhw can result relatively close to
the clock speed fcpu of the main processors. This indicatively
means that scheduling decisions can be forwarded to the
processors every Tsched =

fcpu
fhw

main processor clocks. A
lower value of Tsched implies that the fluid scheduling module
is followed with a finer granularity. However, since in a real
system the context-switch overhead cannot be null, a low value
of Tsched would determine an unacceptable overhead in a LLF
scheduler. In fact, in case of a laxity tie and Tsched = 1, the
LLF hardware scheduler would trigger a context-switch per
each clock cycle of the main processor.

In our implementation, we show that a good granularity
for a LLF scheduler can be obtained, while at the same time
a constant and limited overhead cost can be paid. Specifically,
we enforce that our hardware module can forward scheduling
decisions only at the boundary of a scheduling tick, defining
that a given number of internal clock cycles must occur
between two successive tick. In this case, Tsched =

fcpu
ftick

. It
is easy to see that, given the price δ for a context-switch, the
implemented (LLF) scheduler will have an overhead of at most

δ
Tsched

. Thereby, ftick is a parameter that can be adjusted to
obtain a arbitrarily low overhead. In our experiments, we have
observed that, thanks to the reduced context-switch time in
the RTOS, we were able to obtain a 1% overhead for our LLF
scheduler when ftick =10 KHz3.

3) Communication Interface: As mentioned in Section IV,
the communication interface is implemented using banked and
global registers. In our LLF instance, we have three 32 bit
global registers per core which the host RTOS uses to send
configuration commands to the LLF scheduler. Two additional

3The ftick for a traditional Linux scheduler is 250 Hz

32 bit banked registers are used by the LLF scheduler to send
the ID of the task to be scheduled to each core.

4) Active Task Monitors: Each task monitor is responsible
for updating the state of each task. To implement LLF, each
monitor keeps track of two metrics of the current job, (1)
relative time to deadline at time t, i.e. T Deadline = di − t,
and (2) the amount of computation left T Computation. The
values are kept in two 16 bit registers. Upon arrival of a
new job, T Deadline and T Computation are initialized to
the Period and WCET of the task respectively. Moreover,
the monitor is configured to decrement T Deadline each tick,
while T Computation is decremented for each tick if the task
is scheduled. At any time the difference of the two metrics
would give us the laxity of the current job. This information is
used by the scheduling controller to decide the priority of each
task. In case a task has expired its WCET i.e., T Computation
equals zero, the T Runnable bit for that task is set to DONE,
which means that the current job has completed and thus it
cannot be scheduled anymore until the next period. Also, if
a task completes earlier than its WCET, the RTOS sends a
TASK DONE command that sets the T Runnable bit for the
corresponding task to DONE.

Finally, whenever there is a change in the task ID that needs
to be scheduled on a given processor, the interrupt signal is
set and the new task ID is communicated to the host.

5) Scheduling Controller: The controller module is respon-
sible for implementing the LLF logic. Specifically, the control
on the task monitors is performed according to the criteria
mentioned above. In case of a tie between two or more tasks,
the logic gives preference to those tasks that were scheduled
at the previous decision step. In this case, no interrupt is sent
to the host and the cost of unnecessary context switches (as
mentioned in Section IV-B3) and interrupt handling is avoided.
When this condition is not met, the tie is broken according to
the lowest task ID and an interrupt signal is sent to each core
in which a context-switch has to be performed.

6) Implementation sketch for EDF, MLLF and EDZL:
Since scheduling algorithms with job-level dynamic priorities
are a subclass of those with unrestricted dynamic priorities,
they can as well be implemented using our architecture. For
instance, in order to implement EDF, it is enough to (A)
initialize a task monitor with the value of relative deadline at
each job arrival and (B) configure task monitors for active tasks
to monotonically decrease the value of deadline. The tasks with
minimum value of deadline are selected to be scheduled.

MLLF [40] is a variant of LLF which significantly reduces
the number of generated context-switches. The main idea is
that, when a set of m tasks is scheduled at t, it is possible to
defer the next context-switch by α = dmin(t)− la(t), where:
dmin(t) is the time-to-deadline of the Tmin task with the earli-
est deadline; and la(t) is the laxity of the task with the smallest
remaining execution time among those with minimum laxity.
MLLF can be implemented using the proposed architecture
by: (A) controlling the task monitors in the same way as the
proposed LLF implementation; (B) calculating the new value
of α after each scheduling decision; and (C) deferring the next
scheduling decision for α ticks.

EDZL [39] is a variant of EDF that schedules tasks ac-
cording to EDF until some of the non-scheduled tasks reaches
a zero-laxity state. Tasks with zero-laxity are given highest



OS OS Type Sched. Overhead (µs)
PicOS RTOS, ext. scheduler 0.98
Linux Standard Linux 2.9

LitmusRT RT Linux 3.5
Preempt RT RT Linux 2.7
C Executive RTOS 3

Delta OS RTOS 23
ThreadX RTOS 2

TABLE I. COMPARISON OF OSES SCHEDULING OVERHEAD.

priority. EDZL can be implemented following the proposed
architecture by monitoring the amount of slack for each task
as we do for LLF. Next, scheduling decisions select at most
k ≤ m tasks with laxity equal to zero, and the remaining m−k
tasks with the earliest deadline.

VI. METHODOLOGY AND RESULTS

In this section, we describe the methodology followed
in the experiments, as well as the results of the performed
evaluation.

A. System Instantiation
A performance evaluation as well as an analysis of FPGA

resource utilization have been done on a final version of the
system that includes only the deployed components. Specifi-
cally, the ARM CPUs have been instantiated together with a
central interconnect. Moreover, the scheduling interrupt pins
of our LLF scheduler module have been routed to the Generic
Interrupt Controller (GIC). A basic support for the UART has
been included in our RTOS, while the discussed LLF module
is the only hardware block configured on the programmable
logic block.

B. Scheduling Overhead
We have measured the time required to handle the schedul-

ing interrupt, which includes interacting with the LLF sched-
uler module and performing a complete context-switch of the
preempted/preempting tasks.

The methodology used to perform the measurements in-
volved using the ARM performance counters. Specifically, we
have configured the PMCCNTR (clock cycles counter) register
to monotonically count the CPU clock cycles with a granularity
of a single cycle and to be accessible from user-mode. Next,
we have placed two single assembler instructions to read the
performance counter into a global variable, at the beginning of
the interrupt handling procedure and at the end, respectively.
This allows us to have an accurate measurement of the time
required to handle a scheduling interrupt with a negligible
measurement overhead (4 clock cycles).

The results of our measurements highlight two main as-
pects. First, that an external scheduling module can be suc-
cessfully used to offload the complexity of computing the task
schedule. In fact, the average number of clock cycles needed
to handle a scheduling interrupt is 651 cycles, resulting in a
handling time of about 0.98µs. Such handling time is remark-
ably lower than a classic Linux, a Real-Time Linux4 [43] and
represents a significant improvement over existing RTOSes as
well [44]. A complete comparison in reported in Table I.

Second, that since the complexity of the scheduling al-
gorithm is hidden inside the hardware module, the resulting

4Note that the results reported on Linux and RT Linux systems have been
performed on high-end machines.

scheduling overhead has an excellent determinism. In fact, the
observed variation on the scheduling overhead over 100000
samples has returned a minimum of 648 cycles and a maximum
of 653 cycles, which, in turn, translates to a time fluctuation
of ±0.004µs. This is a highly desirable feature for a RTOS
designed for safety-critical applications.

The specially low overhead paid for handling tasks accord-
ing to the LLF schedule computed by the hardware module
implies that, given a target context-switch overhead, our setup
is able to sensitively increase the granularity of the scheduler.
Specifically, for schedulers implemented in software, typical
tick frequencies range from 100-250 Hz, which is the default
tick frequency of a Linux kernel compiled for i386 platforms.
Our experiments suggest that, while keeping an overall CPU
overhead of 1%, PicOS can have a tick which is two or-
ders of magnitude higher. Specifically, we have tested our
implementation with a FPGA clock frequency of 48 MHz,
with a tick defined as 4800 internal clocks. This leads to
a scheduling period of 100µs, which, in turn, determines
a scheduling frequency ftick = 10 KHz. It follows that a
scheduling model that is feasible and much closer to the idea
of fluid scheduling can be adopted. Clearly, another problem
related to designing a system in compliance with a practically
feasible fluid model concerns cache behavior of applications.
However, cache resources can be administered in a way that
they become insensitive to process migrations and context-
switches, for example using lockdown mechanisms [19], [20].

C. Analysis of Hardware Resources
Figure 3 reports the trend of the FPGA resource utiliza-

tion, in terms of flip-flops and Look-Up Tables (LUTs), for
the developed LLF scheduler module. The measurements are
reported as a function of the number of tasks supported by
the system. This metric is useful to understand the complexity
of the proposed scheduling mechanism. As can be noted, the
resource usage trend is linear with the number of tasks.

Fig. 3. Resources usage trend of our LLF scheduler as a function of supported
tasks.

In this case, we compare our result with the Pfair scheduler
in [32], whose gate occupation graph is reported in Figure 4.
As can be noted, despite the differences in synthesis technol-
ogy5, the order of magnitude of utilized components is the
same, which suggests a comparable hardware complexity of
the considered schedulers.

5The results in Figure 4 have been obtained using a 90nm ASIC library.



Fig. 4. Resource usage trend of Pfair ASIC scheduler presented in [32].

D. Maximum Frequency
We have evaluated how the internal maximum frequency

of the synthesized LLF scheduler varies with the number of
supported tasks. The synthesis objective has been set as speed
optimization. The results are shown in Figure 5 and highlight
that the maximum frequency decreases with a law that has a
sharp decrease for a number of supported tasks between 10 and
20, while it follows a linear trend from 20 tasks ahead. It is
worth to note, however, that, despite the undesirable decrease
in the observed maximum frequency, a real-size taskset of 50
tasks leads to a frequency of about 48 MHz, which is still
sensitively higher than what is required by our PicOS. In fact,
to keep a scheduler tick frequency of 10 KHz, it is enough
to raise a tick interrupt every 4800 FPGA clock cycles, i.e.
ftick =10 KHz.

Fig. 5. Maximum Frequency (FMax) trend of our LLF scheduler as a function
of supported tasks.

E. Power Usage
Finally, we have investigated the power consumption of our

current FPGA implementation of the proposed scheduler as a
function of the number of tasks supported by the system. This
is because, in the current implementation, the parameters of
all the tasks are stored inside the FPGA module for schedule
computation. This impacts FPGA power usage in two ways:
first, additional flip-flops are required as the number of sup-
ported tasks grows; second, the critical path of the scheduler
involves updating slack values and finding two minimum slack
values, which is proportional to the number of tasks running
in the system. Figure 6 depicts the trend of the power usage
as the number of tasks supported by the system grows.

As can be noted, the trend for the power consumption of

Fig. 6. Power usage trend of the hardware LLF scheduler as a function of
number of supported tasks.

the LLF scheduling logic follows a growth law that - as already
observed for the frequency - is piecewise linear. Specifically,
a sharp increase can be observed between 30 and 40 tasks,
while a linear trend is exhibited from 40 tasks ahead. This
result is not surprising, since the synthesis objective is speed
optimization. This means that, in order to achieve a higher
frequency, the synthesis tools apply sub-optimal strategies
from a power efficiency point of view.

We envision that future implementations will involve the
creation of dedicated ASIC circuits. However, the translation
from FPGA structure to ASIC logic gates is not straightforward
due to the profound differences in synthesis technology [45].
Thereby, as a part of our future work, we plan to implement
and evaluate a class of laxity based scheduling algorithms
using a 45nm ASIC library.

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed an architecture that revolves
around the idea of “active monitoring” to continuously track
the evolution of tasks parameter according to the logic imple-
mented scheduling algorithm. Such an architecture is general
enough to allow a practical implementation of a class of
algorithms that use unrestricted dynamic priorities. Since these
algorithms are more powerful than those featuring job-level
dynamic priorities, they are able to exploit processor resources
more efficiently, especially as the number of processors grows.

We demonstrate that: (A) it is possible to offload the burden
of scheduling to a dedicated hardware module; (B) doing so
can mitigate the high complexity factor that needs to be paid to
deploy scheduling policies with unrestricted priorities; and (C)
the resulting low scheduling overhead helps reducing the gap
between implementable scheduling techniques and the ideal
fluid scheduling model.

For these reason, we have provided an example of how a
LLF scheduler with fixed overhead and high granularity can be
instantiated using the proposed architecture. We also provide
the intuition on how algorithms belonging to the same class
(EDZL and MLLF) can be implemented as well. Finally, we
have performed an evaluation on a real multi-core hardware
platform and RTOS.

As a part of our future work, we plan to extend the
proposed architecture to include the support for shared re-
sources and non-interruptible sections. Moreover, we want
to investigate the benefits of performing the synthesis of



hardware schedulers using ASIC technologies, as well as to
further generalize the proposed architecture by developing a
programmable scheduling processor.
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