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Abstract—As real-time embedded systems become more com-
plex, there is the need to build them using high performance
commercial off-the-shelf (COTS) components. However, tasks
can exhibit hard to predict worst case execution times (WCET)
when executing on commodity hardware, due to contention
among shared physical resources. Past work has introduced the
PRedictable Execution Model (PREM) [1] to solve this issue, but
unfortunately, the time required to manually refactor existing
code according to this model is too high. Light-PREM proposes
a novel technique that automates the refactoring process needed
to convert legacy software applications to PREM-compliant code.
The advantage of Light-PREM is twofold. On one side, it makes
the adoption of PREM more attractive from an industrial point
of view, because it significantly reduces the amount of work that
is needed to generate PREM-compliant code. On the other hand,
the proposed methodology is general enough to be used with
any embedded software design. Experimental results show that
Light-PREM significantly improves the predictability of real-time
applications without requiring software engineers to gain a deep
understanding about software memory usage.

I. INTRODUCTION

Real-time embedded systems are becoming increasingly
more complex and have stringent performance requirements.
Hardware components specifically designed for real-time sys-
tems ensure temporal predictability, but often fall behind in
terms of performance when compared to commercial off-
the-shelf (COTS) components whose time-to-market is sig-
nificantly shorter. As such, there is a need to use COTS
components to improve performance of real-time embedded
systems, but their usage introduces significant challenges at
integration time since COTS components are not designed to
support real-time systems. COTS-based systems are highly
optimized for average performance, but introduce execution
time spikes in the worst-case due to non-realtime contention
policies that are in use to regulate the access to shared
physical resources (such as main memory, system bus, I/O).
Specifically, if multiple I/O peripherals and a CPU attempt
to access the bus at the same time, the resulting unregulated
contention may unpredictably delay activity of I/O peripherals
or the CPU.

The PRedictable Execution Model developed in [1] focused
on solving this problem. PREM introduces a new execution
model that aims to improve predictability of worst case
execution times (WCET) by using a high-level co-scheduling
mechanism for peripherals and CPU. As recalled by Section II,
PREM enforces a structured memory access pattern on exe-
cutables, so that exclusive access to the shared system bus can
be granted to either a single task or the I/O subsystem, regu-
lated by a peripheral scheduler [2]. Use of PREM allows sys-
tem designers to use COTS components to run real-time appli-
cations, and gain the advantage of higher performance without
experiencing unpredictable execution delay. Migrating from
legacy code to PREM-compliant code requires adding PREM
annotations correctly inside the application code. Thereby, one

of the major disadvantages of PREM is that converting a
legacy application to a PREM-compliant executable requires
either having a deep understanding of the application code
or performing reverse engineering to place PREM annotations
correctly. Such process is time consuming, and difficult for
large-scale applications. The presented work aims to overcome
this problem by introducing a novel technique to automatically
perform legacy-to-PREM application refactoring. In summary,
this work proposes an automated process, named Light-PREM,
to support the adoption of the PREM model for arbitrary
complex applications.

In PREM, the focus is on enforcing the aforementioned
deterministic memory access pattern inside single C functions,
defined as predictable functions. Thus, Light-PREM automat-
ically generates PREM annotations which include prefetch
statements for majority of memory locations accessed inside
the function under analysis. In this way, when the predictable
function executes, the prefetch block placed at the beginning
of the function will bring into the local CPU cache those
cache lines that will be accessed during its execution. Light-
PREM determines which memory accesses to prefetch by
using memory profiling tools. It then determines how to
perform such prefetches by translating the absolute memory
addresses recorded at profiling time into chains of pointer
dereferences that always begin with an in-scope variable. It
does so by intercepting memory allocation procedures and
constructing a graph representing pointers between various
memory blocks. This technique is compiler-independent and
experimental results show that it reduces cache misses by 95%
in a non-trivial benchmark suite like the JPEG Image Encoding
Benchmark.

The contribution of this work is twofold. First, Light-
PREM is able to perform automatic refactoring of arbitrarily
complex legacy applications according to the PREM model.
This is crucial to make PREM a viable solution for real-
time and embedded industry. Second, it proposes a novel,
compiler-independent strategy to generate prefetch statements
relying on off-line data profiling. As we show, the technique
can succesfully produce PREM-compliant code if (A) the
predictable interval contains no system calls and references
to dynamically liked objects, and (B) dynamic memory allo-
cations are performed outside the predictable interval.

The rest of the paper is organized as follows. First, Section II
briefly recalls the basic principles and key ideas behind PREM.
Section III provides a high-level description of Light-PREM.
Next, Section IV provides insights on the implementation of
Light-PREM. The presented results in Section V show how
Light-PREM is able to perform automatic refactoring of a
legacy application according to the PREM model. An overview
of the related work is available in SectionVI. Finally, the paper
concludes in Section VII.

II. BACKGROUND

In [1], the PRedictable Execution Model (PREM) was pro-
posed. The intuition behind PREM is that in the general case,



the memory access patterns of tasks executed on commodity
hardware can exhibit a high variance. In particular, predicting
an exact sequence of fetches in main memory is extremely
difficult, while, at the same time, assuming the worst case
scenario leads to very pessimistic assumptions. Thereby, the
key idea in PREM is to enforce, for a given set of tasks, a
novel execution model with three main features:

1) jobs are divided into a sequence of non-preemptive
scheduling intervals;

2) some of these scheduling intervals (named predictable
intervals) are executed without cache misses by
prefetching all required data at the beginning of the
interval itself;

3) the execution time of the predictable intervals is kept
constant by monitoring CPU time counters at run-time.

More in detail the code for each task τi is divided into
a set of Ni scheduling intervals {si,1, . . . , si,Ni}, which are
executed sequentially at run-time. The timing requirements of
τi can be expressed by a tuple {{ei,1, . . . , ei,Ni}, pi, Di},
where pi, Di are the period and relative deadline of the task,
with Di ≤ pi, and ei,j is the maximum execution time of si,j ,
assuming that the interval runs in isolation with no memory
interference. A job can only be preempted by a higher priority
job at the end of a scheduling interval. This ensures that the
cache content can not be altered by the preempting job during
the execution of an interval. The scheduling intervals are
classified into compatible intervals and predictable intervals.

Fig. 1. Predictable Interval with constant execution time.

Compatible intervals are not characterized by any special
property (they are backwards compatible). Cache misses can
happen at any time during these intervals. The task code
is allowed to perform OS system calls, but blocking calls
must have bounded blocking time. Furthermore, the task can
be preempted by interrupt handlers of associated peripherals.
It is assumed that the maximum execution time ei,j for
a compatible interval is computed based on static analysis
techniques. However, to reduce the pessimism in the analysis,
peripheral traffic is prohibited from being transmitted during
a compatible interval. Ideally, there should be a small number
of compatible intervals which are kept as short as possible.

Predictable intervals are specially factored to execute ac-
cording to the PREM model shown in Figure 1: they are
divided into two different phases and exhibit three main
properties.

• First, during the initial memory phase, the CPU accesses
main memory to perform a set of cache line fetches and
replacements. At the end of the memory phase, all cache
lines required during the predictable interval are available
in last level cache.

• Second, during the following execution phase, the task
performs useful computation without suffering any last
level cache misses. Predictable intervals do not contain

any system calls and can not be preempted by interrupt
handlers. Hence, the CPU does not perform any external
main memory access during the execution phase. This
property allows peripheral traffic to be scheduled during
the execution phase of a predictable interval without
causing any contention for access to main memory.

• Third, at run-time, the time length of a predictable
interval is forced to always be equal to ei,j .

Note that in the original formulation of PREM, predictable
intervals cannot contain any system call and cannot be pre-
empted by interrupt handlers, to prevent the CPU from per-
forming external main memory access during the execution
phase. Not enforcing such constraint would result in two unde-
sirable effects: (1) the OS would perform some transactions in
main memory violating the separation between memory phase
and execution phase; (2) the memory transactions performed
by the OS could displace some memory locations that have
been allocated in cache during the memory phase.

Such limitations can be addressed by relaxing the mentioned
constraints on predictable intervals. Specifically: problem (1)
can be solved by computing an upper bound on the number
of memory accesses performed by the OS to satisfy a system
call (or to execute an interrupt handler) and accounting them
when computing the WCET; problem (2) can be addressed
by using deterministic cache allocation mechanisms that have
been largely studied [3, 4, 5]. We are currently investigating
the exploitation of cited cache allocation mechanisms as part
of our future work.

The big advantage of having a real-time task executing
according to the PREM model is that it enforces a predictable
memory access pattern. Thereby, it becomes possible to per-
form high-level coarse-grained real-time scheduling among
multiple masters contending for access to a shared physical
resource (like a shared bus and/or memory controller). For
instance, it becomes possible to co-schedule memory transac-
tions from a real-time I/O subsystem [2] in a way that they
do not interfere with the execution of PREM-compliant real-
time tasks. Recently, a Memory-Centric Scheduling framework
[6] was also proposed that uses the PREM model to co-
schedule memory accesses from contending CPUs of a multi-
core platform: from the point of view of each core, the memory
subsystem is seen as a slower but isolated one avoiding the
experiencing of unpredictable temporal behavior due to a
shared memory architecture. Finally, since the overall length
of the predictable interval is constant, it is always possible to
perform schedulability analysis of I/O transactions in the way
it has been discussed in [1].

III. LIGHT-PREM
In this section, we recall the motivation for Light-PREM.

Moreover, we provide some insights about the high-level
approach as well as the key ideas behind it.

A. Motivation
Configuring a system to exploit the benefits of the PREM

model requires reworking application code so that tasks are
split into scheduling intervals, which must either conform to
the requirements of a compatible interval or a predictable
interval. However, such legacy-to-PREM refactoring requires
dividing tasks into scheduling intervals, and to manually add
prefetch statements for all those memory locations that are
needed in the execution phase of each predictable interval.
This last step involves either having a perfect knowledge of
the semantics or reverse engineering the code. Thus, as the
size of the source code increases, so does the time required
to manually perform this process. As such, this method does
not scale with the size of the code base.



Light-PREM solves this problem by automatically generat-
ing prefetch statements for the memory phase of predictable
intervals. In other words, it can be considered as a code
refactoring tool that is able to enforce the separation between
memory phase and execution phase inside what has been
tagged by the programmer to become a predictable interval.
It is worth highlighting one more time that such simplicity in
performing legacy-to-PREM conversion of an arbitrarily large
number of real-time tasks enables the use of novel scheduling
techniques that can rely on a highly predictable memory access
pattern to coordinate the access of several masters to the shared
bus [2, 6, 1].

A possible solution to this problem could involve operating
at a compiler level. Since the compiler already parses the
source code, it generates data structures, such as the Abstract
Syntax Tree (AST), which would allow much easier manipula-
tion of the program. We investigated utilizing compiler passes
such as those offered by the LLVM [7] compiler framework
to automatically add prefetch statements at compile time.
Unfortunately this method would introduce a dependency on
the compiler tool-chain, thus breaking the property of Light-
PREM to remain compiler-independent. This property is
fundamental because industries often use proprietary compil-
ers, so that: (1) reimplementing Light-PREM on a custom
compiler would result in an unreasonable effort; (2) they would
be unwilling to switch to third-party compilers. Thus, we
implemented Light-PREM at the source code level instead. As
we show, this technique yields excellent results, even though
Light-PREM can achieve a knowledge of the code semantics
which is significantly lower than what can be achieved by
the compiler. As shown in Section V, Light-PREM is able to
achieve performance comparable to manual refactoring.

B. Overview
The refactoring process performed by Light-PREM requires

(1) analyzing the function to determine what memory accesses
occur, and (2) generating prefetch statements to construct the
memory phase (note that the memory phase is located at the
beginning of the function). From an high-level point of view,
the steps performed by Light-PREM are the following:

1) access collection: memory accesses performed inside
the predictable function are recorded;

2) chunk detection: allowed memory ranges that can be
accessed by the application are determined;

3) handle detection: in-scope variables (handles) at the
beginning of a function are detected;

4) graph construction: chunks are interconnected detect-
ing the existence of pointers from one chunk to another;

5) relative expression construction: prefetch statements
are built for any memory access that was detected at
Step 1.

6) prefetch aggregation: subsequent, contiguous prefetch
statements are aggregated together to minimize the over-
all number of added statements.

C. Access collection
Since analyzing the behavior of a function from a semantic

point of view requires either programmer or compiler knowl-
edge, Light-PREM approaches the problem with a sample-
based technique instead. Specifically, we perform a dry run
of the function under analysis to record all the performed
memory accesses. The output of this phase is a raw list of
all the virtual memory addresses referenced by the predictable
function. Such list represents the first step that is required to
attain the goal of generating prefetch statements for all the
memory misses in the execution phase.

The described memory access collection procedure can
be performed using standard and architecture independent
profiling tools, as detailed in Section IV. It is also important
to underline that having a perfect knowledge of the accessed
memory locations is not enough to generate prefetch state-
ments that can be permanently added to the source code. This
is because virtual memory addresses change from run to run
and thus, a prefetch on a constant memory address may result
in an invalid addressing request in subsequent runs.

D. Chunk detection
Each application owns a set of ranges of virtual addresses

that are accessible at execution time. Such ranges are assigned
at loading time or obtained at execution time with dynamic
memory allocation. We refer to a valid range of virtual
addresses as a memory chunk, or simply chunk. Detecting the
memory chunks belonging to the application under analysis
has two main purposes. First, it is needed to locate each
observed memory access in the corresponding chunk. Second,
it is required to understand how chunks are interconnected
between each other.

As it will be clear in the graph construction step, the
majority of nodes in the memory graph are chunks. They
are defined in terms of starting address and size. To capture
chunks, Light-PREM intercepts memory allocation routines
and updates internal bookkeeping data structures accordingly.
Light-PREM also considers global variables, and other mem-
ory segments (e.g stack, text, data) treating them as chunks.

E. Handle detection
As previously defined, variables that are in-scope at the

beginning of the function under analysis are considered handle
variables. Thus, from this definition it follows that a handle can
be either a global variable or a local function parameter1. Since
a final prefetch statement will explicitly reference a handle, the
names of such variables must be determined.

Retrieving function parameters is relatively simple and can
be done by using code formatting tools and regular expressions
on the source file. Conversely, finding the names of global
variables can be nontrivial if several files are involved in the
compilation process. For this reason, this step is performed
by analyzing the executable file produced at the end of the
compilation process. Standard Linux tools can be used for
this purpose, as detailed in Section IV. Once the name of
the handles is discovered, what gets recorded is the corre-
spondence between handle name and memory address. This
last information is important to detect in which chunk a given
handle is contained and thus which other chunk can be reached
from it.

F. Chunk linking and graph construction
Once the description of each chunk is available, in terms

of start address and size, Light-PREM attempts to link them
together. For example, two chunks C1 and C2 are linked if in
C1 there exists a pointer to any location inside C2. Performing
this operation on each couple of chunks allows building a
directed multigraph which reflects the memory layout of the
program under analysis.

This graph is formally defined as G = {V,E} where
V is the set of vertices and E is the set of edges. Each
vertex Ci represents a memory chunk, and it has additional
data associated, such as the starting address ai and its size
si in bytes. Assuming that there are n memory chunks,
V = {C1 = {a1, s1}, . . . , Cn = {an, sn}}. Each edge in
the graph represents a pointer that connects two vertices Ci

1This definition of a handle is valid for code written in C.



and Cj . However, more than one pointer directed to Cj can be
found in Ci. What differentiates two pointers that are outgoing
from the same chunk and are directed to the same node is:
(1) the relative position inside the source chunk and (2) the
pointed location in the destination chunk. For this reason, each
edge holds additional data to keep track of the discussed pieces
of information. Respectively, we will refer to them as δs and
δd.

Such graph is constructed at the beginning of execution of
the target function. Figure 2 depicts the graph reflecting the
memory layout of a sample application. In the figure, there
are four vertex correspondent to four memory chunks. One
of them - the vertex represented with a rectangle - is also an
handle. For a given pair of vertexes, say Ci and Cj and a
given interconnecting edge δk the following property holds:

[ai + δsk]− δdk = aj

Where the square brackets denote the “cast & dereference”
operator, i.e. what is contained inside the brackets is inter-
preted as a pointer and accessed to obtain the value of the
referenced memory location.

Fig. 2. Memory layout in a sample scenario

Note for instance that according to the chain of arrows
highlighted in green in Figure 2, it is possible to reach chunk
C4 from the handle C1 with the following expression:

[[[a1 + δs1]− δd1 + δs3]− δd3 + δs4]− δd4 = a4

G. Relative expression construction
Once the graph has been built and all the interconnections

between the chunks have detected, it is possible to generate the
prefetch statements performing graph traversal. Specifically,
the procedure for the creation of a prefetch statements accepts
three inputs: (1) the memory address accessed inside the
predictable function and recorded at run-time; (2) the set of
variables that are in-scope (handles) at the beginning of the
function; (3) the memory layout of the targeted application
expressed as a directed multigraph as explained in the previous
section.

Without loss of generality, a variable that is accessed inside
a function is either a in-scope variable or a memory location
that can be reached with an arbitrarily long chain of derefer-
ences. Light-PREM is able to capture all the interconnections
between the different chunks in the memory layout of an
executable. Thereby, for an observed memory access in one
of the considered chunks, Light-PREM can build a valid
dereference chain from a handle to any memory location
recorded at execution time. Such a dereference chain, starting
from a handle, is called a relative expression.

Provided the aforementioned oriented multigraph of the
memory layout, finding the best dereference chain translates
into navigating the graph upwards, i.e. in a reverse direction

with respect to the orientation of the edges. As detailed in
Section IV, a combination of two metrics is used to determine
which chain is the preferred one in a pair of equivalent deref-
erence chains. Considering the example reported in Figure 2,
a memory access at a location λ positioned at an offset δλ
inside chunk C4, will lead to the generation of the following
prefetch statement:

PREFETCH(handle
δ1−→ C2

δ3−→ C3
δ4+δλ−−−−→ λ)

Where the notation δk−→ denotes the dereference operation
applied using the offsets δsk and δdk as previously explained.

As previously stated, the generated prefetch statements are
placed back into the source code of the executable. However,
if the memory layout graph of the application under analysis at
run-time is different from what observed in the profiling stage,
invalid memory references can be encountered while following
a dereference chain. In general, it can be the case if there is
a dependency between a) the input vector and the allocation
order or the size of the chunks; b) the input vector and the
existence or position of the interconnecting links (pointers).
Unless the targeted code has a well known deterministic
structure in this sense, the inherently heuristic nature of some
of the processing steps involved in Light-PREM can lead to
the generation of invalid memory references.

To address this critical issue, our approach consists of
setting up a defensive mechanism. Specifically, a segmentation
fault handler (i.e. a handler for the SIGSEGV signal) is
installed at the beginning of the memory phase. Furthermore,
at process setup, the permissions of those memory pages of the
text section corresponding to the memory phase of predictable
intervals are changed, so to allow write operations2. In this
way, if during the memory phase a broken dereference chain
triggers a segmentation fault, it is caught by the handler which
replaces the faulting instructions with NOPs, so to turn them
inoffensive when re-executed after the handling procedure
returns. The described handler is used after the refactoring
has been completed to remove all those prefetch statements
that are found to be faulty upon a change in the input vector.
Moreover, since we have observed that it has a negligible
overhead in terms of execution time and number of memory
references (the handler has less than 10 lines of code), it can
be left in production code. This ensures that the correctness
of the refactored application is preserved.

H. Prefetch aggregation
According to the locality principle, there is an high prob-

ability that, if a given memory location is accessed, subse-
quent accesses will interest surrounding memory locations.
For this reason, instead of generating a prefetch statement for
every single observed memory access, we aggregate single
prefetches in longer prefetch sequences.

The advantage of performing the aggregation step is
twofold. First, the number of lines that becomes part of
the executable code is minimized. Second, it is important
to consider that a single prefetch statement can result in
several memory dereferences. Thus, by aggregating them it
is possible to calculate the starting position once and to
perform the prefetch sequentially with a remarkable run-time
improvement.

IV. IMPLEMENTATION DETAILS

In this section, we will detail our implementation of Light-
PREM to target general purpose applications written in a
language that allow memory manipulation through pointers,
like C.

2This can be done in Linux through the mprotect system call



A. Run-time data collection
As discussed in Section III, Light-PREM employs a mul-

tistage technique to produce PREM-compliant code out of a
legacy application. Due to the fact that PREM, as a proof of
concept, is currently implemented in C, the presented Light-
PREM sets its focus on programs written in C.

1) Access collection: As previously discussed, the first step
performed by Light-PREM is collecting a raw list of all the
virtual memory addressed referenced inside the predictable
function. For this step, the targeted code is compiled and
run inside a profiling environment. Specifically, Light-PREM
uses a memory profiling tool called Lackey (a sub-tool of the
Valgrind suite) to analyze the task at run-time. Since the goal
is to detect all the memory accesses that are performed inside
the body of the function under analysis, no additional data are
stored about each accessed location.

2) Chunk detection: In order to place the accessed memory
locations in the appropriate chunk, it is fundamental to detect
which memory regions are accessible by the application at the
beginning of the predictable function. Such chunks will also
represent the nodes of the memory layout graph. As previously
mentioned, they are defined by a starting address and size.

At the beginning of the predictable function, there is a set
of memory regions that are added to the list of chunks by
default. Specifically, these are: (1) the stack area belonging
to the predictable function (whose size is always known at
run-time); (2) the text area of the executable; (3) .data, .rodata
and .bss sections if not empty; (4) global variables and (5)
predictable function parameters. Each chunk in the last two
categories is also a handle.

Furthermore, to capture all the possible chunks created
through dynamic memory allocation routines (malloc, mmap,
etc.), Light-PREM intercepts such routines and updates its
internal book-keeping data structures accordingly. Intercepting
the aforementioned calls without modifying the executable
code can be done by temporarily overriding the targeted
primitives at dynamic linking time.

3) Handle detection: In a standard C program, only two
kinds of variables are in-scope at the very beginning of a
function (before any automatic variable is declared): function
parameters and global variables. This is the reason why the
only variables that need to be considered as handles are all
those variables which fall in one of these two categories.

Since each generated prefetch statement will involve deref-
erencing a handle, the name of these variables must be
determined. Retrieving function parameters can be done in a
relatively simple way by using regular expression matching
based on the function name. This procedure can be made
resilient to different coding styles performing a preliminary
pass in a code formatting tool (e.g. Uncrustify). To capture the
name of all the global variables, we rely on the data that are
contained inside the final executable. In particular, ELF[8] files
define a symbol table in which objects with binding attribute
set to GLOBAL and default visibility properties refer to global
variables. Variables that are global but not exported at linking
time (static) are also considered in a similar way. As a final
step of the run-time data collection phase, handle variables are
recorded in terms of name and memory address.

B. Prefetch generation
The remaining part of the process involves steps that can be

performed offline relying on the information collected during
the previous phase.

1) Graph Construction: As described earlier, while the
chunks are the vertex of the memory layout graph, edges
represent pointers, i.e. links from one vertex to another. Edges
are generated after all vertices (chunks and handles) are

discovered and created. This step involves recognizing the
links between the chunks and adding the detected vertex with
appropriate weights. The algorithm which is used to perform
this operation is called “Pointer Probing”. It can be described
as follows: let the size of a pointer in the targeted platform be
P bytes. For each chunk Ci, Light-PREM reads the value v
of every contained P byte block. Next, it checks if the given
value can be interpreted as a pointer. That is, v should be an
address which falls into the range 〈aj , aj+sj〉 for some chunk
Cj .

If a given value v satisfies the above property, an edge is
created from chunk Ci to chunk Cj . For said edge, the value
of δs is the position where v was found in Ci. Conversely,
δd is the offset in chunk Cj (i.e. v − aj). Note that the graph
allows self-loops, since a pointer can point to the same chunk
that it resides in. The displacement δs is called pointer offset.

The aforementioned Pointer Probing algorithm takes its
name from the fact that chunks are treated as opaque blocks of
memory, but P bytes sized blocks are interpreted as pointers
and checked against the boundaries of existing chunks. As
such, this algorithm may occasionally generate edges that do
not actually represent pointers. This can happen if some datum
has a value that, when interpreted as an address, coinciden-
tally represents a valid memory address inside some chunk.
This issue is resolved by running the graph construction on
several separate executions of the program, and only accepting
edges that appear in every execution. Generally, two runs are
enough to eliminate false edges, however Light-PREM can be
configured to perform more runs to increase the confidence
about the validity of the recorded edges. Moreover, additional
security measures can be adopted to prevent a faulty prefetch
statement from causing an invalid dereference as mentioned
in Section III-G.

2) Relative expressions: In the current Light-PREM C-
based implementation, a relative expression for an observed
memory access at location λ is a navigation path inside the
memory layout graph that starts from a handle and ends in
the chunk which contains λ. As shown below, any relative
expression can be translated using only pointer arithmetic,
pointer dereference operations, and name of handle variables.
The key insight to relative expressions is that any location
of an observed memory access inside one of the considered
chunks can be reached using said expressions. For instance,
a structure reference some_struct->field can be ex-
pressed as *(some_struct + off), where off is the
constant offset in bytes of field from the beginning of the
structure.

Relative expressions reduce the complexity of Light-PREM
and allow it to stay compiler independent, since the content
of memory blocks is considered as opaque binary data.

3) Relative expression translation: Dereference chains are
used to create relative expressions. To show how they can be
translated to produce the final C-compliant relative expression,
let us consider Figure 3 where, similarly to Figure 2, a sample
memory layout is reported, but this time with explicit address
and size values for the chunks. Specifically, suppose that the
application under analysis allocates two blocks of memory
prior to calling the target function, with sizes of 256 bytes
and 4 KiB respectively.

These chunks get assigned starting addresses of
0xAAAA0000 and 0xBBBB0000 respectively. Furthermore,
a function parameter named handle1 is located at
0x11110000 and has value 0xAAAA0001. Finally some
pointers exist that link the three chunks together as depicted
in the figure. The figure reports only the most significant 16
bits of each address.



Fig. 3. Memory layout in a sample C application

Given the depicted memory layout, the final relative expres-
sion includes: (1) a prefetch statement of a given size; (2) a
dereference chain which follows the dashed path highlighted in
orange for some location λ at offset δλ in C3. In our notation,
it becomes:

PREFETCH(handle1
δ1−→ C2

δ2+δλ−−−−→ λ, size)

The resulting translation with trailing prefetch statement in
the targeted language3 is:

void * C_2 = * (void **)((void*) handle1 +0) -1;
void * C_3 = * (void **)(C_2 +32) -256;
PREFETCH(C_3 + delta_lambda, size);

Being able to generate relative expressions involves two
steps. In the first, detailed in Section IV-B1 the interconnec-
tions between the recorded chunks lead to the construction of
an oriented multigraph. In the second step, a reverse graph
traversal strategy is employed to decide the optimal path
through the vertices to connect a handle with a leaf memory
access recorded during the data collection phase. This last step
is detailed below.

4) Graph traversal strategy: After the construction of the
memory graph, Light-PREM is ready to convert memory
accesses (recorded in the very early stages of the process
as absolute memory addresses) to relative expressions. To
produce the relative expression, Light-PREM simply needs to
find a path from a handle to the chunk that the memory access
resides in. Finding such a path can be easily achieved by using
existing graph traversal algorithms such as Depth First Search
(DFS) and Breadth First Search (BFS). However, since the
graph represents the memory organization of the application
under analysis, additional traversal policy are employed to
support the selection of the best path.

To understand the reason, let us consider again the example
in Figure 3. To convert a memory access inside C3, Light-
PREM can use the dashed path highlighted in orange, and we
have already seen what the correspondent relative expression
looks like. However, when multiple paths exist, a simple depth
or breath first search does not always yield the best results. In
fact, due to the speculative nature of Light-PREM’s analysis,
there is no guarantee that a path, and consequently a relative
expression, will be valid for all possible inputs to the program.
To mitigate these effects, two heuristics are used to improve
the performance of Light-PREM. The two heuristics that are
used can then be summarized as: (1) requiring all pointer
offsets to be non-negative; (2) given two pointer offsets for
two edges linking the same chunks, selecting the smaller one.

The first heuristic (non-negative pointer offsets) comes from
the fact that typical programs only utilize positive integers in

3the C-like relative expression is simplified for the ease of the reader,
however Light-PREM combines the three statements into one statement

pointer arithmetic. In fact, both array and structure references
can be rewritten using non-negative pointer offsets.

The second heuristic arises from the fact that the smaller a
pointer offset is, the more likely that the offset remains inside
the bounds of the datatype the pointer refers to. In the example
of a structure pointer, adding a small constant to the pointer is
more likely to result in a pointer that is still inside the memory
of the structure, as opposed to adding large offsets. A similar
argument can be applied to arrays. To solidify this concept,
consider the memory graph in Figure 4.

Fig. 4. Heap Memory Graph with a self-loop

In this graph, there exists a self loop. To travel from handle1
to C3, it is preferable to take the self loop in C2 on the way to
C3 as opposed to not taking it. To understand why, consider the
relative expressions that these two different paths represent:

Path with self-loop:
handle1

+0−−→ C2
+0−−→ C2

+10−−→ C3

Path without self-loop:
handle1

+0−−→ C2
+210−−−→ C3

In the path without the self-loop, the pointer offset 210 is
likely to be dependent on the input of the executable. To see
why this might be the case, let us consider an example scenario
of the memory layout of the chunk represented by node 1. This
scenario is depicted below in Figure 5

Fig. 5. Sample organization of virtual memory based on graph from Figure 4

In this scenario, there exists a variable sized array in the
middle of the chunk, where the size of the array is dependent
on the input of the executable or some other unknown factor.
Thus the offset of 210 will change from run to run, whereas
the offset of 10 will not. This means it is preferable to
take the pointer (shown as an arrow in the diagram) from
0xAAAA0000 to 0xAAAA00C8 to skip over the variable
sized array. This simple heuristic works very effectively.

With these two heuristics in mind, Light-PREM actually
performs a reverse depth-first search. That is, it inverts the
direction of all edges, and performs a depth-first search starting



at the chunk that the memory access resided in, stopping
when it finally reaches a handle node. In line with the second
heuristic, a path is allowed to go through the same node twice.
The path exploration is bounded with a maximum exploration
depth to break potentially infinite loops.

V. EVALUATION

In this section we present the evaluation performed on
Light-PREM. Three main metrics are used to understand the
effectiveness of the proposed methodology: (A) coverage in
terms of captured cache misses with respect to the manual
PREM approach and to a non-PREM execution; (B) impact
on temporal predictability of the execution phase of a task
refactored with Light-PREM; (C) time needed to perform the
Light-PREM code refactoring. Coverage analysis is carried
out on a set of 7 EEMBC benchmarks that are reflective of a
real-time scenario for their deterministic properties and code
simplicity. To stress our implementation and understand the
overhead of our technique, 7 additional and more complex
benchmarks are used from the MiBench suite. The same set
of EEMBC benchmarks is used to provide an idea of the time
required for a full run of Light-PREM.

A. Testbed Setup

Since we want the evaluation to be to comparable with
what presented in [1], we configured out testbed in a similar
way. Specifically, we used an Intel Q9500 CPU in which
we disabled the speculative CPU HW prefetcher since it
negatively impacts the predictability of any real-time task. The
Q9500 is a quad-core CPU and each pair of cores shares a
common level 2 (last level) cache. Each cache is 16-associative
with a total size of 6 MiB and a line size of 64 bytes.
Since we use a PC platform running a COTS Linux operating
system, there are many potential sources of timing noise,
such as interrupts, kernel threads and other processes, which
must be removed for our measurements to be meaningful. For
this reason, in order to best emulate a typical uni-processor
embedded real-time platform, we divided the 4 cores in two
partitions. The system partition, running on the first pair of
cores, receives all interrupts for non-critical devices (e.g., the
keyboard) and runs all the system activities and non real-time
processes (e.g., the shell we use to run the experiments). The
real-time partition runs on the second pair of cores. One core
in the real-time partition runs our real-time tasks. The other
core is turned off. Note that the cores of the system partition
can still produce a small amount of unscheduled bus and main
memory accesses or raise rare inter-processor interrupts (IPI)
that cannot be easily prevented. However, in our experiments,
we found these sources of noise to be negligible.

Another source of unpredictability comes from the fact that
the cache does not support deterministic allocation. However,
our work can be easily integrated with practical solutions
described in [4, 5, 9]. Thereby, we currently mitigate this
problem by making sure that in our experiments the amount
of prefetched memory is far less than the available cache
(6 MiB). Self-evictions are also a minor concern since our
platform uses an Intel SmartCache which does not perform
a direct mapping from physical addresses to cache lines [10].
The cache is trashed before any measurement is taken in order
to perform a worst-case oriented analysis.

Evaluating a task using Light-PREM requires 2 main steps:
(A) the Light-PREM refactoring as discussed throughout the
previous sections, and (B) the actual task run once Light-
PREM has completed its refactoring. In this section, we will
refer to A and B using the term Analysis and Run respectively.

B. Coverage Analysis

As previously stated, the main purpose of the PREM model
is to enforce a structure in the memory access pattern of the
applications so that all the memory accesses for a particular
predictable interval are performed at the beginning, leaving
the bus available for scheduling I/O flows or memory phases
of tasks scheduled on other CPUs [6].

Manually performing such refactoring requires a deep un-
derstanding of the code and often requires non-trivial mod-
ifications to the code itself that can break correctness and
optimizations. Light-PREM is able to perform this refactoring
without changing the existing code and automatically inserting
prefetch statements. Also, we have discussed how with Light-
PREM we can relax the assumption that the code of the
predictable interval is self-contained in a single function.
However, the increased flexibility can have a cost. In particular,
if the code performs calls to dynamically linked libraries or
system calls inside the predictable function, Light-PREM will
not be able to generate a corresponding prefetch for those
memory accesses and more cache misses could be experienced
during the execution phase. Thereby, the effectiveness of
Light-PREM can be measured looking at how many cache
misses4 are being issued during the memory phase and how
many are experienced during the execution phase. In this
sense, the coverage is defined as the number of misses that
are avoided in the execution phase thanks to the inserted
prefetches. The desired property would be to have a perfect
coverage for simple, self-contained predictable intervals and
a sharp reduction of misses for complex code with calls to
external functions.

We first analyze 7 benchmarks from the EEMBC automotive
benchmark suite [11]. In past work [1], these benchmarks were
modified to run multiple times, instead of just once, so that
timing could be more accurately measured. The number of
iterations needed to complete a pass on the input varies from
benchmark to benchmark but this number is always below
10,000 iterations. Thus, 10,000 is the number of iterations
used to perform the analysis in order to consume the input.
Moreover, the code of the considered EEMBC benchmarks is
simple enough so that the core of the computation is almost
contained in a single function without having any system call
in our candidate predictable interval.

Figure 6a shows the comparison between Light-PREM
and manual PREM in terms of coverage for the mentioned
benchmarks. The ratio between misses captured by Light-
PREM and by the manual version with respect to the non-
PREM case are reported in the first two bars of each cluster.
The plot also reports the number of prefetches issued by Light-
PREM as a fraction of prefetched inserted in the manual
version in the last bar of each cluster. It is important to notice
that in the manual PREM case, the code has been modified
to (1) make indirect references explicit for the ease of writing
prefetch statements and (2) inline all the functions called in
the predictable interval. These modifications are not present in
the code analyzed by Light-PREM, hence the slightly worse
coverage observed.

Nonetheless, the results shown in the figure highlight that
Light-PREM is always able to detect more than 92% of
memory accesses (except for cacheb, where even the manual
refactoring was not able to achieve a good coverage5). Two
more behaviors can be noted. First, that, looking at the first
pair of bars of each cluster, Light-PREM exhibits a coverage

4The number of cache misses is retrieved from the hardware performance
counters relying on the rdpmc instruction.

5This is mainly because this particular benchmark performs function calls
using function pointers inside the predictable function.



Fig. 6. Coverage measurements: ratio between misses captured by Light-PREM and manual PREM with respect to the misses observed in the non-PREM
case (first two bars); Ratio between prefetches issued by Light-PREM and prefetches issued by manual PREM (third bar). Both EEMBC (a) and MiBench
(b) are reported.

which is always comparable to what was achieved with a
manual approach, even though it requires almost no changes
to the source code in order to attain its goal. Second, that,
according to the third bar of each cluster, the amount of
prefetches issued by Light-PREM is always comparable to or
much less than what results with a manual approach. This is
because the generation of prefetch statements is driven by the
observed memory accesses rather than reasoning about what
portions of code/data can be reached/accessed.

The same evaluation approach has been used to understand
the performance of Light-PREM on more complex code bases.
Specifically, we ran our analysis on a set of applications from
the MiBench suite [12]. In this case, the benchmarks have
a much more complex code which brings them closer to
consumer applications rather than real-time tasks. Nonetheless,
it is interesting to understand the capabilities of Light-PREM
to extract prefetch statements out of highly connected memory
layouts.

Figure 6b shows the results obtained for: the Jpeg com-
pression benchmark considering an input of 1 and 8 Mega
Pixels; the Qsort vector sorting application; the Susan image
processing benchmark that can be used to detect corners, edges
in the inputted image or to smooth it. As reported in the
table, Light-PREM achieves a high coverage for the Jpeg,
Qsort benchmark and Susan with edge detection. In the last
two tests, performance gets worse because the algorithms for
corner detection and image smoothing, as they are, heavily rely
on Libc library functions to perform memory and arithmetical
operations. Accesses inside such memory areas cannot be
captured in the current Light-PREM implementation.

Specifically, in the case of Susan with corner detection,
the number of captured memory accesses is low. This re-
sults in a small number of produced prefetch statements and
consequently to a low coverage (around 70%). Similarly, the
smoothing algorithm of the Susan benchmark causes Light-
PREM to build long dereference chains to reach some of the
accesses in Libc areas, generating a large number of prefetches
which still result in a low coverage. The problem could be
solved by statically linking the Libc library6, but this would
affect the non-predictable part of the executable. Instead, as a
part of our future work, we plan to include in Light-PREM a

6We have seen that doing so would boost the coverage of Light-PREM to
97%

strategy to statically link only the subset of library functions
used in the predictable interval.

C. Temporal Predictability
The aim of Light-PREM is to automatically refactor the

targeted code without relying on compile-time knowledge in
a way that the resulting application is compliant to the PREM
model. It follows by the definition of PREM (PRedictable
Execution Model) that predictability is one of the key features
that has to be provided. An experimental way, to evaluate how
predictable a fragment of code is, consists in running it a large
number of times and observe how stable its timing properties
are. Specifically, we are interested in understanding the timing
properties of the execution phase in a predictable interval.

As shown in the previous section, Light-PREM is able to
achieve a good coverage. This means that the number of
bus accesses performed during the execution phase is sharply
reduced. Thus, we argue that as a result the code executed
inside the predictable interval exhibits better predictability. To
evaluate this, bus activity is generated on the system partition
of the testbed using an interfering task, which consists of a
synthetic benchmark that generates high-bandwidth DRAM
traffic.

The evaluation has been performed on the full set of
benchmarks presented in the previous section. The last two
Susan benchmarks are excluded from this analysis since Light-
PREM does not achieve a good coverage and thus they are not
representative for this experiment. Figure 7 reports average
time duration, as well as variance, of the execution phase in
the considered benchmarks. For each of them, the comparison
is with the non-PREM (legacy) case.

As shown in the figure, the prefetches inserted by Light-
PREM have two effects. First they sharply decrease the
average execution time. Second they contribute to an improve-
ment for the observed variance in the execution time of the
considered code fragment. This demonstrates the effectiveness
of Light-PREM as a way to increase the predictability in terms
of timing behavior, as well as memory access pattern, in line
with the advantages of the PREM model and subject to its
limitations, as discussed in [1].

D. Analysis Runtime
Light-PREM involves performing several computation steps

to carry on a complete analysis of the targeted executable.



Fig. 7. Exec. phase runtime and variance for Light-PREM and non-PREM.

Some of these steps involve running the actual code to collect
memory accesses and chunks, while other perform post-
processing on acquired data.

As previously mentioned, memory access collection is per-
formed using Valgrind which instruments the profiled code
at runtime. This intuitively means that there is an expected
overhead when running the observed code in the profiling envi-
ronment. It is worth to mention that in earlier implementations
of our technique, the analysis runtime could easily take hours
even for simple benchmarks like a2time. In the latest version,
however, the running time has been sharply reduced to the
order of tens of minutes. The main improvements involved (1)
patching Valgrind to analyze memory accesses for a selected
fragment of code only and (2) postponing the actual data
processing after the data collection phase has complete to
avoid unnecessary slowdown.

Fig. 8. Trend of time required to perform the Light-PREM analysis (in
seconds) compared to the execution time of the benchmark (in milliseconds).
Benchmarks ordered by runtime.

Figure 8 shows the ratio between the time required to
perform the analysis of a given task and the runtime of the
predictable interval of the task itself. This gives an idea of
how the analysis technique scales as the complexity of the
profiled application increases. It can be noted that, although
the trend is linear, it can require minutes to analyze predictable
intervals with execution time in the order of seconds. However,
since the Light-PREM analysis and refactoring need to be done
offline only once per task, the incurred cost not only does
not represent a limitation to its applicability, but it is also a
significant improvement considering that the time needed to
perform manual refactoring could easily take days.

VI. RELATED WORK

Several strategies ave been proposed and studied in literature
for the automatic generation of prefetch statements for general

purpose applications. The main reason why prefetching is
employed is to issue in advance memory transaction that are
known (or very likely) to occur at execution time. In this
way, the data is brought from DRAM to cache before it
is required, so that a cache miss is not suffered when the
prefetched data is finally accessed for computation purposes
[13]. In other words, prefetching works as a technique to
perform execution speedup by masking processor stalls due to
DRAM latency. Two main approaches have been considered.
First, hardware based techniques have been proposed, which
require architectural modifications to support platform-assisted
prefetching. Second, strategies that are based on software
mechanisms do not require any hardware modification and can
be applied at run-time or at compile-time.

In [13] Callahan et al. demonstrate how prefetch instructions
inserted at compile time can lead to a significant reduction
of cache misses. Following this work, software strategies
aimed at improving prefetching efficiency. In [14] three al-
gorithms are proposed to perform efficient prefetching of
array-based structures in scientific applications. Nonetheless,
in general purpose applications, array-based structures coexist
with pointer-based ones and objects. The extension of such
algorithm that exploits multiprocessing to mask memory la-
tency is detailed in [15]. In [16, 17] Wu et al. propose a more
general algorithm that is able to generate prefetch sequences
by analyzing stride memory access patterns to handle both
array-based and pointer-based structures. Efficient compile-
time strategies to automatically insert prefetch statements,
when pointer-based and recursive structures are in use, are
studied in [18, 19]. As a further step, Inagaki et al. in [20]
developed a strategy that leverages on partial interpretation of
a method that can be performed in a dynamic compiler to
detect stride access patterns in object-oriented code. Similarly
to Light-PREM some prefetching techniques rely on profile
data [21, 22]. Specifically, Luk et al. in [21] use profiling
to drive the detection of stride addressing patterns. In [22],
profiling is used in a preliminary phase to extract recurrent
sequences of memory references, while prefetching code is
inserted subsequently in a dynamic fashion.

Abstract Interpretation (AI) to perform static analysis tools
have been studied in [23, 24]. AI can be employed to under-
stand the control flow behavior of a task, together with its
memory usage profile. However, since they performs a partial
interpretation of the code semantics, AI tools are unable to
detect final addresses of memory accesses that can only be
discovered at runtime. Moreover, in the general case, AI tools
cannot detect the presence of links between areas of memory
since it would require solving the undecidable problem of
determining the complete set of reachable states of a program.

Techniques that involve modifications to the platform or that
rely on specific architectural hardware support are classified as
hardware-based techniques. Noticeably, in [25] a minimal set
of hardware changes are proposed to run a prefetching thread
on a separate processor located on the memory controller or
the DRAM chip. The purpose is to keep a correlation table of
the memory accesses and to run a customizable prefetching
algorithm. Similarly, in [26] substantial changes are proposed
to the memory and coherency controller. The key idea is to
enable the execution of a restricted set of instructions used
to deploy complex prefetching strategies performed directly
on the memory hierarchy. Other prefetching strategies rely on
hardware performance counters [27, 28]. In particular, in [27]
prefetches are injected in the binary execution flow, while in
[28] inefficient prefetch statements are filtered out according
to run time data collected from performance counters.

It is important to underline that even if Light-PREM falls
into the category of software techniques to generate prefetch



statements, its purpose is remarkably different from what
proposed in literature. Whereas past research has used mem-
ory prefetching to increase performance (and thus improve
the average case execution times), the PREM model uses
prefetching to eliminate contention to memory, thus aiming
at a reduction of worst case execution times. Moreover,
most memory prefetching strategies uses compiler techniques,
whereas Light-PREM aims to remain compiler-independent.
Also, Light-PREM places prefetch statements at the begin-
ning of an execution interval (predictable function), whereas
existing memory prefetching research places prefetch state-
ments throughout the execution blocks. Due to these major
differences, Light-PREMs prefetching strategy manages to
perform a predictability-oriented refactoring, while remaining
practically applicable for industrial applications.

VII. CONCLUSION

Enforcing the PREM model on a group of real-time tasks
allows performing a high-level coarse grained scheduling of
shared hardware resources. In this way it becomes possible
to regulate the contention for accessing such resources, de-
termining an overall improvement of the predictability of the
system.

In this work, we have presented Light-PREM: a software
technique to automatically generate the prefetch statements
that are needed to perform a legacy-to-PREM porting of
a given executable. Light-PREM leverages on profiling and
memory analysis strategies to produce a PREM-compliant
code in an automatic fashion and without almost any knowl-
edge about the semantics of the ported code. We have tested
the proposed technique on a real testbed. The presented
results effectively show that Light-PREM is able to achieve
performances that are comparable (and in some cases superior)
to the manual approach.

As a part of our future work, we plan to integrate Light-
PREM with the Colored Lockdown presented in [5] in order
to guarantee the persistence in cache of prefetched data.
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