
A Memory Access Detection Methodology for
Accurate Workload Characterization

Marco Cesati∗, Renato Mancuso†, Emiliano Betti‡, Marco Caccamo†
∗University of Rome Tor Vergata, Italy, cesati@uniroma2.it

†University of Illinois at Urbana-Champaign, USA, {rmancus2,mcaccamo}@illinois.edu
‡Epigenesys s.r.l., Italy, betti@epigenesys.com

Abstract—Tools for memory access detection are widely used,
playing an important role especially in real-time systems. For
example, on multi-core platforms, the problem of co-scheduling
CPU and memory resources with hard real-time constraints
requires a deep understanding of the memory access patterns of
the deployed taskset. While code execution flow can be analyzed
by considering the control-flow graph and reasoning in terms of
basic blocks, a similar approach cannot apply to data accesses.

In this paper, we propose MadT, a tool that uses a novel
mechanism to perform memory access detection of general pur-
pose applications. MadT does not perform binary instrumentation
and always executes application code natively on the platform.
Hence it can operate entirely in user-space without sand-boxing
the task under analysis. Furthermore, MadT provides detailed
symbolic information about the accessed memory structures, so
it is able to translate the virtual addresses to their original
symbolic variable names. Finally, it requires no modifications
to application source code. The proposed methodology relies
on existing OS-level capabilities. In this paper, we describe
how MadT has been implemented on commercial hardware and
compare its performance with state-of-the-art software techniques
for memory access detection.

I. INTRODUCTION

In real-time and, more generally, in cyber-physical systems
(CPS), there is often the need for accurate workload character-
ization. In such systems, in fact, it is crucial to gather detailed
insights about deployed applications from both a behavioral
and a timing perspective. On one hand, understanding the
execution flow of a task under analysis can be relatively easy
when relying on control-flow information. On the other hand,
however, accesses to data can follow non-linear patterns that
are hard to analyze without extracting online execution traces.

The introduction of multi-core and many-core architectures
results in increasingly less expensive computational resources.
Consequently, in modern systems the memory resources repre-
sent the main performance bottleneck and the main source of
execution time unpredictability. It follows that optimizations
performed on task’s data access patterns to all levels of the
memory hierarchy can yield critical improvements on both
average and worst-case performance. As typical example, con-
sider a mixed-criticality system where safety-critical control
tasks run in parallel with non-critical applications. If full
knowledge about the memory access patterns for critical tasks
is available, the system can be designed in a way to bound the
amount of interference that critical tasks can suffer on shared
memory resources. In general, we envision that by making the
extraction of memory access patterns practical on commodity
platforms, memory-usage characteristic of tasks can be con-
sidered in order to perform memory and CPU co-scheduling
on multi-core platforms. In fact, following this reasoning,

several articles presented new solutions that aim to schedule
accesses to main memory [1, 2, 3], or to optimize cache
management [4, 5]. However, memory and CPU co-scheduling
has received comparatively less attention with respect to classic
multi-core CPU scheduling, also because extraction of memory
traces from large applications and subsequent analysis is still
unpractical.

In this article we propose MadT: a mechanism to perform
memory access detection for a generic application that ap-
proaches from a novel perspective the problem of accurately
characterizing applicative memory behavior. Specifically, we
have designed and developed a methodology that is not based
on binary or source code instrumentation, and that is able
to trace memory accesses by executing instructions natively
on the target CPU. As a result, the proposed technique only
introduces tracing-related overhead upon performed memory
accesses, while non-memory instructions execute with no
overhead. In addition, MadT offers a number of benefits that
are briefly summarized below.

First, the core functionality of MadT is neither binary
instrumentation, nor emulation. Hence, it is easier to port
on multiple architectures, as long as they feature broadly
available minimal requirements as described in Section II.
Second, it is able to detect all memory accesses, including
those to dynamically allocated memory locations, providing
also additional information about where the corresponding
allocations were performed. Next, MadT exploits symbol res-
olution techniques to associate raw memory addresses to both
source code objects (e.g., functions, variables) and memory
regions (e.g., heap, bss). MadT does not require OS-level mod-
ifications or changes to the source code of the analyzed task to
properly operate, while still executing entirely in user-space.
Finally, it allows selective tracing: tracing can be selectively
enabled and disabled to capture memory accesses only for
a specific fragment of execution.1 The performed evaluation
suggests that MadT yields significant improvement in tracing
computation-intensive workloads while achieving comparable
runtime to binary instrumentation tools for memory-intensive
benchmarks.

A practical use case and more details about the implemen-
tation of MadT are available in [6].

The rest of the article is organized as follows. Section II
provides an high-level description of the proposed technique.
Next, Section III contains additional details about the imple-
mentation, while the results of extensive evaluation using a
selection of real and synthetic benchmarks are reported in
Section IV. Finally, we review the related work in Section V,

1This feature is the only one that requires source code instrumentation: just
two lines to bound the portion of code one needs to profile. On the other hand,
tracing the whole program does not need any instrumentation.

and the article concludes in Section VI.

II. METHODOLOGY OVERVIEW

MadT is basically a shared library that is linked to the target
program at compilation time. Whenever the target program is
executed, the code in MadT’s library sets up the execution
context so that data memory accesses are detected and properly
resolved. MadT is based on three basic components:

A) A profiler that detects memory accesses by natively
executing the target program.

B) A symbolic resolver that finds the symbolic name
associated with any numerical address used by the
target program.

C) A dynamic memory tracker that intercepts the calls
to the C library functions related to dynamic memory
handling.

A. The profiler

The profiler is the component of MadT devoted to detect
and record the data memory accesses performed by the target
program. MadT does not emulate or instrument the machine
code of the target program. Rather, MadT sets up the target
process so that it executes natively and self-detects its memory
accesses. This approach turns out to be particularly convenient
for programs in which the number of machine instructions that
load or store values in the memory cells is a small fraction of
the total count of executed instructions.

The general idea is to set up the target process so that any
access to data in a target’s memory page shall result in a page
fault. Consequently, the program receives a SIGSEGV signal,
and the corresponding signal handler records the address of
the machine instruction that tempted the access, the type of
access (load or store), and the address of the memory cells
being accessed. The mechanism for generating a page fault
for any access consists of removing any access right from the
memory pages containing the data of the target program.

Once the memory access has been recorded, the target
program should resume and execute again the machine in-
struction that triggered the fault. This time the instruction
must not cause a page fault, otherwise we would be in an
infinite loop. Therefore, the handler of the SIGSEGV signal
restores the proper access rights to the accessed memory pages.
The problem is that any further access to the same pages
performed by the following machine instructions would then
go undetected. It is thus necessary to remove the access rights
immediately after the single machine instruction that triggered
the page fault has been successfully terminated. In order to
achieve this goal, the page fault handler of the SIGSEGV
signal modifies the hardware context of the target process
saved on the stack so as to set the hardware “trap flag”. When
the trap flag is set, the CPU control unit generates a trap
exception for each machine instruction that terminates. Right
after the SIGSEGV handler terminated, the target’s machine
instruction that accessed the memory is executed again, this
time without generating page faults. Then, the CPU control
unit raises the trap exception. The OS kernel reacts to the
trap exception by sending a SIGTRAP signal to the target
process. The MadT’s handler for the SIGTRAP signal removes
the access rights from the pages, and modifies the hardware
context of the target process saved on the stack so as to clear
the “trap flag”. When the target process resumes its normal
execution, instruction trapping is disabled and all data pages
are “protected” again.

MadT’s profiler currently exploits a couple of features of
the x86 architecture. However, we consider it to be quite
portable. On one hand, any general-purpose CPU coupled with
a Memory Management Unit (MMU) must support memory
protections and page faults. On the other hand, the trapping
instruction mechanism is present at least in any architecture
based on a CISC ISA, because it makes much easier to
implement debuggers and monitors. The trapping mechanism
is also present in several RISC-based architectures: prominent
examples are the various ARM architectures.2

Finally, observe that because the MadT profiler operates at
the machine instruction level, it is not difficult to extend it so
as to support target programs written in high-level languages
different than C.

B. The symbolic resolver

One distinctive feature of MadT is that it can output the
memory accesses in a symbolic form. Usually, each time a
program is executed, the virtual memory addresses used by
the process change. Basically there are two reasons for this
behavior:

1) In each run, the kernel loads the segments of the
shared libraries used by the process at different
addresses. This mechanism is called “address space
layout randomization” and is essentially aimed at
making more difficult to exploit security flaws in the
program. Although address space layout randomiza-
tion can usually be disabled by the user, the effective
load addresses of the shared libraries may still change
between different kernel versions, dynamic loader
versions, or shared libraries versions.

2) The virtual addresses returned by dynamic memory
allocator procedures cannot be easily predicted in
advance and may change at each run. The C standards
explicitly mention that this behavior is allowed and
expected.

Thus, a memory access detection tool that returns only
a list of numerical addresses is not very practical, because
the user faces the difficult task to relate those addresses with
the corresponding function and variable names of the target
program and of the shared libraries.

Instead, in MadT each recorded memory access yields one
line in the output file that includes the symbolic names of
the function, variable, or dynamically allocated block of the
target program. Actually, MadT forges a new symbolic name
for each dynamic memory block allocation (see below). In
the other cases, MadT associates any virtual address with the
corresponding symbol as known at compilation time or at
dynamic loading time.

To fully enable the address resolution mechanism, the
target program must be recompiled in such a way to include
debugging information in the executable file. It is thus possible
to extract from the executable file some tables that relate virtual
addresses with symbolic names (even for the symbols that
are “private” to the target program). These tables are read
by MadT when the target program is launched. Moreover,
MadT translates virtual addresses related to shared libraries
functions and variables by invoking suitable helper functions

2In a RISC CPU all machine instructions have opcodes of fixed length.
Moreover, very few instructions access memory. Thus, even if the trapping
mechanism it not available at the hardware level, it is not too hard to devise a
mechanism that execute the very single instruction that caused the page fault,
and then resumes normal execution.

of the dynamic loader. The dynamic loader is included in the
memory space of any process being executed and deals with
shared libraries loading and shared symbols resolving.

MadT’s symbolic resolver is quite portable across different
architectures and even across different operating systems. It
relies on the GCC toolchain [7] and on the dynamic loader
coupled with the “glibc” GNU C library [8], thus any architec-
ture to which these programs have been ported to is basically
supported by MadT’s symbolic resolver.

Extending the symbolic resolver to support target programs
written in high-level languages different than C is also feasible,
as long as two main requirements are satisfied: a) it must be
possible to instruct the compiler to insert debugging informa-
tion in the target executable; and b) the target program must
use the same system dynamic loader used by C programs.
Typically, programs written in high-level languages supported
by the GCC toolchain satisfy these requirements.

C. The dynamic memory tracker

Virtual addresses returned by dynamic memory allocators
have no symbols associated with them, neither at compile time
nor at run time. To overcome this limitation, MadT forges a
new symbol for any dynamic memory allocation.

The name of any forged symbol has a structure that
helps the user to recognize the kind of allocation and the
exact position of the call to the allocator procedure in the
target’s source code. For instance, if the 14th dynamic memory
allocation of the target program has been triggered by a
call to the malloc() C library procedure, and the call
is included in some function funcI() of the target pro-
gram, then the forged symbol name would be something like
“<malloc0014@funcI+230>”. Here, “230” represents the
offset in bytes of the call to malloc() inside funcI().
Observe that the role of the counter is to distinguish between
different allocations performed by the same allocator call; for
example, consider a loop iterated several times and containing
an invocation to malloc().

In order to forge new “dynamic” symbols to be associated
with dynamically allocated memory blocks, MadT has to
detect when the target process invokes a C library procedure
that allocates memory for the process itself. This is simply
done by defining a set of “wrapper” functions in MadT that
are invoked in place of the “original” C library procedures.
Currently MadT install wrappers for the C library functions
malloc(), calloc(), realloc(), free(), mmap(),
mremap(), and munmap().

Any wrapper records internally the dynamic memory event
so that “dynamic” symbols can be properly forged. The
dynamic event is also written in the output file produced by
MadT. The wrapper function also takes care of invoking the
“original” C library procedure.

The wrapper mechanism used by MadT is rather portable
because it is based on features provided in all modern oper-
ating systems. Basically, whenever a process invokes a given
procedure defined in a shared library, the dynamic loader looks
for a matching procedure name starting from the first loaded
library. The trick, therefore, is to load MadT’s shared library
before any other shared library used by the target program.
The dynamic memory tracker of MadT can thus be easily
ported to any platform that allows the user to override the
loading order of the shared libraries. Currently, MadT supports
Linux systems, where the loading order of the shared libraries
can be controlled, for example, by defining some environment

variables.

The dynamic memory tracker can also be extended to
support programs written in high-level languages different than
C. For example, in order to support a C++ target program,
new wrappers for C++ library procedures that handle dynamic
memory, like the new operator, should be included in MadT’s
shared library.

D. Limitations

It is important to note that currently MadT does not trace
memory accesses caused by instruction fetches. Although the
same mechanism used to trace data accesses can also be ap-
plied to trace instruction fetches, the performance impairment
would likely be very high. Moreover, from a practical stand-
point, individually tracing instruction fetches is not necessary
due to the inherently sequential nature of code execution flow.
Conversely, an analysis based on basic blocks is sufficient
and many tools have been described in literature to perform
control-graph extraction either at runtime or offline, as we
discuss in Section V.

Currently, MadT does not trace single memory accesses
to the stack. This is mainly because, similarly to instructions
fetches, stack usage can be easily analyzed without performing
tracing at runtime. In fact, stack boundaries are known at
compile-time and can also be extracted by parsing the exe-
cutable file. Nonetheless, MadT already detects memory block
operations (e.g., memcpy, memset) that access the stack,
and we plan to extend MadT to include stack single accesses
detection in a future release of the tool.

Finally, MadT does not provide a component to analyze the
collected trace. The main reason is that MadT is meant only to
provide a method to detect memory accesses and to map them
to the original variables defined by the programmer. Moreover,
the output file produced by MadT can be easily converted in
the format of other tools like Valgrind [9] and OProfile [10].
Therefore, any graphical analyzer suitable for the mentioned
tools can also be used for MadT.

III. IMPLEMENTATION DETAILS

The implementation of MadT relies on many different
techniques, which will be discussed in this section. For the
interested reader, additional implementation details and a prac-
tical use case are provided in [6].

A. Compilation of the target program

As a general rule, a target program that has to be profiled
by MadT must be recompiled.3 MadT depends on the GCC
toolchain [7], because it makes use of a few peculiar extensions
provided by the GCC compiler and loader.

No change to the source code of the target program
is strictly required: MadT may start profiling right before
executing the main() function, and it may stop right before
terminating the process. However, the user may define a
smaller portion of the target program execution to be profiled.
Specifically, the MadT__start() and MadT__stop()
functions can be added to the source code to, respectively,
start and stop the profiler.

When compiling and linking the target executable, the user
must specify some command line flags that instruct gcc to

3It is possibile to use MadT on programs that have not been specifically
recompiled; in that case, however, the tool is much less flexible and accurate.

include debugging information, to link with the libMadT.so
shared library, and to override the main() function of the
target program with a specific MadT’s function (this is used
when initializing the library, see below).

Together with the target executable file, the user must also
generate two files that include the contents of the relocation
section and of the symbol table of the target program. This
can be easily done by using the readelf utility program
(included in the GNU Binutils [11] toolset).

B. Launching the target program

MadT collects accesses by monitoring a live execution of
the target program. The target must be run on a Linux-based
system, because MadT extracts some information about the
target process from the Linux-specific /proc/self/maps
virtual file.

In order to start profiling the target program, the user
typically sets a few environment variables that control MadT’s
behavior. Next, the user launches the target program by passing
the same command line arguments as in a normal execution.
The memory accesses detected by MadT are written on a
dedicated output file. By using some environment variables
the user may force the profiler to start recording memory
accesses right before executing the target’s main() function.
(It is always possible to start and stop the profiler by inserting
calls to MadT__start() and MadT__stop() in the
target source code.) The user may also decide the format of
the addresses recorded in the output file: numerical virtual
addresses, symbolic addresses, or both.

C. Library initialization

The MadT profiler is linked to the target program as a
shared library. This means that at launch time the dynamic
loader maps code and data of MadT in the memory space of
the target process and ensures that specific library initialization
functions are executed.

As explained in Section II, MadT defines wrappers for
some of the procedures defined in the C library and possibly in
other shared libraries used by the target program. Therefore,
MadT must initialize some of its data structures as early as
possible: after the other shared libraries have been loaded but
before the initialization code of other shared libraries run. This
can be achieved by (1) imposing the dynamic loader to load
MadT’s shared library before the other shared libraries, and
(2) using a particular extension of the GCC C compiler that
allows the programmer to define a given library function as a
“constructor” procedure to be run before main().

In particular, when MadT is being initialized, the code
checks whether libMadT.so has been effectively loaded
first. If not, MadT sets some environment variables that mod-
ifies the libraries loading order, and restart the whole target
program. This is done in a wrapper function invoked in place
of target’s main(), because the target program has to be
restarted by specifying the same command line arguments
as the original execution, and these strings are made easily
available only to main().

The initialization code of MadT also reads from the files
generated at compile time the dynamic relocation table and
the symbol table of the target executable. It also reads from
the /proc/self/maps virtual file, present in any Linux
system, the list of virtual memory regions currently defined
for the target process. Finally, the initialization code installs

signal handlers for the SIGSEGV and SIGTRAP signals, and
invokes the main() function of the target program.

D. Collecting memory accesses

As explained in Section II, MadT forces a page fault excep-
tion whenever a machine instruction performs an operation that
produces a memory access. In order to achieve this, MadT uses
the mprotect() POSIX system call to remove all access
rights to the set of pages containing the memory cells whose
accesses are being profiled. In particular, when the profiler
is being activated, MadT scans the list of all virtual memory
regions of the target process, and it removes the access rights
from the pages in the regions corresponding to:

• the data segment of the target program or shared
libraries

• the bss segment of the target program or shared
libraries

• the heap of the target process

Access rights are never removed for pages of the MadT library
and of the dynamic loader, and for pages containing executable
code and stack. Thus, accesses to those pages are not recorded.

When a page fault exception occurs, the Linux kernel
determines whether the faulty address is included in a memory
region whose access rights forbid the tempted access. As
usual, in this case the kernel sends the SIGSEGV signal to
the program. Since MadT has installed a signal handler for
SIGSEGV, the kernel saves the hardware context of the target
program in the User Mode stack and forces the invocation of
the signal handler. The handler analyzes the hardware context
saved on the stack and determines the faulty address that
caused the fault, the address of the instruction that tried the
memory access, and the type of access (load or store). The
handler can thus record these data in a log buffer. It then
invokes the mprotect() system call to restore the proper
access rights to the pages including the faulty address. This is
done because MadT must ensure that the machine instruction
that is accessing memory is executed once again without
generating a page fault. Finally, the page fault handler modifies
the hardware context saved on the stack so as to activate the
hardware tracing mechanism when normal execution resumes.

When the SIGSEGV handler terminates, the machine in-
struction that caused the page fault is executed again. This
time the pages including the memory cells accessed by the
instruction should have proper access rights, so that likely the
memory access can be successfully completed. Right after the
execution of the machine instruction the CPU’s control unit
raises a “trap” exception. The kernel thus raises a SIGTRAP
signal and activates the corresponding handler defined in the
libMadT.so library.

The trap handler removes any access rights to the pages of
the virtual memory region including the address involved in
the previous page fault event, Then, it modifies the hardware
context of the target program saved on the stack so as to disable
the hardware tracing mechanism. Finally, it checks whether
the log buffer containing the events recorded by the profiler is
nearly full; if so, it calls a procedures that empties the buffer
by writing the events on the output file (see below).

When eventually the trap handler terminates, the normal
execution flow of the process is resumed. Tracing is disabled,
but pages to be profiled have no access rights, so that the
profiler shall catch the next memory access.

E. Translating virtual addresses to symbol names

When MadT initializes, it reads from some files generated
at compile time the dynamic relocation table and the symbol
table of the target executable. The symbol names found in these
tables are inserted in a red-black balanced binary tree indexed
by the starting address of the symbol. MadT also reads from
the /proc/self/maps virtual file the list of virtual memory
regions currently defined for the target process, and insert
each memory region in another red-black balanced binary tree
indexed by the starting address of the region. Each node of the
red-black tree is augmented with the size of the corresponding
memory region, thus the binary tree allows MadT to quickly
discover the memory region containing a given address.

The log buffer containing the events recorded by the
profiler has limited size, thus it must be periodically flushed by
writing its contents into the output file. Each record in the log
buffer includes the virtual address of the machine instruction
that triggered the fault, as well as the address of the memory
cell being accessed. The record also includes a reference to the
virtual memory region containing the page being accessed, and
the type of access (i.e., load or store).

When flushing the log buffer, MadT translates the virtual
addresses into meaningful symbol names and offsets relative
to the symbols. In order to translate a raw virtual address
into meaningful symbol name and offset, MadT looks up the
raw address in the red-black balanced binary tree including all
canonical symbols of the target program. If a match is found,
it outputs the symbol name and the difference between the
raw address and the “start” value associated with the symbol.
If no match is found in the symbol tree, MadT invokes the
dladdr() function of the dynamic loader to resolve the
address at run-time.4 If dladdr() returns a valid symbol,
it is inserted in the symbol red-black tree. Otherwise, if MadT
does not succeed in finding a symbol associated with the raw
address, it outputs the name of the memory region including
the raw address, as well as the relative offset with respect to
the start of the region.

F. Dynamic memory handling

The mechanism just described for translating virtual ad-
dresses into symbol names does not work when the addresses
belong to memory blocks that have been dynamically allo-
cated by means of C library procedures like malloc() or
mmap(). Therefore, MadT tracks dynamic memory events so
as to write meaningful information in the output file when
these memory blocks are accessed.

The key idea is to establish proper wrappers for any
C library function that handles dynamic memory. Currently
MadT knows about the following functions: malloc(),
calloc(), realloc(), free(), mmap(), mremap(),
and munmap(). It is easy to extend MadT and add wrappers
for other library functions, if required.

Once started, any wrapper routine typically checks if the
profiler is active; if so, the wrapper disables profiling by
restoring the access rights of the target memory pages. Then,
the wrapper invokes the original procedure. Next, it records
in the log buffer some data about the dynamic memory event:
the address returned by the library function and the block size,
in case of memory allocation or re-allocation; the address of
the block being freed, in case of release. Finally, the wrapper
removes the access rights to the target pages if the profiler was
active when it started.

4The dladdr() function is a non-POSIX extension of the “Glibc” library.

For performance reasons, symbols related to dynamic
memory events are not forged when the events occur, but later
when the corresponding entries stored in the internal buffer
are written to the output file. Some dynamic memory events
also modify the list of virtual memory regions of the process;
in this case, MadT also updates the internal data structure that
keeps track of those regions.

G. Interpreting profiler’s output

Each line in the output file produced by MadT starts with
a character that encodes the type of the recorded event. The
type encoding is summarized in Table I. The output file may
include “raw” lines and “symbolic” lines. The second character
in any line is “#” for “raw” lines, or “$” for “symbolic” lines.

TABLE I. TYPES OF MEMORY EVENTS IN THE OUTPUT FILE

L memory access of type “load”
S memory access of type “store”
Y block memory “copy” (memcpy()-like operation)
W block memory “store” (memset()-like operation)
G block memory “fetch” (write()-like operation)
M dynamic memory allocation — malloc()
C dynamic memory allocation — calloc()
P dynamic memory allocation — mmap()
R dynamic memory reallocation — realloc()
E dynamic memory reallocation — mremap()
F dynamic memory release — free()
U dynamic memory release — munmap()

“Raw” lines show the numerical virtual addresses collected
by the profiler. These lines may also include a string identify-
ing the virtual memory region that includes the memory cells
being accessed.

“Symbolic” lines show the addresses with the format
“symbol_name+offset”: “symbol_name” is the sym-
bolic name associated with the address, and “offset” is the
difference between the address and the “start” value associated
with the symbol. These lines may also include sizes (memory
block lengths), and strings that identify the virtual memory
region including the memory cells being accessed.

Symbol names forged by MadT to track dynamic memory
blocks can be easily recognized because they always start with
the character “<”: as this character cannot be used in valid C
symbol names, there can be no confusion. The format of these
symbol names is shown in Table II. As already explained,
MadT keeps a counter for the number of dynamic memory
allocations. The current counter value is included inside the
symbol name, as it helps in recognizing different memory
allocations triggered by the same source code instruction.

TABLE II. SYMBOL NAME FORMAT FOR DYNAMIC MEMORY EVENTS

<mallocnumber@symbol+offset> malloc()
<callocnumber@symbol+offset> calloc()
<reallonumber@symbol+offset> realloc()
<freed:number@symbol+offset> free()
<memmapnumber@symbol+offset> mmap()
<mremapnumber@symbol+offset> mremap()
<unmap:number@symbol+offset> munmap()

Moreover, the allocation counter helps in recognizing ac-
cesses to memory blocks that have already been released.
When MadT detects an invocation to free() or munmap(),
it updates the name of the corresponding symbol by overwrit-
ing the first seven characters with the strings “<freed:” or
“<unmap:”. The rest of the symbol name, however, is left
unchanged, thus it is still possible to identify the dynamic

memory block. Accesses containing symbol names starting
with “<freed:” or “<unmap:” should never appear in the
output file, unless the target program is accessing a dynamic
memory block that has been previously released. Usually, this
is a target program bug.

IV. EVALUATION

In this section, we compare the performance of MadT with
respect to existing tools that are able to perform complete
memory tracing of applications. Specifically, we focus our
comparison on two well established memory analysis tools,
namely the Intel Pin tool [12] and the Valgrind Lackey
tool [13].

Pin is a proprietary software component developed by
Intel, which is free for non-commercial use, and implements a
dynamic binary instrumentation framework for the IA-32 and
x86-64 architectures. It provides a set of APIs that abstract the
underlying ISA, supporting the creation of tools for dynamic
program analysis. Pin performs its instrumentation at run-time
on the compiled binary files without requiring recompilation.
Its instrumentation framework also provide basic access to
symbols and debug information.

In the context of this work, we focus on one of the sub-tools
developed using the Pin APIs: the Pinatrace tool. This tool
performs instrumentation only of instructions that read or write
memory, producing in output the complete trace. Each entry
in the trace reports three pieces of information: (1) address of
memory instruction; (2) type of operation (read or write); (3)
address of accessed memory location.

Similarly, Valgrind is a open-source binary instrumentation
framework on top of which several dynamic analysis tools
have been developed for code graph analysis and heap/stack
profiling. The Valgrind framework is being actively devel-
oped and, unlike the Pin tool, features support for a large
number of architectures, including IA-32, x86-64, PowerPC,
ARM, and MIPS. One of the tools included in the Val-
grind suite, called Lackey, performs a complete tracing of
memory accesses and instruction fetches when executed with
the option --trace-mem=yes. The style of the output
is quite minimal, since per each memory access only two
pieces of information are recorded: (1) access type (read,
write or instruction fetch) and (2) address of the accessed
memory location. However, each record corresponding to a
data memory access appears in the trace immediately after the
memory access corresponding to the fetch of the instruction
that performed the data access.

We have executed the experiments on a set of real bench-
marks that include applications from the MiBench suite [14]
and the San Diego Vision benchmark suite [15]. The selected
applications include object tracking, texture creation, jpeg
compression/decompression, heavy mathematical processing,
and sorting. We also tested the behavior of the considered
tracing tools on simple synthetic benchmarks that stress single
library functions that access memory in blocks and/or modify
the memory layout of the application: calloc, realloc,
read, fwrite and mmap. In addition, mandelbrot rep-
resents a computation intensive benchmark. The experiments
have been performed on a server-grade machine featuring a
Intel Xeon E5-2640 CPU operating at a frequency of 2.5 GHz,
with 15 MiB of last-level cache and 16 GiB of DRAM. On this
platform, the tools have been tested using a Linux 3.2 kernel
and the GCC 4.7.2 compiler.

Figure 1 shows the comparison among run-times for a

Fig. 1. Comparison on memory trace extraction time.

selection of benchmarks from the considered suites. The exe-
cution times have been normalized with respect to the MadT
runtimes. Each bar shows the percentage of slow down (posi-
tive range) or runtime reduction (negative range) of Pinatrace
and Lackey compared to MadT. As can be observed, in 5
benchmarks (stringsearch, qsort, math, disparity,
and localization) MadT achieves significant performance
benefits over both Pinatrace and Valgrind. In these examples,
in fact, the slowdown introduced by Pinatrace and Lackey
goes from 90% up to almost 800% compared to MadT. In
general, this trend is visible with benchmarks that are mostly
computation-intensive, while MadT does not performe so well
with memory intensive applications (i.e., texture_synth).
Intuitively, this is because on one hand the handling time for
the sequence of exceptions (SIGSEGV + SIGTRAP) is higher
than instrumenting the single memory instruction, while on the
other hand instructions that do not access memory are always
executed natively with zero overhead on the CPU.

TABLE III. SUMMARY OF BENCHMARKS NORMALIZED RUNTIMES

No Tracing MadT Pinatrace Lackey
Synthetic Benchmarks

calloc 1 50 1520 2040
realloc 1 1 1410 1900
read 1 1 1270 1730
mmap 1 10 1170 1530
fwrite 1 20 2320 2980
mandelbrot 1 1 2 4949

MiBench Benchmarks
stringsearch 1 290 1560 2300
susan 1 61520 25840 104490
jpeg 1 6527 4448 12378
qsort 1 15140 29410 75450
math 1 1021 2264 6832

San Diego Vision Benchmarks
disparity 1 2744 6216 5237
localization 1 587 5190 4410
mser 1 1907 2044 1617
multi ncut 1 12732 4815 7413
sift 1 20940 21842 21123
svm 1 17221 16548 15593
texture synth 1 24855 5534 3654
tracking 1 19720 18966 3299

Due to space constraints, the summary for the results
obtained on the complete set of benchmarks is reported in
Table III. As can be seen from the table, visible benefits are
obtained on synthetic benchmarks that heavily use C library
functions to operate on blocks of memory. This is because
MadT is able to intercept library calls that perform block
operations and treat their accesses in an aggregate way, instead
of tracing their behavior instruction by instruction. Moreover,

as discussed above, MadT behaves very well on computation
intensive applications such as the Mandelbrot benchmark. Here
MadT is able to provide performance that match the native
execution because this benchmark performs a limited number
of memory accesses, while intensely executing mathematical
operations on few CPU registers.

Next, we consider a subset of benchmarks from the
MiBench suite that reflect common workloads in automotive
and industrial domain [14]. The measurements for this set of
benchmarks is included in second section of Table III. It is easy
to observe that MadT always achieves better or comparable
performance with respect to Pinatrace and Lackey tools. As
in the case of basic benchmarks, Valgrind runs in about the
same order of magnitude of the Pin tool. This reflects the fact
that both the tools use the same approach of performing binary
instrumentation. The slight disadvantage of Valgrind seems to
be related to optimization problems, since it is designed to
support a broad set of architectures.

Finally, the last section of Table III reports the achieved
performance on the set of computer vision benchmarks. These
benchmarks accept as input a series of sensor data or images,
read them into internal buffers and compute their output locally
by working on dynamically allocated memory. As a result,
they are memory-intensive, hence significant slowdown is
introduced by all the considered memory tracing tools. From
the obtained results, it can be concluded that MadT does not
improve on binary instrumentation tools when normal instruc-
tion execution is closely interleaved with frequent memory
accesses. Intuitively, it can be concluded that, from a pure
performance standpoint, not much advantage can be achieved
by executing non-memory instructions natively and triggering
memory protection traps upon memory accesses. In fact, the
penalty of handling frequent segmentation faults can come
close to the slowdown introduced by adding an intermediate
binary translation layer.

We argue however that when comparable performance are
achieved, the proposed MadT still represents the most valid
memory-tracing option for system designer or third-party tools.
In fact, MadT provides two main advantages that can allow
post-processing of the produced trace to be simpler and more
detailed. (1) Unlike Pinatrace and Lackey, MadT performs
symbol resolution on observed memory accesses. This way,
it is always able to provide the memory region in which the
access has been performed and in most of the cases the name
of the variable it is related to. Furthermore, (2) because no
sandboxing is performed on the executed task, no additional
memory regions are added to the task at analysis time, apart
from the minimal number of regions required to link the MadT
library. This makes significantly easier to infer the memory
behavior of the task executing natively (i.e., outside the tracing
environment) from the collected trace. Conversely, both Pin
and Valgrind significantly rearrange the memory region layout
of the analyzed task by almost doubling the total count of
regions.

V. RELATED WORK

The problem of determining the memory access pattern of
a task under analysis for workload characterization purposes
has been approached from several perspectives, resulting in
solutions with different advantages and trade-offs.

A first approach is to understand the structure of the task
and reason offline about its behavior. A body of work in this
direction uses abstract interpretation [16, 17] to determine the
possible sequences of memory references across the possible

execution paths of a given task.

Symbolic execution [18] represents another technique that
has been largely used to determine possible execution paths in
the control flow of a task, and thus the set of possible memory
references [19, 20].

A third approach is based on collecting accurate memory
traces from live execution of the target program. To the best of
our knowledge, two main methods have been developed. The
first one is to rely on dedicated hardware modules. However,
hardware tracers are classified as industrial-grade instruments,
thus they are normally expensive (tens of thousands of dollars).
Moreover, they cannot be used on high-end platforms (e.g.,
Intel i7 and Xeon CPUs), which do not expose suitable
hardware debugging interfaces. Finally, as it can be difficult
to trace a selected portion of the target program execution, the
users may face the difficult task to analyze huge trace logs to
find the interesting information.

The second method to collect accurate memory traces is to
perform instrumentation of the task code, triggering the tracing
routines when instructions that perform memory accesses are
encountered. Tools that allow code instrumentation are usually
classified in two main categories: source-level and binary-
level. When instrumentation is performed on the binary code,
additional instructions are dynamically added to a compiled
program. This can be done before the code starts its execution,
as in QPT [21] and Pin [12], or while the program is running,
as done by Valgrind [9].

Conversely, in the source-level approach, instrumentation
is performed at compile time. Existing automatic source-level
instrumentation is done either by performing source-to-source
translation (e.g., ROSE [22]), or by introducing additional
specific compilation logic [23, 24].

In this work, we propose a novel technique to perform
memory access detection relying on memory protection mech-
anisms that sets itself apart from what we have described so far.
MadT is aimed at demonstrating how it is possible to acquire
accurate memory traces by introducing controlled memory
faults and trap exceptions. In this way, we (1) do not rely
on advanced debugging hardware capabilities, (2) do not need
to instrument any of the instructions in the observed binary,
(3) do not necessarily need to instrument the source code:
in fact, we can directly perform memory tracing of a binary
executable by dynamically linking a shared library containing
MadT’s code.

Actually, detecting memory accesses through controlled
page faults has been proposed many times and it is consid-
ered a fundamental idea, for instance in garbage collection
algorithms and consistency/replication protocols for distributed
shared memory [25, 26]. However, collecting accurate traces
of all accesses to a given set of memory pages is a different
thing. In fact, garbage collection and consistency/replication
protocols only require to determine that an access has been
performed, which is a task significantly simpler than detecting
all accesses.

A previous proposal for an accurate tracing mechanism
based on page faults is the IF (Interpretation Fault) library [27],
aimed at detecting memory accesses on the SPARC architec-
ture. Actually, two alternative ideas were discussed: the first
one was that, after the page fault, the machine code following
the instruction that triggered the fault is modified so as to
perform a jump to a recovery procedure, which removes again
the access rights of the page and restores the original code
of the program. The other idea was to rely on a hardware

feature of the SPARC processors, namely using the special
npc register to implement a branch to the recovery procedure.
Although MadT is similar in some aspects to the IF library, it
is also quite different because: (1) it does not rely on machine
code instrumentation; (2) it exploits a CPU hardware feature
that is much more common than the delayed branch register
of the SPARC processors, namely the trapping (or single-
stepping) mechanism that automatically generates an exception
after each machine instruction; (3) MadT translates each virtual
address in a symbolic form, mapping it to its original variable
from the source code, allowing the user to easily understand
the real memory access pattern of the target program.

VI. CONCLUSION

Understanding the memory footprint of an application is
often fundamental for the analysis and design of real-time
systems. In this paper, we present a novel technique for
memory access detection and propose the implementation of
a proof-of-concept tool, namely MadT, that is capable of
recording memory accesses performed by an application in
a fully symbolic form. In addition, our tool is capable of
accurately tracking dynamic memory allocations and releases,
forging when necessary new symbol names that simplify the
identification of accesses to the dynamic memory.

By using MadT the user can accurately relate all memory
accesses, including those to dynamically allocated blocks, to
the source code of the target application. Compared to other
profiling tools, MadT shows similar performances, and in some
cases it is significantly faster. Furthermore, MadT does not
require modifications to the source code of the application or
of the operating system.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant numbers CNS-1302563, and CNS-1219064. Any opin-
ions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not neces-
sarily reflect the views of the NSF.

We gratefully thank Alessandra Cocozza, who worked on
a preliminary version of MadT.

REFERENCES

[1] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco
Caccamo. Memory-centric scheduling for multicore hard real-time
systems. In Real-Time Systems. Springer, 2011.

[2] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John
Criswell, Marco Caccamo, and Russell Kegley. A predictable execution
model for COTS-based embedded systems. In Proceedings of the
2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS ’11, pages 269–279, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-0-7695-4344-4.

[3] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-
time i/o management system with cots peripherals. Computers, IEEE
Transactions on, 62(1):45–58, Jan 2013. ISSN 0018-9340. doi:
10.1109/TC.2011.202.

[4] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core ar-
chitectures. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), RTAS’13, pages 45–
54, Philadelphia, PA, USA, April 2013. IEEE Computer Society.

[5] R. Wang, Y. Gao, and G. Zhang. Real time cache performance analyzing
for multi-core parallel programs. In Cloud and Service Computing
(CSC), 2013 International Conference on, pages 16–23, Nov 2013.

[6] M. Cesati, R. Mancuso, E. Betti, and M. Caccamo. MadT:
A memory access detection tool for symbolic memory profiling.
http://hdl.handle.net/2142/78093, 2015.

[7] Free Software Foundation, Inc. GCC, the GNU compiler collection.
https://gcc.gnu.org/, 1988–2014.

[8] Free Software Foundation, Inc. The GNU C library (glibc). http://
www.gnu.org/software/libc/, 1992–2014.

[9] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’07, pages 89–100, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-633-2. doi: 10.1145/1250734.1250746. URL
http://doi.acm.org/10.1145/1250734.1250746.

[10] W. Cohen. Tuning programs with OProfile. Wide Open Magazine, pages
53–62, 2004.

[11] Free Software Foundation, Inc. GNU Binutils. http://
www.gnu.org/software/binutils/, 1988–2013.

[12] CK Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Janapa Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of Programming Language Design and Implementation, PLDI’05, pages
190–200, June 2005. URL http://www.pintool.org/.

[13] N. Nethercote. Lackey – a Valgrind tool. http://
www.valgrind.org/docs/manual/lk-manual.html, 2012.

[14] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and
R.B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Proceedings of IEEE 4th Annual Workshop
on Workload Characterization, Austin, TX, December 2001. URL
http://www.eecs.umich.edu/mibench/.

[15] S.K. Venkata, I. Ahn, Donghwan Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M.B. Taylor. SD-VBS: The San Diego Vision
Benchmark Suite. In Workload Characterization, 2009. IISWC 2009.
IEEE International Symposium on, pages 55–64, October 2009.

[16] P. Cousot. Abstract interpretation based formal methods and future
challenges. In Informatics - 10 Years Back. 10 Years Ahead., pages
138–156, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-41635-
8.

[17] C. Cullmann. Cache persistence analysis: Theory and practice. ACM
Trans. Embed. Comput. Syst., 12(1s):40:1–40:25, March 2013. ISSN
1539-9087.

[18] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976. ISSN 0001-0782.

[19] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[20] M. von Detten. Towards systematic, comprehensive trace generation for
behavioral pattern detection through symbolic execution. In Proceedings
of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools, PASTE ’11, pages 17–20, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0849-6.

[21] J.R. Larus. Efficient program tracing. Computer, 26(5):52 –61, May
1993. ISSN 0018-9162.

[22] Q. Sun and H. Tian. The ROSE source-to-source compiler infrastructure.
In Cetus Users and Compiler Infrastructure Workshop, in conjunction
with PACT, Galveston Island, Texas, USA, October 2011.

[23] Q. Sun and H. Tian. A flexible automatic source-level instrumentation
framework for dynamic program analysis. In Software Engineering and
Service Science (ICSESS), 2011 IEEE 2nd International Conference on,
pages 401 –404, July 2011.

[24] Xiaofeng G., M. Laurenzano, B. Simon, and A. Snavely. Reducing
overheads for acquiring dynamic memory traces. In Workload Char-
acterization Symposium, 2005. Proceedings of the IEEE International,
pages 46–55, Oct 2005.

[25] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent
collection on stock multiprocessors. In Proc. of the SIGPLAN’88 Conf.
on Programming Language Design and Implementation, pages 11–20,
Atlanta GA, USA, June 1988. ACM.

[26] Andrew W. Appel and Kai Li. Virtual memory primitives for user
programs. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IV, pages 96–107, New York, NY, USA, 1991.
ACM. ISBN 0-89791-380-9. doi: 10.1145/106972.106984. URL
http://doi.acm.org/10.1145/106972.106984.

[27] D.R. Edelson. Fault interpretation: fine-grain monitoring of page
accesses. Technical report, University of California at Santa Cruz, 1992.

