
A Scheduling Framework for Handling Integrated
Modular Avionic Systems on Multicore Platforms

Alessandra Melani∗, Renato Mancuso†, Marco Caccamo†, Giorgio Buttazzo∗, Johannes Freitag‡, Sascha Uhrig‡
∗Scuola Superiore Sant’Anna, Pisa, Italy, {alessandra.melani, g.buttazzo}@sssup.it

†University of Illinois at Urbana-Champaign, USA, {rmancus2, mcaccamo}@illinois.edu
‡Airbus Group Innovations, Munich, Germany, {johannes.freitag, sascha.uhrig}@airbus.com

Abstract—Although multicore chips are quickly replacing unipro-
cessor ones, safety-critical embedded systems are still developed
using single processor architecture. The reasons mainly concern
predictability and certification issues. This paper proposes a schedul-
ing framework for handling Integrated Modular Avionics (IMA) on
multicore platforms providing predictability as well as flexibility
in managing dynamic load conditions and unexpected temporal
misbehaviors of multicore. A new computational model is proposed
to allow specifying a higher degree of flexibility and minimum
performance requirements. Schedulability analysis is derived for
providing off-line guarantees of real-time constraints in worst-case
scenarios, and an efficient reclaiming mechanism is proposed to
improve the average-case performance. Simulation and experimental
results are reported to validate the proposed approach.

I. INTRODUCTION

Multicore platforms are rapidly replacing uniprocessor counter-
parts in several application domains, since they allow increasing
performance with a contained energy consumption, which also
reflects on cooling, weight and space constraints. In spite of that,
safety-critical embedded systems are still deployed on single-core
computers. The main reasons that are delaying the adoption of
multicore systems by avionic and automotive industries can be
grouped in four categories: 1) temporal predictability; 2) migra-
tion of legacy software; 3) complexity of hardware architecture;
and 4) software/hardware certification.

Currently, the Federal Aviation Administration (FAA) and other
international certification authorities have serious concerns about
the use of multicore platforms in Integrated Modular Avionics
(IMA) due to various inter-core interference channels. A recent
FAA’s position paper, CAST-32 [1], establishes some guidelines
to execute safety-critical applications on multicore. However, it
partially enumerates the possible interfering channels on multi-
core, it is limited to two cores, and it does not address partitioning
between applications in different subsystems, as mandated by
the ARINC 653 avionic standard [2]. Existing uniprocessor
implementations of IMA consist of a static cyclic executive that
partitions applications into predefined time slots. In particular,
ARINC 653 defines a schedule that is repeated every MAjor
Frame (MAF). The MAF may be further divided into a sequence
of MInor Frames (MIFs), which specify a fixed execution duration
for each partition. According to this specification, each partition
may be activated one or more times during the MAF.

In this work, we introduce a multicore IMA hierarchical sched-
uler that employs partitioned and Fixed Priority (FP) scheduling
with periodic partition servers [3]. Compared to the traditional
cyclic executive approach, we argue that the proposed scheduling
framework preserves temporal isolation between partitions while
providing higher flexibility in handling unexpected temporal mis-
behaviors1 of a multicore platform. In fact, after known inter-core

1For instance, a recent research article [4] has uncovered a previously over-
looked problem in the behavior of non-blocking caches that can invalidate the
benefits of cache partitioning approaches.

interference channels are mitigated and accounted for, residual
and unmodeled architectural complexities can be further mitigated
by allocating extra budget to critical partitions to cope with over-
runs for additional safety. Besides increasing schedulability over
the classic cyclic executive scheme, the proposed approach has the
advantage of managing unpredictable load variations with higher
flexibility. Our efficient resource reclaiming mechanism exploits
the unused extra budget allocated to more critical partitions in
favor of less critical ones, in order to increase the average system
performance.

Another important advantage of periodic servers versus cyclic
scheduling is the possibility of handling aperiodic requests gen-
erated by asynchronous events and managing load variations
through proper budget reclaiming mechanisms (e.g., [5]–[8]).
This feature is particularly important in the presence of safety-
critical partitions, where resources are overallocated to cope
with worst-case scenarios and unpredictable overload conditions.
Considering that such situations are typically very rare, a worst-
case design without any reclaiming capability would lead to a
very poor average-case performance. In a classical cyclic scheme,
idle times coming from computations that terminate before their
worst case are not exploited for executing other partitions, hence
they are simply wasted, or at the best can be used to execute
background activities.

Proposed approach. The proposed scheduling framework is
specifically designed to provide functional safety and temporal
isolation of IMA partions in spite of unmodeled complexities
of a multicore architecture, as well as flexibility in handling
load variations and asynchronous events. Its main features can
be summarized as follows:

• The scheduler supports temporal and spatial partitioning
between multiple applications. Temporal isolation is further
strengthened by enforcing synchronous partition switching
on all the cores (i.e., only one partition is active and running
in parallel at any time). Hence, unforeseen temporal cou-
pling among partitions is avoided by construction. However,
within a partition, inter-core interference can be mitigated by
adopting techniques like Single Core Equivalence (SCE) [9].

• Synchronous partition switching on all the cores provides
enhanced temporal modularity on multicore; however, the re-
sulting context switch overhead can be severe. The proposed
scheme supports a limited preemption model for partitions
to mitigate their switching overhead.

• The framework supports job skipping to allow less critical
partitions to be designed with less stringent worst-case per-
formance requirements. The skipping parameter associated
to a task quantifies the reduction of service that can be
tolerated for the corresponding functionality.

• To allow flexibility in specifying performance requirements,
task execution follows an imprecise computation model,
according to which any task instance first executes a manda-978-1-5386-1898-1/17/$31.00 © 2017 IEEE

tory part, and then an optional part that integrates the
former with additional operations. For example, in a flight
control application, once structural integrity of the aircraft
has been assured, additional calculations for fuel saving can
be optionally performed.

• After all known inter-core interference channels are miti-
gated, unforeseen and unmodeled architectural complexities
are mitigated by over-designing critical partitions with an
extra budget for enhanced safety. Off-line schedulability
analysis is carried out considering the overrun budget for
the most critical partitions and assuming a worst-case job
skipping scenario for the less critical ones.

• To compensate for the pessimism assumed in off-line analy-
sis, an efficient on-line reclaiming mechanism is provided to
possibly distribute the budget unused by a critical partition
to less critical ones, according to a user-specified policy.

Finally, it is worth noticing that, in the special case where
all partitions have the same period, the proposed server-based
scheduling scheme is backward compatible with a cyclic exec-
utive scheme in which each partition executes for a single slot
within the major cycle (equal to the server period).

Novel contributions. This paper has four main contributions.
First, a general framework is presented to support next-generation
IMA scheduling on multicore platforms, with the salient feature
of limiting by construction the inter-core interference between
logically independent tasks. Second, a new task model is pro-
posed to allow the application designer to specify minimum
functionality requirements in a more flexible way; the model
generalizes two existing task models specifying performance
degradation under overload conditions. Third, a schedulability
analysis is derived for providing off-line real-time guarantees in
worst-case scenarios, taking all the proposed system features into
account. Finally, an efficient reclaiming mechanism is presented
to compensate for pessimistic design choices and enhance the
average-case performance. It allows exploiting the budget unused
by a partition to reintegrate skipped jobs in other partitions
according to a predefined policy.

Organization of the paper. The remainder of this paper is orga-
nized as follows. Section II reviews the related work. Section III
presents the adopted system model and assumptions. Section IV
describes the reclaiming algorithm. Section V describes the
schedulability analysis. Section VI presents some experimental
results carried out to evaluate the proposed approach. Finally,
Section VII states the conclusions and outlines future work.

II. RELATED WORK

The problem of inter-core interference in multicore architec-
tures is well known and has been largely studied in the literature.
Mancuso et al. [9], [10] proposed the Single Core Equivalence
(SCE) technology for fixed priority scheduling. Under SCE,
access to shared memory resources is strictly regulated using a set
of OS-level techniques. For software certification, SCE allows m
cores to be treated as independent processors of a conventional
single-core chip, meaning that local workload changes require
local re-validation only. However, SCE does not discuss how to
extend IMA architectures in the presence of multicore platforms.
Some approaches have been proposed to improve schedulability
in single-core integrated modular avionics. Fohler [11], [12]
proposed a slot shifting technique to reclaim spare capacities in a
static schedule and incorporate aperiodic tasks and adaptive fault
tolerance. Slot shifting was originally developed in the context of
distributed real-time systems, but in principle could be adapted

to IMA to cope with overruns. Agrawal et al. [13] presented a
preliminary work for enabling slot-level time-triggered scheduling
on COTS multicore platforms. This work addresses the problem
of inter-core interference and provides a mitigation strategy for
static off-line schedulers like cyclic executive.

This work shares a number of similarities with the Mixed-
Criticality on Multi-core (MC2) framework. The MC2 frame-
work [14]–[16] has been developed to execute mixed-criticality
workloads on commercial multi-core systems, allowing different
scheduling techniques to be adopted at different criticality levels.
Similarly to MC2, our work specifically addresses Integrated
Modular Avionics and its Development Assurance Level (DAL)
assignment2, and introduces slack reclamation as a way to solve
the problem of under-utilization of cyclic executive schemes.
However, differently from MC2, a key requirement in this work
is to satisfy a strict extension to multi-core systems of the
certification guidelines in DO-178B [17] and DO-178C [18].
In this extension, different cores are not allowed to execute in
parallel applications belonging to different partitions. As such, a
key feature of our is the enforcement of synchronous partition
switching on all the cores. Additionally, unlike MC2, we do
not consider soft real-time constraints for low-criticality tasks:
minimum functionality guarantees are always provided with hard
real-time constraints at any assurance level, while efficiently
reclaiming spare computational capacity. Resource reclaiming
was also discussed in the context of MC2 at a task-level, where
reclaimed resources are assigned following a descending priority
order. Conversely, (i) we investigate resource reclaiming at a
partition level, and (ii) we study a number of different heuristics
to select the partition that should receive the spare capacity, as
described in Section IV-B.

Kim et al. [19] proposed a budgeted generalized rate-monotonic
scheduling policy for uniprocessor IMA. The goal is to improve
schedulability by assuming that all tasks are globally scheduled in
priority order using a single-level scheduler. To support temporal
modularity, each application is constrained to run within a total
CPU utilization budget. The same authors presented a novel
utilization bound [20] for a set of tasks in an IMA partition.
The bound is useful at early development stage when task
periods are known while task execution times are still unavail-
able. Other works [21], [22] proposed an extension of IMA to
multicore platforms where the static cyclic executive partitioning
is preserved. An optimized scheduling algorithm is proposed to
handle I/O device management partitions as exclusive regions;
hence, synchronization between device management partitions is
achieved across cores. By presenting a constraint programming
(CP) formulation, the authors find the minimum number of cores
needed to schedule a given set of partitions on the multicore.
Since the CP approach scales poorly, the same authors proposed
a heuristic algorithm [21] that outperforms the CP approach in
scalability. Additionally, the I/O partitions are consolidated in a
dedicated core to simplify their management. In the proposed
work, the problem of I/O partition synchronization is intrinsically
solved since only one partition is active at any time. For instance,
I/O partitions can be consolidated in a dedicated core, if needed.

The idea of bounding the effect of resource sharing by allowing
tasks of the same class to run exclusively on the platform has
been first formalized by the Isolation Scheduling model [23].
Optimality results were provided for this framework; moreover,
its applicability in the context of mixed-criticality scheduling [24]

2Under DO-178B [17] and DO-178C [18], DAL is specified according to the
severity of failure conditions (e.g., catastrophic (A); hazardous (B); major (C);
minor (D); no effect (E)).

was discussed. According to this model, tasks are assigned
different WCET estimates corresponding to different criticality
levels; hence, at runtime the execution of low-criticality tasks
can be degraded to accommodate the resource demand from
high-criticality tasks. Cyclic executive schemes implementing the
Isolation Scheduling model in a mixed-criticality system have
been designed by Burns et al. [25].

III. SYSTEM MODEL

This section formalizes the system model and describes the
main features of the framework proposed to extend IMA schedul-
ing to a multi-core environment.

A system consists of a set of N IMA partitions Π1, . . . ,ΠN ,
running on a platform comprising m identical cores. Each par-
tition Πi is assigned three parameters (Qi, Pi,πi), where Qi

represents the allocated budget (or capacity), Pi its period, and
πi a fixed priority. At any time instant, only one partition can
execute on the platform and partition switching is synchronously
performed on all the cores. Therefore, each partition Πi is
implemented by m identical periodic servers S1

i , . . . , S
m
i , each of

which defined by the same budget Qi and period Pi of the cor-
responding partition. For the generic server Sc

i executing on core
c, qci denotes the current remaining budget, which is discharged
proportionally whenever the server is scheduled for execution.
Note that such a discharging rule ensures a synchronous partition
switching.

While this feature avoids inter-partition interference by con-
struction, it implies a higher runtime overhead, caused by the
simultaneous cache flushing on all the cores, which can increase
bus traffic due to cache misses. In the proposed framework, such
an overhead is controlled by limiting preemptability, assuming
that a partition Πj with higher priority can preempt the currently
executing partition Πi only σ time units after Πi was scheduled.

Each IMA partition Πi runs an application composed of ni

periodic or sporadic3 tasks τi,1, . . . , τi,ni , each of which is defined
by a tuple (Ci,j , Di,j , Ti,j , pi,j), where Ci,j denotes its worst-
case execution time (WCET), Di,j its relative deadline, Ti,j

its period or minimum inter-arrival time, and pi,j its priority.
Relative deadlines are assumed to be less than or equal to periods
(Di,j ≤ Ti,j). A task τi,j is referred to as a bound task if its
period is a multiple of the server’s period and arrival times are
coincident with server activation times, otherwise it is referred to
as an unbound task.

To increase flexibility in specifying performance requirements,
task execution follows an imprecise computation model [26]–[28],
according to which any task instance (job) first executes a manda-
tory part, whose WCET is denoted by Mi,j , and then an optional
part, whose WCET is denoted by Oi,j , where Ci,j = Mi,j+Oi,j .
While the mandatory part of every job is always executed, its
optional part may be fully skipped according to a skip parameter
Si,j , with the interpretation that an optional part can be skipped
once every Si,j jobs, so that a minimal functionality requirement
is guaranteed for the associated task [29], [30]. In the classical
skip model, the skip parameter can range between 2 and infinity.
In this paper, considering the existence of the mandatory part,
the skip parameter can also be equal to 1, meaning that only the
mandatory part is executed.

Job skipping can be exploited at design time to reduce the
load in less critical partitions in favor of more critical ones,
which can then be assigned a higher budget to tolerate transient

3The proposed results apply to both sporadic and periodic tasks. Periodic arrival
patterns lead to more efficient budget reclaming. See Section IV.

overruns. Such a model encompasses the case of critical tasks
(with no skipping capabilities) as a special case where Oi,j = 0.
Analogously, a task with soft requirements and entirely skippable
jobs can be modeled by setting Mi,j = 0. The proposed task
model nicely integrates job skipping with imprecise computation,
thus increasing the flexibility for specifying timing, as well as
criticality constraints.

In the proposed framework, jobs selected to be skipped (at
design time) can be reintegrated (fully or partially) at runtime by
exploiting the spare budget saved by other high-priority partitions
through the reclaiming mechanism explained in Section IV. Note
that, since the proposed mechanism allows optional parts to be
partially executed, in principle this could leave the system in
an inconsistent state, for example if the budget is exhausted
while a task is executing a critical section. However, a simple
solution for avoiding inconsistency is to perform a budget check
at the entrance of a critical section, and allow the selected job
to continue only if the budget is enough to fully execute it.
An alternative solution is to divide optional parts into chunks
and donate budget only if it is sufficient to execute one or
more chunks. Although the reclaiming method can be configured
to readmit discrete portions of a skipped job, for the sake of
simplicity, the rest of the paper assumes that any amount of a
skipped job can be readmitted for execution, depending on the
amount of spare budget saved by another partition. In summary,
a task is defined by the following set of parameters:

(Ci,j , Di,j , Ti,j , pi,j ,Mi,j , Oi,j , Si,j).

A two-level hierarchical scheduler is assumed for managing
application tasks. Partitions are scheduled according to a fixed
priority (FP) algorithm and tasks within a partition are statically
allocated to the m cores and managed by m corresponding
periodic servers with the same parameters.

The set of tasks belonging to a partition and allocated to a core
defines a sub-application. Tasks in a sub-application are executed
by FP scheduling when the corresponding partition is scheduled
and the corresponding server is running. Note that priorities of
tasks belonging to different partitions are assumed to be unrelated.
In the following, hp(Πi) and lp(Πi) denote the set of partitions
with priority level greater than and lower than Πi, respectively.
Analogously, at the core level, hp(τi,j) and lp(τi,j) denote the
set of tasks belonging to partition Πi having priority level greater
than or lower than τi,j , respectively.

IV. RECLAIMING ALGORITHM

This section presents the reclaiming algorithm adopted to
redistribute the budget unused by partitions.

In order to describe how to reclaim the spare budget, two
aspects need to be addressed: (i) How the spare budget can
be transferred from one partition to another (budget transfer
mechanism); (ii) How to select the partition(s) that receive the
spare budget (budget assignment policy).

A. Budget transfer mechanism

To explain the proposed budget transfer mechanism, we first
need to define the notion of quiescent sub-application inside the
current server period.

Definition 1 (Quiescent sub-application). A sub-application of
partition Πi running on core c is defined to be quiescent in a
given server period if all pending jobs have been completed (i.e.,
core c is currently idle) and no other jobs are going to be released
before the end of the current server period.

Note that, in Definition 1, the completion time of a job
corresponds to the completion of both its mandatory and optional
parts, or its mandatory part only, according to the pattern imposed
by the value of the skip parameter Si,j .

In the proposed framework, the servers of a given partition
are executed by FP scheduling and are forced to consume their
budget (until exhaustion) when they are scheduled even though
there is no pending workload to be executed. This constraint is
needed to enforce the synchronicity among servers of the same
partition and preserve system schedulability.

A first naive solution to reclaim the budget unused by some
partition server in case of early completions would be to exe-
cute its own pending workload if any, thus avoiding partition
switching. This type of reclaiming is denoted as self-donation.
Note that such a pending workload would have been executed
in the following server periods in case of no budget saving.
The following example shows that self-donation could lead to
a significant budget waste. Consider the task set in Table I,
executing on a platform with m = 2 cores. In the example,
partition Π1 and Π2 have parameters (Q1, P1) = (5, 10) and
(Q2, P2) = (4, 12), respectively, and priorities assigned with Rate
Monotonic (i.e., π1 > π2).

Task Core Ci,j Mi,j Oi,j Si,j Ti,j Di,j

Π1 τ1,1 1 5 5 0 ∞ 10 10
τ1,2 2 4 4 0 ∞ 10 10
τ1,3 2 4 4 0 ∞ 40 40

Π2 τ2,1 1 2 0 2 2 12 12
τ2,2 1 6 6 0 ∞ 24 24
τ2,3 2 4 4 0 ∞ 24 24
τ2,4 2 4 4 0 ∞ 36 36

Table I: Task set parameters of the example in Fig. 1 and 2.

Figure 1 illustrates an example of self-donation, where parti-
tions are allowed to reclaim their spare budget for executing their
own pending workload. In the example, the first instances of τ1,1
and τ1,2 execute for their WCET, hence no budget is saved in
the first server period. In the second period, both τ1,1 and τ1,2
complete earlier (at time 12), saving three units of budget on core
1 and two units on core 2. Note that self-donation allows τ1,3 to
execute for additional 2 units of time, exploiting the saved budget
and finishing earlier, at time 15. Such an earlier completion of
τ1,3, however, does not lead to future donations. In fact, in the
following server periods, τ1,1 executes for its WCET, thus the
budget saved by τ1,2 cannot be donated to preserve a synchronous
switching. Hence, the budget saved in partition Π1 in the second
server period is wasted.

Figure 2 shows what happens when self-donation is prohibited,
so each sub-application can only consume the budget that would
have been available in the worst case (e.g., just one time unit for
τ1,3 in the second server instance). In this case, donation can take
place at time 13, since two units of budget are simultaneously
saved in both cores of partition Π1 and can be donated to Π2

to readmit the second job of τ2,1, which otherwise would have
been skipped. On the second core, the donated budget is used to
execute τ2,4, which was pending at the time of donation. Note,
however, that inhibiting self-donation as in Figure 2 is not always
the best way to reclaim the unused budget. In this example, in
fact, τ1,3 could have continued executing from time 4 to 5, since
the server on the first core was not ready to donate its budget
at time 4. For these reasons, the proposed reclaiming strategy
establishes a tradeoff between the two extreme cases described
above in order to enforce the synchronicity among servers while
reclaiming the budget.

The above example demonstrates that an effective reclaiming

τ1,1

𝑞1
1

core1

-3

wasted

-2 -3

core1

core2

core2

skipped

wasted wasted

-2

self-donation

τ1,2

τ1,3

𝑞1
2

τ2,1

τ2,2

𝑞2
1

τ2,3

τ2,4

𝑞2
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

1 2 1 2 1 2 1

5/10

5/10

5/10

4/10

4/40

2/12

6/24

4/12

4/12

4/24

4/36

Figure 1: Example of budget waste arising from self-donation.

core1

core2

core1

core2

+2

-3

-1 -2 -3

1 2

readmitted

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

1 2 1 2 1

τ1,1

𝑞1
1

τ1,2

τ1,3

𝑞1
2

τ2,1

τ2,2

𝑞2
1

τ2,3

τ2,4

𝑞2
2

5/10

5/10

5/10

4/10

4/40

2/12

6/24

4/12

4/12

4/24

4/36

Figure 2: Example of readmitted job after budget donation.

strategy has to keep track of the saved budget. To achieve this
goal, each server Sc

i also maintains a worst-case budget, denoted
as qci , representing the budget that would have been consumed if
all tasks were executing for their WCET. Such a server variable
is updated according to the following rules:

R1: At the beginning of each server period, qci is set to Qi;
R2: When Sc

i is scheduled and some task is executing, qci is
decremented proportionally (with the same rate as qci);

R3: If a job completes earlier than its WCET, qci is decremented
by the saved amount Ci,j − ei,j , being ei,j the actual job
execution time, provided that qci does not become negative
(saturating to zero);

R4: When Sc
i is scheduled and the core is idle, qci is decre-

mented proportionally (with the same rate as qci) if the
sub-application is quiescent or qci = qci ; else (if the sub-
application is not quiescent and qci < qci) it is kept constant.

The following example clarifies the rules for updating the
worst-case budget. Consider a partition Π1 with parameters
(Q1, P1) = (10, 20) executing the task set in Table II on a
platform with m = 2 cores.

In Figure 3, solid-line rectangles represent actual task execu-
tion, while dashed-line rectangles denote additional execution up
to the worst-case. On the first core, τ1,1 terminates its first job

Task Core Ci,j Mi,j Oi,j Si,j Ti,j Di,j

τ1,1 1 5 5 0 ∞ 20 20
τ1,2 1 5 5 0 ∞ 40 40
τ1,3 1 5 5 0 ∞ 40 40
τ1,4 2 5 5 0 ∞ 20 20
τ1,5 2 4 4 0 ∞ 20 20

Table II: Task set parameters of the example in Fig. 3.

5/20

5/20

4/20

5/40

10/20

core1

core2

-4

-4

-2

-2

10/20

+3

5/40

worst-case budget q1budget q1

+3

0 2 4 6 8 10 12 14 16 18 20

S1 ready for donation

S1 ready for donation

1

2

1 ready for donation

c c

1,1

1,2

1,3

S1
1

S1
2

1,4

1,5

Figure 3: Example showing the rules for updating the worst-case
budget and the budget donation mechanism.

at time t = 1, saving 4 units of time. Hence, q11 is decremented
linearly while Π1 is scheduled (rule R2), and is decremented
by 4 units at time 1 (rule R3). Then, since the sub-application
is not quiescent and q11 < q11 , q11 is kept constant until time
t = 5 (Rule R4), and then it follows the same trend as q11
in [5,7], since now q11 = q11 . At time t = 7, q11 is further
decremented by 4 units (saturating to zero) due to the earlier
completion of τ1,2. On the second core, the worst-case budget
q21 is linearly decremented during task execution (rule R2), and
then decreased by two units at times t = 3 and t = 5, since
both tasks complete earlier by saving two units of time (rule
R3). At time t = 5, the sub-application becomes quiescent, since
there are no more pending jobs within the server period, so q21 is
linearly decremented saturating to zero (rule R4). As explained
later, once a sub-application becomes quiescent, it is available to
donate its spare budget, so the value of the worst-case budget is
only relevant when the sub-application is not quiescent.

The following lemma establishes two conditions that enable the
donation mechanism to be triggered without violating the system
schedulability.

Lemma 1. A server becomes ready for donation when at least
one of the following conditions is satisfied.

Condition 1. A server Sc
i is ready for donation if its current

server budget is greater than zero (qci > 0) and the corresponding
sub-application is quiescent.

Condition 2. A server Sc
i is ready for donation if its current

server budget is greater than zero (qci > 0) and its worst-case
budget is equal to zero (qci = 0).

Proof. Condition 1 ensures that all pending jobs have been
completed and no jobs will be released by the end of the current
server period (by Definition 1), hence donation can occur without
violating system schedulability. Condition 2 is also sufficient to
perform donation safely, because it ensures that the amount of

execution occurred in the current server period is the same as it
would have been in the worst case. Indeed, by the budget update
rules given above, qci can only become lower than qci due to earlier
task completions.

Then, the budget donation mechanism is triggered according to
a Donation Rule that enforces the synchronous partition switching
upon donation. This rule also requires that the amount of spare
budget is at least σ time units (i.e., at least equal to the length of
the non-preemptability interval). Being σ certainly greater than
the switching overhead, this condition ensures that the partition
receiving the budget will not execute more than expected. In
fact, if a budget smaller than σ is donated to another partition,
the switching overhead could lead to a violation of system
schedulability.

Donation Rule: A partition Πi becomes ready for donation as
soon as all its servers Sc

i , c = 1, . . . ,m, are ready for donation,
provided that the amount of spare budget is at least σ time units.

The Donation Rule ensures that, for all servers of partition Πi,
either Condition 1 or 2 is verified, hence donation can safely
take place. If a certain server is ready for donation because
Condition 2 is verified (its worst-case budget is exhausted), but
the other servers are not ready for donation yet, if the current
budget is still greater than zero, the server can exploit the time
until the partition becomes ready for donation to execute its
pending workload (if any). Since the budget donation mechanism
requires synchronicity among all the cores, this choice appears
to be reasonable since that capacity would be wasted anyway.
In addition, this mechanism has the advantage of allowing a
synchronous behavior on all the cores. Therefore, we allow a
server that is ready for donation to consume its budget to execute
its pending workload while waiting for the other servers to
become ready for donation.

In the example of Figure 3 (which assumes σ = 0 for
simplicity), server S1

1 becomes ready for donation when its worst-
case budget is exhausted, at time 7 (by Condition 2). Server S2

1 ,
instead, becomes ready for donation at time 5, when the corre-
sponding sub-application becomes quiescent and thus Condition 1
is verified. In the example, the Donation Rule establishes that
partition Π1 is ready for donation at time 7, corresponding to the
earliest time instant when both servers are ready for donation.

Once a donation is triggered by a given partition Πi, the amount
of saved budget can be exploited by another partition Πj (selected
as explained in Section IV-B) by incrementing the budget (and
the worst-case budget) of all its servers by an amount equal to
the capacity saved by Πi at the time the donation was triggered.

It is worth observing that the proposed reclaiming mechanism
becomes particularly efficient when tasks are strictly periodic.
In fact, in case of sporadic arrivals, Condition 1 can only be
verified if the specified minimum inter-arrival times are such that
subsequent task arrivals do not fall within the current server
period. In addition, the proposed approach achieves its full
potential if tasks periods are multiples of the server period and
arrival times are coincident with the server activation times (i.e.,
in the case of bound tasks). In fact, in this case there would be
no intermediate arrivals falling inside the server period, hence
Condition 1 could be simply triggered when all pending jobs
have been completed. This scenario also avoids the fragmentation
of budget saving due to intermediate arrivals, hence it has the
advantage of favouring a synchronous budget saving on all the
cores, so that the spare budget can be more likely reclaimed and
redistributed to other partitions.

A final observation concerns the non-preemptability interval
of σ time units enforced every time a partition is scheduled. As
mentioned in Section III, this parameter has the purpose of con-
trolling partition switching overhead. Remarkably, if the Donation
Rule is verified for partition Πi during the non-preemptability
interval (i.e., before σ time units have elapsed since the last
time Πi was scheduled), it is convenient to trigger the budget
transfer mechanism. Otherwise, if the donation mechanism is not
triggered, the spare capacity of Πi would be simply wasted.

B. Budget assignment policy

Once the budget donation mechanism is triggered, a budget
assignment policy should select the partition receiving the spare
budget, according to a system-level strategy. This section de-
scribes some heuristics that can be adopted to select the receiving
partition.

First of all, note that, in order to preserve schedulability, a
budget saved by partition Πi can only be donated to a partition
Πj with lower priority (πj < πi). In fact, if the budget should be
donated to a partitions Πh with priority πh > πi, the schedulabil-
ity of the system could be jeopardized, since a partition Πk with
intermediate priority πi < πk < πh could be delayed beyond
its deadline by the extra execution of Πh. This consideration has
been originally formalized for the Priority Exchange Server [31]
to handle aperiodic requests along with a set of hard periodic
tasks. The only exception to this rule is given by the possibility
of donating the budget saved by Πi to the partition having a
priority level immediately higher than πi (if any), since there
would be no intermediate partitions that could be delayed. Such
a reasoning leads to the following constraint:

Constraint 1. If partition priorities are ordered such that ∀i < j,
πi > πj , than a budget saved by a partition Πi can only be
donated to a partition Πj ∈ lp(Πi) ∪ {Πi−1}.

Ensuring Constraint 1 is vital to preserve the schedulability
while reclaiming the budget. In order to explain the proposed
budget assignment policy, it is worth defining the concept of
eligible jobs and partitions.

Definition 2. A job is defined to be eligible for donation if it is
active and its optional part is selected for being skipped.

Definition 3. A partition Πi is defined to be eligible for donation
if at least one of its jobs is eligible for donation.

When a donation is triggered, the amount of spare budget
donated to an eligible partition (according to Constraint 1) can
be used to execute one or more eligible jobs. As soon as a job
becomes eligible, it is inserted in a queue of eligible jobs, from
which it is removed upon its absolute deadline. Since tasks are
statically allocated to the m cores, a queue of eligible jobs needs
to be maintained for each core; jobs in each queue can be ordered
by decreasing priorities. Another constraint is needed to account
for the execution progress of eligible jobs.

Constraint 2. If a certain amount of budget is donated at time t,
a job can benefit of the donation only if its mandatory part has
been completed at time t.

Once a given partition is selected as the recipient of the budget
donation, the spare budget is used, on each core, to execute the
optional part of eligible jobs allocated to that core, following their
priority ordering, until there are no more optional jobs to execute.

The remaining budget (if any) can be consumed until exhaustion
to execute other pending workload.

In the following, three possible heuristics are considered for
selecting the eligible partition receiving the spare budget. Such
heuristics should be applied only to eligible partitions satisfying
Constraints 1 and 2, in order to account for the priority level and
the execution progress of eligible jobs.

Priority-based approach. At each decision point, it selects the
eligible partition with the highest-priority. This policy, however,
does not consider the amount of workload that can be actually
reclaimed.

Fairness-based approach. This approach aims at re-
distributing the spare budget in a fair way. To do so, it keeps
track of the total amount Q(t) of reclaimed budget in the interval
[0, t] and tries to minimize for each partition the lag between
the ideally fair share of budget and the actual amount of budget
granted to partition Πi. Therefore, the budget is granted to the
partition with eligible jobs that currently maximizes

m ·Q(t)

N � − oi(t), (1)

where N � ≤ N is the number of partitions encapsulating at least
one skippable task, m ·Q(t)/N � represents the ideally fair share
of budget at time t, and oi(t) denotes the sum over all cores of
the portions of the optional parts readmitted by the reclaiming
mechanism in the interval [0, t].

Max-workload approach. This approach selects the partition
that could benefit more from the budget donation in terms of
re-enabled workload, that is, the partition that would be able to
execute more workload inside the execution interval granted by
the donation.

The policies described above would become slightly more
complex if the considered task model did not allow imprecise
computation, because they would need to take into account the
amount of spare budget to select tasks whose WCET fits the
available budget. By allowing tasks to execute an arbitrary portion
of their optional part, partitions can be selected to receive the
spare budget independently of its actual amount.

C. Evaluation metrics

This section defines some metrics for evaluating and comparing
the different policies proposed above.

In systems that support imprecise computation, a commonly
used metric is the error �i in the result produced by a given
task τi, defined as the length of the portion of the optional part
discarded in the schedule. If Oi is the worst-case duration of the
optional part and oi is the actual processor time assigned to the
optional part by the scheduler, the error of task τi is defined as
�i = Oi − oi. The average error �̄ on the task set is defined as

�̄ =
1

n

n�

i=1

wi · �i, (2)

where wi is a weight indicating the relative importance of τi in
the task set.

The metric �̄ is not directly used in this paper as it does not
apply to systems based on partitions. Additionally, to capture the
effect of the proposed online budget reclaiming mechanism, a
new metric is introduced that is a function of the considered time
interval. Namely, the system optional workload rate ρ(t) in the
interval [0, t] is defined as the average ratio between the amount

of optional parts of tasks in Πi actually executed, referred to as
oi(t), and the total amount Oi(t) of optional execution activated
in the considered interval:

ρ(t) =
1

N

N�

i=1

wi
oi(t)

Oi(t)
, (3)

where the weight wi refers to the relative importance of partition
Πi in the system. We assume that the variable oi(t) is updated
by the operating system.

In order to evaluate the fairness in the allocation of the spare
budget, a load balance index β(t) is defined as the average
squared error between the ideally fair assignment m·Q(t)/N � and
the budget oi(t) effectively assigned to partitions that contains at
least one skippable task:

β(t) =
1

N �
�

i ∈ [1,N]
∃j | Si,j �=∞

�
m ·Q(t)

N � − oi(t)

�2

. (4)

The different reclaiming strategies presented above are evalu-
ated in Section VI according to these metrics by a simulation-
based approach.

V. SCHEDULABILITY ANALYSIS

This section presents an off-line schedulability test for an IMA
system compliant with the proposed model. For each partition,
the worst-case scenario is constructed by assuming the execution
pattern imposed by the associated task skipping parameters,
where, for each task τi,j having Si,j > 1, its first Si,j−1 jobs are
assumed to be fully executed. Since tasks are statically partitioned
to cores, the analysis is restricted to a single-core scenario. System
schedulability is then guaranteed by verifying the schedulability
individually on each core. The analysis will be first presented
considering a fully-preemptive system with σ = 0, and then
extended to consider a limited-preemptive scenario where σ > 0.

Background: Davis and Burns [3] described an exact unipro-
cessor schedulability test for the Periodic Server (PS) [32], which
assumes a hierarchical framework where fixed-priority preemptive
scheduling is adopted both at global and local levels, and servers
are invoked every Pi time units. At each server execution period,
the capacity is linearly discharged even though there are no ready
tasks to execute.

In this setting, a schedulability analysis is carried out consid-
ering a critical instant for any task τi,j scheduled under a given
server [3]. In this scenario, the total workload generated by τi,j
and all higher-priority tasks in a time window of length L is given
by:

Wi,j(L) = Ci,j +
�

τi,k∈hp(τi,j)

�
L+ Ji,k
Ti,k

�
Ci,k, (5)

where Ji,k is the task jitter with respect to the server release. It
holds that Ji,k = 0 if τi,k is a bound task, and Ji,k = (Pi −Qi)
if τi,k is unbound. The length of the gaps during server periods
(excluding the last one) is

Gi,j(L) =

��
Wi,j(L)

Qi

�
− 1

�
(Pi −Qi). (6)

The extent to which the busy period L extends into the final
server period is

Zi,j(L) = L−
��

Wi,j(L)

Qi

�
− 1

�
Pi. (7)

Finally, the total response time of a task τi,j is given by the
fixed-point iteration of the following formula, starting with L(0) =

Ci,j +
��

Ci,j

Qi

�
− 1

�
(Pi −Qi):

L(x+1) = Wi,j(L
(x))+Gi,j(L

(x))+
�

Πk∈hp(Πi)

�
(Zi,j(L

(x)))0
Pk

�
Qk,

(8)
where the notation (a)0 stands for max(0, a).

Figure 4 illustrates the critical instant scenario for a task
τi,j scheduled under a given server. Assuming that τi,j is an
unbound task, in the worst-case it is released simultaneously
with all its higher-priority tasks right after the corresponding
server has exhausted its budget Qi (dashed red line in Figure 4).
Hence its jitter Ji,j with respect to the server release is equal to
Pi − Qi. The figure also shows the outstanding portion Zi,j of
the busy period extending into the final server period. If τi,j is
a bound task, instead, the critical instant scenario corresponds to
the case in which τi,j and all its higher-priority tasks are released
simultaneously with the server activation, hence the task jitter is
simply equal to zero.

Figure 4: Critical instant scenario for an unbound task scheduled
under a periodic server.

Fully-preemptive scheduling: The schedulability analysis pre-
sented in [3] can be easily adapted to our case if a fully-
preemptive scheduler (i.e., with σ = 0) is assumed. Specifically,
since we allow the optional part of each task to be skipped
according to the value of Si,j , while mandatory parts of all task
instances are never skipped, the total workload Wi,j(L) at priority
level j or higher, generated by tasks belonging to τi,j’s partition
and allocated to the same core, is given by:

Wi,j(L) = Ci,j +
�

τi,k∈hp(τi,j)
∩ CORE(τi,j)

�
L+ Ji,k
Ti,k

�
Mi,k +

�

τi,k∈hp(τi,j)
∩ CORE(τi,j)

��
L+ Ji,k
Ti,k

�
−

��
L+ Ji,k
Ti,k

�
1

Si,k

��
Oi,k,

(9)

where CORE(τi,j) denotes the set of tasks allocated to the
same core as τi,j . Therefore, the analysis in [3] needs to be
modified by simply replacing Equation (5) with Equation (9).
Then, schedulability can be checked by performing fixed-point
iteration of Equation (8), with the summation being restricted to
all tasks belonging to hp(τi,j) ∩ CORE(τi,j).

Limited-preemptive scheduling: If a non-preemptive interval
of σ > 0 time units is enforced every time a partition is scheduled,
the analysis in [3] needs to be further adapted. In particular, the
contribution of σ does not need to be explicitly accounted for in
complete server periods, as the only information incorporated by
the schedulability test is the amount of budget Qi that needs to
be granted to partition Πi during any complete server period Pi.

The non-preemptive interval comes into play when considering
the execution of the last piece, whose length is given by:

Yi,j(L) = Wi,j(L)−
��

Wi,j(L)

Qi

�
− 1

�
Qi. (10)

For this interval, we need to consider (i) the potential blocking
from lower-priority servers; and (ii) the interference from higher-
priority servers. While the former contribution is simply bounded
by σ, the interference from higher-priority servers can be com-
puted by observing that, in the case of a Periodic Server, it is
maximized when all of them are released synchronously with the
start time of the last server instance of Πi. To account for the
length of the non-preemptive interval for partition Πi, two cases
have to be distinguished:

Case 1). Yi,j(L) ≤ σ. In this case, after suffering the interfer-
ence imposed by higher-priority servers, the last chunk executes
non-preemptively (see Figure 5a)). The start time of the last
piece (relative to the start time of the last server period), can be
computed taking into account the self-pushing phenomenon that
arises in non-preemptive scheduling, which requires to carry out
the response time analysis for all job instances falling inside the
so called Level-i Active Period [33]. Hence, the start time of the
last chunk must be computed by the response time analysis for
non-preemptive scheduling as described in [33], [34], assuming
a worst-case blocking time of σ time units from lower-priority
servers and a worst-case execution time of Yi,j(L). Since the
value of Yi,j(L) is dependent on the current length of the busy
period, this computation requires to carry out a nested fixed-point
iteration. Once the start time of the last chunk has been computed,
the current values of Wi,j(L) and Gi,j(L) can be added up to
get a new response time value. The procedure has to be repeated
until unschedulability is detected (L(x+1) > Di,j) or convergence
is reached (L(x) = L(x+1)), determining a positive schedulability
result.

Figure 5: Impact of limited preemption in the last server period.

Case 2). Yi,j(L) > σ. In this case, one non-preemptive chunk
is not sufficient to execute Yi,j(L) entirely. Therefore, a server
Πi could be scheduled and de-scheduled multiple times before
being able to finalize Yi,j(L). Each time it is scheduled, it
will execute non-preemptively for σ time units, and then will
be possibly preempted by higher-priority servers. This scenario
is illustrated in Figure 5b). In this case, a tight schedulability
analysis should be able to detect off-line whether the final part
of the last chunk will execute preemptively or not, which in
turns depends on the interleaving among higher-priority servers.
Since in the worst-case it is not possible to take advantage of
a last non-preemptive chunk, the considered problem can be
analyzed by analogy with the Limited Preemptive scheduling
model with Deferred Preemptions [34]. Specifically, an upper-
bound on the response time of τi,j can be simply computed by
the fixed-point iteration of the following formula, starting with
L(0) = Ci,j +

��
Ci,j

Qi

�
− 1

�
(Pi −Qi):

L(x+1) = Wi,j(L
(x)) +Gi,j(L

(x)) + σ +
�

τi,k∈hp(τi,j)

∩ CORE(τi,j)

�
(Zi,j(L

(x)))0

Pk

�
Qk.

(11)

Note that Equation (11) represents a valid upper-bound on the
response time of τi,j also in Case 1), thus avoiding the nested
iteration at the cost of adding some pessimism in the analysis.
The benefit of using Equation (11), however, is that the analysis
becomes much simpler and can be limited to the first job of each
task. A block diagram that provides the big pictue on how the
proposed schedulability analsyis can be used is provided in [35].

VI. EXPERIMENTAL EVALUATION

The performance of the proposed scheduling framework has
been evaluated by extending SimSo [36], an open-source sim-
ulator4 written in Python that targets real-time multiprocessor
architectures. The three budget assignment heuristics proposed
in Section IV-B have been evaluated on a synthetic workload,
randomly generated as described in the following subsection.
Additional experiments are available in [35].

Workload generation: The proposed experiments consider a
system with 10 IMA partitions. Different configurations are tested
with a number of cores m that goes from 2, in line with [1], to 8,
which represents the typical upper-bound in multi-core systems
for avionic applications. Partition servers are assigned harmonic
periods, randomly chosen in the set {25, 50, 100, 200, 400}.
Server utilizations are generated by UUniFast [37], and server
budgets are computed accordingly. Partitions are assigned pri-
orities according to Rate Monotonic (RM). For each partition,
3 to 5 tasks are generated, in line with the typical number
of tasks in avionic applications [38]. In the case of bound
tasks, periods are selected randomly in the following set of
values: {25, 50, 100, 200, 400, 800, 1600, 2400}; additionally, for
each task τi,j , Ti,j ≥ Pi. In the case of unbound tasks, periods
are selected with uniform distribution in the interval [Pi, 2400].
In both cases, relative deadlines are set equal to periods. Then,
for each task, the utilization of its mandatory part is selected with
uniform distribution in the interval [0.01, 0.2]. The total utilization
of mandatory parts does not exceed 0.8 · mQi

Pi
. In other words,

the maximum utilization of mandatory parts in a partition is not
higher than 80% of the budget assigned to the partition. This
choice allows evaluating the system in a condition of heavy load
while having some slack for the execution of optional workload.
Then, the value of Mi,j is computed accordingly. Additionally,
the first five partitions (in priority order) are assumed to be highly-
critical, in the sense that they are designed with no skipping
capabilities (Si,j = ∞). The remaining five partitions have an
optional part whose utilization is uniformly selected in the interval
[0.01, 0.2], provided that the total utilization of optional parts in
each partition does not exceed mQi

2Pi
. Indeed, if the additional

optional workload is excessive, it will always be skipped, thus
providing no insight on the efficiency of the proposed reclaiming
strategies. Conversely, a low amount of optional workload would
make reclaiming strategies indistinguishable. In this context, we
set the maximum utilization of optional workload to be about
50% of the partition budget. In this way, optional workload can
bring non-critical partitions to be loaded at roughly 130% of
their budget when mandatory parts run for their worst-case length
Mi,j . Once period and utilization have been selected, the length
of each optional part Oi,j is computed accordingly. All tasks

4Code available at: https://github.com/edwardjamming/simso-MC-IMA

 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22
 0.24
 0.26

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

.
O

p
t.

 W
o
rk

lo
ad

 R
at

e
-
ρ

α

workload
priority
fairness

(a) Bound tasks.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

.
O

p
t.

 W
o
rk

lo
ad

 R
at

e
-
ρ

α

workload
priority
fairness

(b) Unbound tasks.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

.
O

p
t.

 W
o
rk

lo
ad

 R
at

e
-
ρ

α

workload
priority
fairness

(c) Bound tasks.

 0.02
 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055
 0.06

 0.065

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

.
O

p
t.

 W
o
rk

lo
ad

 R
at

e
-
ρ

α

workload
priority
fairness

(d) Unbound tasks.

Figure 6: System optional workload rate in the case of bound (a) and unbound (b) tasks with log-uniform runtimes; and in case of
bound (c) and unbound (d) tasks with uniform runtimes.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Lo
ad

 B
al

an
ce

 I
n
d
ex

 -
 β

α

workload
priority
fairness

(a) Bound tasks.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Lo
ad

 B
al

an
ce

 I
n
d
ex

 -
 β

α

workload
priority
fairness

(b) Unbound tasks.

 0

 50

 100

 150

 200

 250

 300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Lo
ad

 B
al

an
ce

 I
n
d
ex

 -
 β

α

workload
priority
fairness

(c) Bound tasks.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Lo
ad

 B
al

an
ce

 I
n
d
ex

 -
 β

α

workload
priority
fairness

(d) Unbound tasks.

Figure 7: Load balance index in the case of bound (a) and unbound (b) tasks with log-uniform runtimes; and in case of bound (c)
and unbound (d) tasks with uniform runtimes.

belonging to non-critical partitions have a skipping parameter
Si,j = 1 (i.e., all optional parts are skipped by default). Tasks
are then statically partitioned to the available cores by a best-fit
bin-packing heuristic that allocates each task to the least utilized
core. Task priorities are set according to RM. Simulations have
been carried out with σ = 0, as this parameter mostly affects
the scheduling of partitions but does not significantly impact the
amount of budget that can be reclaimed at runtime. Finally, for all
the partitions, the weight wi is set equal to 1 (see Equation (3)).

Only system configurations deemed schedulable by the test in
Section V have been considered in the evaluation. In each set
of experiments, 500 schedulable task-sets have been generated
for each value on the x-axis. The duration of each simulation
experiment is set equal to the task set hyperperiod, assuming
that tasks are synchronously activated at the beginning of the
execution.

Simulation results: In a first set of experiments, the system
optional workload rate (as defined in Section IV-C) has been
measured as a function of the amount of execution allowed to
each partition. In particular, the actual execution time of each
task is generated as a random integer selected with log-uniform
distribution in the interval [α · Mi,j ,Mi,j], with α ∈ [0.1, 0.7],
and the performance of the different budget assignment policies
proposed in Section IV-B is evaluated as a function of α. The
results depicted in Figures 6a) and 6b) correspond to the bound
and unbound case, respectively. As expected, the workload-
based policy dominates the other two approaches in terms of
readmitted optional workload for all values of α. In addition,
the system optional workload rate in the case of bound tasks is
about 2.8 times higher compared to the case of unbound tasks,
confirming that the proposed reclaiming algorithm has better
performance with bound tasks. The observed trend confirms that
the proposed workload-based reclaiming strategy is effective to
maximize the overall execution of optional workload. However,
the performance of this strategy is not significantly better than
the other approaches. This is because the lengths of the optional
parts for all tasks are generated following the same law. Hence,
good performance is achieved even if the selection is not purely
based on the amount of pending optional workload.

Additionally, even when α = 0.7 (i.e., all tasks execute close
to their worst case), some budget reclaiming may still occur (8%

and 3%, respectively), since it is unlikely that all the tasks fully
utilize their partition budgets. For example, if all sub-applications
inside a partition become quiescent before depleting the budget,
the reclaiming mechanism is triggered according to Condition 1
(see Section IV-A).

A second set of experiments has been carried out to evaluate
the load balance index considering the value of globally reclaimed
budget at the end of the simulation. The results reported in
Figures 7a) and 7b) demonstrate that the fairness-based approach
is effective to evenly distribute the available budget among
different non-critical applications. This is important to guarantee
that no software component is starved even if sufficient budget is
reclaimed to guarantee its execution.

The system optional workload rate is further evaluated as the
number of cores is increased from 2 to a maximum of 8. For this
case, we consider a lower utilization for the optional workload.
Specifically, the total utilization of the optional parts in each
partition is mQi

4Pi
(i.e., 25% of the partition budget), instead of

mQi

2Pi
as in the previous experiments. As discussed, an optional

utilization of 50% already brings the system close to saturation
for large values of α. In this experiment, a lower utilization value
is selected to better appreciate the variation in terms of optional
workload rate as the number of cores is increased.

Next, the system optional workload rate in case of bound task
with log-uniform runtime distribution is evaluated considering a
different number of cores in the system. Figure 8 reports the
results for system setups with m = 2, 4 and 8 cores, respectively.
In this set of experiments, the number of tasks per partition is
calculated as 2.5m. The plots in Figure 8 suggest that the amount
of optional workload executed is inversely proportional to the
number of cores in the system. This behavior can be explained
considering two main aspects: (i) as the number of cores in-
creases, a larger amount of optional workload is generated; and
(ii) despite the larger amount of workload, there is marginally
less opportunity for donation since the budget saving has to be
realized simultaneously on all the cores to trigger reclaiming.

VII. CONCLUSIONS

This paper proposed a scheduling framework for handling
Integrated Modular Avionics (IMA) on multicore platforms pro-

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

.
O

p
t.

 W
o
rk

lo
ad

 R
at

e
-
ρ

α

workload
priority
fairness

(a) 2 Cores.

 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22
 0.24

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

.
O

p
t.

 W
o
rk

lo
ad

 R
at

e
-
ρ

α

workload
priority
fairness

(b) 4 Cores.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ys

.
O

p
t.

 W
o
rk

lo
ad

 R
at

e
-
ρ

α

workload
priority
fairness

(c) 8 Cores.

Figure 8: System optional workload rate with bound tasks and variable number of cores.

viding predictability as well as flexibility in managing unexpected
temporal misbehaviors of multicore. To eliminate the inter-core
interference across different partitions, servers executing in par-
allel within the same partition have the same budget and period
for all the cores; hence, partitions are synchronously switched on
the platform. To safely handle unexpected overload conditions
without sacrificing the average-case performance, applications
are first guaranteed off-line by allocating resources according to
pessimistic worst-case scenarios. However, at runtime an efficient
online resource reclaiming mechanism exploits early completions
and redistributes the unused budget according to a predefined
donation strategy. Three different donation heuristics have been
proposed and evaluated by using simulations. With respect to the
classical cyclic executive approach, the achieved results demon-
strated that the proposed framework is a promising solution for
implementing safety-critical IMA systems on multicore platforms.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant numbers CNS-1302563 and CNS-1646383. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect
the views of the NSF and other sponsors.

REFERENCES

[1] FAA position paper on multicore processors, CAST-32 (Rev 0), May 2014.
[Online]. Available: http://www.faa.gov/aircraft/air cert/design approvals/
air software/cast/cast papers/media/cast-32.pdf

[2] Airlines Electronic Engineering Committee (AEEC) and Aeronautical
Radio Inc., Avionics Application Standard Software Interface - ARINC
Specification 653, January 1997. [Online]. Available: https://www.arinc.
com/cf/store/catalog detail.cfm?item id=1487

[3] R. Davis and A. Burns, “Hierarchical fixed priority preemptive scheduling,”
in RTSS, 2015.

[4] P. Kumar Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in RTAS, 2016.

[5] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharing for overrun
control,” in RTSS, 2000.

[6] G. Bernat and A. Burns, “Multiple servers and capacity sharing for imple-
menting flexible scheduling,” Real-Time Systems, vol. 22, no. 1, pp. 49–75,
2002.

[7] C. Lin and S. Brandt, “Improving soft real-time performance through better
slack reclaiming,” in RTSS, 2005.

[8] R. Pellizzoni and M. Caccamo, “M-cash: A real-time resource reclaiming
algorithm for multiprocessor platforms,” Real-Time Systems, vol. 40, no. 1,
2008.

[9] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “WCET(m)
estimation in multi-core systems using Single Core Equivalence,” in 27th
Euromicro Conference on Real-Time Systems, July 2015, pp. 174–183.

[10] R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo, “WCET derivation
under Single Core Equivalence with explicit memory budget assignment,”
in 29th Euromicro Conference on Real-Time Systems, June 2017.

[11] G. Fohler, “Joint scheduling of distributed complex periodic and hard
aperiodic tasks in statically scheduled systems,” in RTSS, 1995.

[12] ——, “Adaptive fault-tolerance with statically scheduled real-time systems,”
in EMWRTS, 1997.

[13] A. Agrawal, G. Fohler, J. Nowotsch, S. Uhrig, and M. Paulitsch, “Slot-
level time-triggered scheduling on COTS multicore platform with resource
contentions,” in RTAS, WIP Session, 2016.

[14] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos, “Mixed-
criticality real-time scheduling for multicore systems,” in CIT, 2010.

[15] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, “RTOS
support for multicore mixed-criticality systems,” in 18th IEEE Real Time
and Embedded Technology and Applications Symposium (RTAS), 2012.

[16] J. Erickson, N. Kim, and J. Anderson, “Recovering from overload in
multicore mixed-criticality systems,” in IPDPS, 2015.

[17] RTCA SC-167, EUROCAE WG-12, Software Considerations in Airborne
Systems and Equipment Certification (DO-178B), 1992.

[18] RTCA SC-205, EUROCAE WG-12, Software Considerations in Airborne
Systems and Equipment Certification (DO-178C), 2012.

[19] J. E. Kim, T. Abdelzaher, and L. Sha, “Budgeted generalized rate monotonic
analysis for the partitioned, yet globally scheduled uniprocessor model,” in
RTAS, 2015.

[20] ——, “Schedulability bound for integrated modular avionics partitions,” in
DATE, 2015.

[21] J. E. Kim, M. K. Yoon, R. Bradford, and L. Sha, “Integrated modular
avionics (IMA) partition scheduling with conflict-free I/O for multicore
avionics systems,” in COMPSAC, 2014.

[22] J. E. Kim, M. K. Yoon, S. Im, R. Bradford, and L. Sha, “Optimized
scheduling of multi-IMA partitions with exclusive region for synchronized
real-time multi-core system,” in DATE, 2013.

[23] P. Huang, G. Giannopoulou, R. Ahmed, D. B. Bartolini, and L. Thiele, “An
isolation scheduling model for multicores,” in RTSS, 2015.

[24] A. Burns and R. I. Davis, “Mixed criticality systems - a review,” Department
of Computer Science, University of York, Tech. Rep, 2013.

[25] A. Burns, T. Fleming, and S. Baruah, “Cyclic executives, multi-core plat-
forms and mixed criticality applications,” in ECRTS, 2015.

[26] J. Liu, K. Lin, and S. Natarajan, “Scheduling real-time, periodic jobs using
imprecise results,” in RTSS, 1987.

[27] W. Shih, W. Liu, J. Chung, and D. Gillies, “Scheduling tasks with ready
times and deadlines to minimize average error,” SIAM Journal of Computing,
vol. 20, no. 3, pp. 537–552, July 1991.

[28] J. Liu, W. Shih, K. Lin, R. Bettati, and J. Chung, “Imprecise computations,”
Proceedings of the IEEE, vol. 84, no. 1, pp. 83–94, 1994.

[29] G. Koren and D. Shasha, “Skip-over: algorithms and complexity for over-
loaded systems that allow skips,” in RTSS, 1992.

[30] M. Caccamo and G. Buttazzo, “Exploiting skips in periodic tasks for
enhancing aperiodic responsiveness,” in RTSS, 1997.

[31] J. P. Lehoczky, L. Sha, and J. Strosnider, “Enhancing aperiodic responsive-
ness in a hard real-time environment,” in RTSS, 1987.

[32] L. Sha, J. Lehoczky, and R. Rajkumar, “Solutions for some practical
problems in prioritised preemptive scheduling,” in RTSS, 1986.

[33] R. Bril, J. Lukkien, and W. Verhaegh, “Worst-case response time analysis of
real-time tasks under fixed-priority scheduling with deferred preemption,”
Real-Time Systems, vol. 42, no. 1, pp. 63–119, 2009.

[34] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling for
real-time systems. A survey.” IEEE Transactions on Industrial Informatics,
vol. 9, no. 1, pp. 3–15, 2013.

[35] A. Melani, R. Mancuso, M. Caccamo, G. Buttazzo, G. Freitag,
and S. Uhrig, “Extending Integrated Modular Avionic Systems on
Multicore Platforms with Flexible Scheduling,” University of Illinois
at Urbana-Champaign, Tech. Rep., 2017. [Online]. Available: http:
//rtsl-edge.cs.illinois.edu/rmancuso/mc ima sched.pdf

[36] M. Chéramy, P. Hladik, and A. Déplanche, “SimSo: A simulation tool to
evaluate real-time multiprocessor scheduling algorithms,” in WATERS, 2014.

[37] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1, pp. 129–154.

[38] D. Locke, L. Lucas, and J. Goodenough, “Generic avionics software
specification,” Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU/SEI-90-TR-008, 1990.

