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Abstract—This paper presents the evaluation of the mem-
ory subsystem of the Xilinx Ultrascale+ MPSoC. The char-
acteristics of various memories in the system are evaluated
using carefully instrumented micro-benchmarks. The impact of
micro-architectural features like caches, prefetchers and cache-
coherency are measured and discussed. The impact of multi-core
contention on shared memory resources is evaluated. Finally,
proposals are made for the design of mixed-criticality real-time
applications on this platform.

I. INTRODUCTION

The design of efficient computing platforms is essential
to achieve real-time guarantees at low power consumption
and cost in current and future real-time applications, from
complex cyber-physical systems to mobile systems, and to
ensure high-performance with acceptable quality of service
(QoS) [1]. For instance, in autonomous vehicles, tasks such
as steering control, fuel injection, and brake handling, are
critical and have hard real-time requirements. Multimedia
infotainment systems, however, demand high-performance and
tolerate large variations in QoS (i.e., best-effort requirements).
Finally, vision-based driver assistance and navigation have
become too complex to fit within the traditional development
cycle of critical embedded systems, yet they cannot be handled
as best-effort software components. Such tasks demand high-
processing power and predictability at the same time [1].

Multi-Processor System-on-a-Chip (MPSoC) architectures
provide an ideal trade-off between performance and cost
to meet such requirements found in complex cyber-physical
systems. The considered family of MPSoC architectures is
composed of several heterogeneous processing elements with
specific functionalities: general-purpose multi-core processors,
DSPs, specialized processing cores, GPUs, and FPGA. They
also feature a rich memory hierarchy, comprised of scratch-
pads, DRAMs, Block RAM, and multiple levels of cache. A
similarly rich I/O subsystem, with a number of interfaces,
embedded devices, Direct-Memory Access (DMA) engines,
shared buses and interconnects completes the picture.

It follows that on the one hand the considered MPSoC
platforms provide a vast number of configuration options.
On the other hand, however, they also make it difficult to
design basic software components (real-time operating system
— RTOS and hypervisor), and to understand all the sources of

unpredictability. The most relevant sources of unpredictability
in MPSoCs are:

e Shared Memory Hierarchy: several latency hiding
mechanisms, including caches, buffers, scratchpads, and
FIFOS are placed among the main memory, processors,
and I/O devices. Such mechanisms enable latency and
bandwidth demands to coexist in a hierarchy at the price
of poor predictability [1]. Techniques such as private
memory and cache coherency increase performance, but
suffer from limitations in scalability, energy efficiency,
and timing [1]. Thus, such techniques become the primary
sources of unpredictability in modern MPSoCs [1, 2].
DRAM itself improves the average case performance
by using row open arbitration policies or bank level
interleaving but these in turn introduce further unpre-
dictability.

o Shared I/O Subsystem: latency hiding mechanisms are
also used in I/O subsystems. I/O subsystems deliver lower
throughput compared to those designed to feed data-
hungry CPUs [1]. Many systems are designed assuming
that just a few I/O devices will be active at any given time,
which is often a wrong assumption for large MPSoCs [1].
Then, delays and deadline misses can occur due to
the contention in the I/O subsystem and the increased
variation in the response time [1].

o Shared Buses: Multi-Processor systems use limited num-
ber of shared buses to communicate with the memory
subsystems. These buses frequently become a hot spot
for contention. The memory bandwidth available to a
processor at any instant is affected by activity of other
processors. Variable memory latency due to other pro-
cessors running independent applications can cause any
number of deadline violations for a processor. For this
problem, various solutions have been proposed [3, 4] and
analyzed [5, 6].

In this paper, we provide a benchmark-based analysis of a
modern MPSoC considering the main sources of unpredictabil-
ity and, based on the obtained results, we propose a basic
software architecture to improve the predictability of real-time
applications running on a MPSoC platform. In summary, the
main contributions of this paper are:

e We benchmark the memory types available in a modern



heterogeneous MPSoC platform. We conclude that var-
ious memories exhibit varying characteristics and sensi-
tivity to multi-core contention. We use this information
to propose an architectural design paradigm in Section V.

o We propose a software/hardware architecture to improve
the predictability in the modern MPSoC platforms. Our
software architecture relies on a partitioning hypervisor,
an RTOS, and several OS-related techniques, such as
cache memory partitioning, hardware performance coun-
ters, memory bandwidth regulation, and DRAM bank-
aware memory allocation.

II. PLATFORM OVERVIEW

The selected platform ZCU102 [7] contains a Xilinx Ul-
trascale+ MPSoC [8]. The main components of this platform
are:

1) Application Processing Unit, ARM Cortex A-53 [9]

e Quad Core ARMvVS8-A Architecture

e 32 KB each Private L1 Instruction and Data Cache
per core

e 1 MB Shared L2 cache

2) Real-Time Processing Unit, ARM Cortex-R5

e Dual-Core ARMv7-R Architecture

e 32 KB combined Private Instruction and Data Cache
per core

o 128 KB Tightly Coupled Memory (TCM) per core

3) Programmable Logic (PL)
4) Memory

e OCM: 256 KB On-Chip Memory

e PS DRAM: 4 GB DDR4 Kingston KVR21SE1558/4

« PL DRAM: 512 MB DDR4  Micron
MT40A256M16GE-075E connected to
Programmable Logic

e« PL BRAM: Block RAM in Programmable Logic

5) ARM Mali-400 Based GPU

Figure 1 presents a simplified block diagram of the targeted
Ultrascale+ MPSoC. Note that the programmable logic can
provide a DRAM controller to access a 512 MB DDR4
memory (here called as PL-DRAM) and a Block RAM (B-
RAM). The OCM memory is accessed by the A-53 cores
through two buses, and so is the 4 GB DDR4 memory (PS-
DRAM). Block RAM (BRAM) [10] are embedded memory
elements instantiated in the FPGA which are being used as
RAM. We use up to 2 MB of BRAM in the experiments.

The Programmable Logic (PL) communicates with the A-
53/R-5 cores and DRAM in the Processing System (PS) via
AXI-4 [11] buses. The PS side interface contains 3 AXI
Masters and 3 AXI Slaves which can be individually enabled
and configured. In our experiments we use 2 AXI Masters
on the PS side which connect to AXI Interconnects on the PL
which provide the corresponding AXI Slave ports. AXI Master
ports on these interconnects are connected to AXI Slave ports
on PL DRAM and PL BRAM controllers respectively.

III. BENCHMARKS

Platform evaluation is performed using user space bench-
marks available here [12]. The benchmarks create carefully
controlled memory traffic and use timing information for those
accesses to deduce platform characteristics.

A. Memory Mapping

Various memories are available on this platform as described
in Section II. To benchmark specific memory from linux user
space the benchmarks use the /dev/mem [13] interface which
exposes the physical memory as a file. The mmap system
call [14] is used to map the physical address space from
/dev/mem to the virtual address space of the benchmark.
The mmap system call in the kernel was modified to explicitly
control the cacheability of the mapped memory. The mapped
memory could be made cacheable or non-cacheable as desired.
Due to the small size in the same order of magnitude as L2
Cache, PL Block RAM is always mapped as non-cacheable in
all experiments.

B. Memory Latency

Memory Latency is defined here as the time difference
between the processor issuing a read request and receiving
the data. A strict data dependence is created between each
load used to evaluate the latency. This effectively eliminates
any parallelization that could be introduced by the compiler
or processor and skew this metric. The average latency is
calculated over a large number of such loads.

The behavior of this benchmark was verified by inspecting
the assembly code generated by the compiler and using perf
utility [15] at runtime. The benchmark was compiled with
gce -O2 optimizations.

C. Bandwidth

This benchmark evaluates the read or write bandwidth
available to the processor for specific physical memory address
ranges. The benchmark accesses the memory range under
evaluation in a sequential manner with the corresponding type
of access (read or write). This is done for 5 seconds and
the average bandwidth is calculated. The benchmark evaluates
the processors’ ability to read or write sequential address
ranges. Every access made to the memory is 64 bits wide.
The benchmark was compiled with gcc -O2 optimizations.

D. Cache Coherence

The effect of cache coherence on memory access time is
also evaluated. The benchmark considered is similar to the
one used in [16]. The benchmark in [16] uses two tasks. Each
task accesses a fixed memory range with reads and writes in a
sequential manner. The two tasks can be arranged with respect
to each other in the following arrangements:

o Sequential: The two tasks are run one after the other on
the same processor;

e Parallel: The two tasks run on two different processors
but access private data only. There is no coherence
dependence between the tasks;
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Fig. 1. Simplified Block Diagram of the UltraScale+ MPSoC

o Concurrent: The two tasks run on two different proces-
sors and access shared data leading to overheads due to
coherence traffic.

IV. PLATFORM EVALUATION

This section provides a summary of the evaluation results.

A. Measuring Latency and Bandwidth

Using the latency benchmark as described earlier in Sec-
tion III-B, we measured latency of different memory sub-
systems. The results of the experiments for serialized versus
random access pattern to measure latency for PS DRAM, PL
DRAM and PL Block RAM are shown in Figure 2. Memory
accesses in this experiment bypass caches as described in
Section III-A. The experimental results reveal that both PS-
DRAM and PL-DRAM show less latency in serialized access
compared to random access. The PL-BRAM does not exhibit
any latency difference between serialized versus random ac-
cess. BRAM accesses latency is independent of access pattern
as it lacks constructs like banks and row buffers that are
common in DRAM:s.

We also ran the latency benchmark with caching enabled for
varying working set sizes. Figure 3 shows the results. At the
lowest working set size of 16 KB, all accesses hit in private
L1 d-Cache of the processor. The access latency for the L1
d-Cache is hence around 3ns. The shared L2 Cache has a
capacity of 1 MB. Until the working set is increased beyond
the 1 MB mark, the majority of memory accesses hit in L1 or
L2 cache. The sharp latency increase for working sets larger
than 1 MB are due to actual DRAM accesses. L2 cache latency
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Fig. 2. Stress Results of PL Versus PS DRAM

is hence around 20ns. Serialized read latency is substantially
lower than random read latency. Additionally, note that the
read latency for serialized memory accesses, even for large
working sets, is comparable to L2 cache latency. This is the
impact of speculative prefetching. Recall that the results in
Figure 2 were obtained by defining non-cacheable buffers. At
large working set sizes the latency for randomized accesses
to cacheable memory (see Figure 3) converges to the latency
observed for non-cached memory (Figure 2), as all accesses
miss in L1/L2 cache.

Similar to the latency benchmark, we run the bandwidth
benchmark described in Section III-C on A-53 core to measure
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the bandwidth of different memory sub-systems as reported in
Table I. From these results we draw several conclusions. In
general PS DRAM is better then both PL DRAM and PL
Block RAM. This is due to shorter line distance to the PS
DRAM and higher clock rates in the PS subsystem. Reads with
caching enabled are boosted by speculative prefetching as the
accesses are strictly serial. Multiple loads are issued per cache
line leading to further boost in Read bandwidth with caches as
compared to without caches. Reads without caches fetch data
from underlying memory on every access and hence suffer a
low bandwidth. Writes without caching return asynchronously
i.e. the store instruction returns without waiting for the data
to be committed to the underlying memory. Without caching
there is not a requirement to allocate a cache line to complete a
store. In case of writes with caches enabled, stores frequently
lead to dirty cache line evictions and cache line allocate for the
first write to a cache line (write-allocate policy). Hence we see
the large write bandwidth when caches are disabled but a low
write bandwidth with caching enabled. PL Block RAM is only
accessed with caches disabled. Read bandwidth from PL Block
Ram is greater than PL DRAM as the logic to reach Block
RAM in Programmable Logic is smaller than that to reach PL
DRAM. Block RAM is also inherently faster than DRAM for
single access latency which is a good approximation for the
traffic pattern of the read bandwidth benchmark. On the other
hand, write bandwith benchmark without caches bombards the
underlying memory with write requests. In this case PL Block
RAM provides a lower throughput than the PL DRAM. This is
due to lack of parallelization of memory accesses and limited
buffering in the access path to PL Block RAM, as compared
to PL DRAM.

TABLE 1
BANDWIDTH MEASUREMENTS FOR DIFFERENT MEMORIES
Access Type PS DRAM | PL DRAM | PL BRAM
(MB/s) (MB/s) (MB/s)
Write With Cache 1881 880 XX
Read With Cache 2493 1414 XX
Write W/O Cache 12000 5440 4568
Read W/O Cache 556 320 406

B. Measuring Latency Under Stress

In this section we report the memory latency seen by a
core under analysis running the latency benchmark when other
cores are stressing the same memory as core under analysis
using the bandwidth benchmark. The bandwidth benchmark
on other cores is configured to stress with write, whereas the
latency is configured to perform read. In Figure 4, we show
the amount of read latency seen by the core under analysis on
PS DRAM and PL DRAM as we increase the stressing cores
from one to up to three. Compared to solo case, the stress case
of three cores shows a slow down of 1.85 times for the PS
DRAM and a slow down of 5.37x for the PL DRAM. This
slow-down can be explained by the DRAM specs of the PL
and PS DRAM and the interconnect between the two. We also
note that BRAM access latency is largely unaffected by the
increasing contending traffic.
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C. Evaluating Cache Coherence

Figure 5 shows the results of cache contention experiments
as described in section III-D. We can clearly note the effects
of the cache coherence protocol on the performance. The
concurrent benchmark version, which runs two threads in
different cores at the same time accessing the same data array,
is about 3.6 times slower than the parallel version. When
the second thread accesses the shared data, it gets an invalid
access and must ask (snoop request) for the most recent copy
of the data or recover it from a higher memory level [16].
Whenever a snoop request must be completed, it takes time,
which may lead to unexpected increase of the task’s execution
time and deadline misses [2, 16]. According to [17], the time
to complete a snoop request is considerably slow (comparable
to access the off-chip RAM).

ARM Cortex-A53 processor uses the MOESI protocol to
maintain data coherency between multiple cores [9]. Co-
herency is maintained between the cores, cache, /O master,
PL, and DRAM using the cache coherence interconnect (CCI).
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V. PROPOSED SOFTWARE/HARDWARE PREDICTABLE
ARCHITECTURE

In order to provide strong temporal isolation among high
performance cores on the considered heterogeneous MPSoC,
we propose the software architecture as shown in Figure 6.

Our proposed architecture uses Jailhouse hypervisor [18]
that provides physical isolation of hardware devices including
processors, among the different OSes. We propose to use a
general-purpose OS such as Linux for non-critical tasks on
one of the high performance core and a Real-Time operating
system (RTOS) such as Erika [19] for safety-critical tasks.
Like any hypervisor, the communication between different
OSes running on different cores is achieved using Jailhouse.
We propose prohibiting direct access to the shared resources
from different cores. This eliminates unbounded contention
which could make the system unpredictable.

Linux Erika Erika
RTOS RTOS
A A
J ailh_ouse _ |
A53
core 0

Fig. 6. Overview of the envisioned software architecture.

From our experimental results, it is clear that the main
sources of contention in our system are shared memory
resources such as LLC and the main memory such as PS
DRAM. We propose to partition the LLC using page coloring
with the help of Jailhouse. This removes the contention that
can be introduced by the LLC. In order to avoid the contention

at the DRAM, we propose the use of DRAM bank-aware
memory allocator (PALLOC) [20]. Using cache partitioning
and PALLOC we can assign a specific amount of cache and
dedicate DRAM banks to a specific core and enforce strong
isolation between the OSes running on different cores. For
shared memory, we propose to use PL block RAM (BRAM).
This is because, as shown by the experimental results in
Figure 4, the BRAM does not suffer any contention when
accessed using different cores.

VI. RELATED WORK

Our proposed software architecture is similar to one pro-
posed in [21]. However, in our proposal, Jailhouse would be
responsible for providing cache partitioning (possibly through
page coloring) and also DRAM bank-aware memory allocator
(through PALLOC [20]). Modica et al. also proposed a similar
hypervisor-based architecture targeting critical systems [22].
Cache partitioning is used to provide spatial isolation, while a
DRAM bandwidth reservation mechanism provides temporal
isolation. Both cache partitioning and memory reservation
mechanisms were implemented in the XVISOR open-source
hypervisor [23] and tested in a quad-core ARM A7 proces-
sor. Our proposed hypervisor-based approach, instead, uses
a MPSoC platform, which gives the possibility to explore
other features, such as specific FPGA DMA blocks (to handle
data transfer between PS and PL sides for instance) and data
prefetching. Another difference is that our approach will also
use DRAM bank-aware memory allocator, which can provide
better predictability in terms of main memory accesses.

MARACAS addresses shared cache and memory bus con-
tention through multicore scheduling and load-balancing on
top of the Quest OS [24]. MARACAS uses hardware per-
formance counters information to throttle the execution of
threads when memory contention exceeds a certain threshold.
The counters are also used to derive an average memory
request latency to reduce bus contention. vCAT uses the Intel’s
Cache Allocation Technology (CAT) to achieve core-level
cache partitioning for the hypervisor and virtual machines
running on top of it [25]. vCAT was implemented in Xen
and LITMUSET. Although interesting, this approach is
architecture dependent and uses non real-time basic software
support (Linux and Xen).

Kim and Rajkumar proposed a predictable shared cache
framework for multicore real-time virtualization systems [26].
The proposed framework introduces two hypervisor techniques
(VLLC and vColoring) that enables cache-aware memory
allocation for individual tasks running running in a virtual ma-
chine. CHIPS-AHOYy is a predictable holistic hypervisor [1]. It
integrates shared hardware isolation mechanism, such as mem-
ory partitioning, with an observe-decide-adapt loop to achieve
predictability and energy, thermal, and wearout management.

VII. CONCLUSIONS

In this paper we have evaluated the different memory
subsystems of the Xilinx Ultrascale+ platform. The results
of the experiments show that the platform has significant



contention at LLC, PS DRAM and PL. DRAM. Therefore, it
cannot be used as is for multi-core applications requiring hard-
real time guarantees. To provide strong isolation among the
cores, we propose the use of cache coloring using JailHouse
(a hypervisor) and DRAM bank partitioning using PALLOC.
With strict partitioning of shared resources we can run Real
Time OS on any core unaffected by application running on
other cores.
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